
Published as a conference paper at ICLR 2025

A SHAPE-MEMORY NETWORK

Mechanism To illustrate the mechanisms of the Shape-Memory Network (SMN), we first define
the mathematical notations and expressions. Let E and D be the encoder and decoder of the SMN,
respectively. Then, the encoded feature-map (fk) would be represented as E(Ii) = [fk]k=1,2,...,C ,
where Ii ∈ I ⊂ RH×W×3 is the input image with its height (H) and width (W), and C is the
number of feature-map, and the final output, the segmentation map (Yi ∈ Y ⊂ RH×W×C), is
represented as Y = D([fk]) = (D ◦ E)(I), where C is the number of categories in the datasets.
In the pipeline for the class activation map (CAM), the encoded feature-maps are average-pooled,
such that

∑
x,y fk(x, y) represents an individual feature. Here, suppose W c

k for the weight for
the density-regression for a category (c), and then density prediction(dc : RH×W×3 → R) is
calculated as dc(Ii) =

∑
k W

c
k

∑
x,y fk(x, y) =

∑
k W

c
k

∑
x,y E(Ii), such that [dc(Ii)]c=1,2,...,C ∈

RC . Furthermore, the predicted densities for each category are mapped to the control signal (sct ∈ RN)
with the number of individual pixels of feature-maps in D (N) via dense layers with the trainable
matrix (M ∈ RC×N) such that sct = [dc(Ii)] ·M, where · is the matrix multiplication. Subsequently,
the sct is imported into the D, and thus the final prediction of the SMN is implemented in detail as
below:

Yi = D(E(Ii); sct)

= D
(
E(Ii); [

C∑
k

W c
k

∑
x,y

E(Ii)] · M
) (3)

Note that all elements of the segmentation map (Yi) are the softmax output, such that 0 ≤ Yi∥h,w,c ≤
1. Therefore, we can define the trainable parameters of the SMN as (1) parameters of encoder and
decoder, such that θE and θD; (2) parameters (W c

k) for the CAM pipeline as a dense layer; (3) matrix
(M) to map the predicted density to a control signal. Note that only the matrix M is optimized in the
inference phase to change the structure of the SMN. To summarize, the key outputs by the SMN are
listed as below:

Segmentation Map: Yi = D
(
E(Ii); [

C∑
k

W c
k

∑
x,y

E(Ii)] · M
)

Density-regression: dc(Ii) =
∑
k

W c
k

∑
x,y

E(Ii)

Class Activation Map: Cc(Ii) =
∑
k

W c
kfk =

∑
k

W c
kE(Ii)

Entropy-map: E(Ii) = −Yi log Yi

(4)

In addition, as illustrated in Sec.3.2 in the manuscript, remember that the entropy-map function
(EM(Ii)) reconstructs the entropy-map from the CAMs (Cc for c = 1, 2, ..., C) as below:

EM(Ii)∥h,w = −
C∑
c

d̄c(Ii)∥h,w log d̄c(Ii)∥h,w where d̄c(Ii)∥h,w =
e[
∑

k W c
kE(I

i)]∥h,w∑C
c e[

∑
k W c

kE(Ii)]∥h,w

(5)

The training process of the SMN is illustrated in Sec 3.1 of the manuscript. The predictive procedure
of the SMN in the inference phase is listed as the following:

1. The SMN generates the pseudo-labels for the segmentation map and density-regressions.

2. The entropy-maps are generated via the pipeline of the segmentation (E(Ii)) and the recon-
struction algorithm (EM(Ii)).

3. To fine-tune M, minimize the similarity loss (Lssim) between E(Ii) and EM(Ii), such that
M′ = argmin

M
Lssim(E(Ii),EM(Ii)).

16

Published as a conference paper at ICLR 2025

4. The SMN with M′ predicts the final output as: D
(
E(Ii); [

∑C
k W

c
k

∑
x,y E(Ii)] · M′

)
It’s important to note that during the training phase, M is trained, with each individual M being
mapped to unique domains, representing different characteristics of contextual semantic information.
Hence, Mi represents sub-domain Xi, where the intersection of all Xi equates to the dataset X , but
no intersection exists among individual Xi. During the inference phase, the similar Mi is derived by
fine-tuning the Shape-Memory Network (SMN) for sample xi ∈ Xi. This process showcases how
the SMN redeploys its saved structure by modifying its architecture, which led to the network being
dubbed the Shape-Memory Network, and Fig. 5 in the manuscript verifies the effective utilization of
similar Mi. Additionally, an illustration of the optimization of M, as well as the provision of the
final predicted segmentation map by the SMN, is presented in Algorithm 1.

Algorithm 1: Fine-tuning and Inference of the Shape-Memory Network
Input :sample xi in test-set (X ⊂ RH×W×3), such that xi ∈ X , where H and W are height and

width, respectively, and the pre-trained SMN (M).

Output :Predicted segmentation map (yi ∈ Y ⊂ RH×W×C) corresponding to input (xi), where C

is the number of category.

Assumption :X =
⋃N

i Xi where N is the number of subset.
⋂N

i Xi = ∅, indicating that the Xi

represents distinct domain.

ȳi ← D
(
E(Ii); [

∑C
k W c

k

∑
x,y E(Ii)] · M

)
; /* Predict pseudo-label */

C̄1 ← −ȳi log ȳi ; /* Entropy-map by segmentation pipeline */

C̄2 ← −
∑C

c d̄c(Ii)∥h,w log d̄c(Ii)∥h,w ; /* Entropy-map by EM algorithm */

M′ ← argmin
M
Lssim(E(Ii),EM(Ii)) ; /* Fine-tune M */

yi ← D
(
E(Ii); [

∑C
k W c

k

∑
x,y E(Ii)] · M

′
)

;

To summarize, the mechanism of the SMN is (1) to store the appropriate architecture for a certain
domain; (2) to restore its structure corresponding to the input domain by fine-tuning a parameter;
and (3) to provide precise prediction to the input image. Here, the structural mutation is achieved by
fine-tuning the control signal that supervises the connections of neurons. The neural connections in
the SMN are activated or deactivated based on the control signal, and thus fine-tuning the parameter
that supervises the control signal enables the SMN to modify its network structure corresponding to
the input image.

Appendix Figure 1: Schematic illustration of control neurons in the feature-maps.

17

Published as a conference paper at ICLR 2025

Appendix Fig. 1 illustrates how the control signal achieves the structural mutation. By activating and
deactivating the output of each neuron, which is the individual element in a feature-map, the condition
signal changes the structure of the SMN, and thus the control signal supervises the adaptive domain
adaptation with respect to the contextual semantic information of inputs. Thereby, the structural
adjustment by the control signal fine-tuned with the contextual semantic information can bring out a
superior segmentation performance of the SMN.

Contributions To summarize, our contributions, in this paper, are listed below:

• Construction of Shape-Memory Network. We designed the shape-memory network that
can explicitly interpret the contextual semantic information by employing the run-time
adaptation method via structural modification.

• Design of Control Neuron. We newly devised a control neuron that can adaptively change
the connections to other control neurons, leading to the implementation of structural modi-
fication of the SMN. This mechanism represents the close emulation of the human brain
connectome and synapse mechanism.

• Implementation of Entropy-Map Reconstruction Algorithm. For the explicit interpreta-
tion of the contextual semantic information in the SMN, we newly devised the entropy-map
reconstruction algorithm to train the SMN using the class activation maps regarding the con-
textual semantic information. The devised algorithm incorporates the contextual semantic
information in the training of the SMN.

B ENTROPY-MAP RECONSTRUCTION FROM CLASS ACTIVATION MAP

In the previous research (Zhou et al., 2016), it was revealed that the Class Activation Map (CAM)
identifies the regions of significant relevance to the primary task. As a result, when tasked with
density regression, the CAM is influenced to concentrate on areas specific to the target object (c),
leading to the derivation of Proposition V. In this context, density refers to the proportion of pixels
in the input image representing the target object compared to the total pixel count. In response, we
developed the Shape-Memory Network, which integrates multi-label density regression tasks to yield
multiple CAMs for each category (c). Parameters specific to the density regression process for each
category are then multiplied with the encoded feature-map, and then, a CAM for each category is
generated. Subsequently, we incorporate the CAMs that exhibit attention areas for each category to
produce a pseudo-entropy-map 2.

Appendix Figure 2: Schematic illustrations of reconstructing entropy-map from the class activation
map (CAM). Each CMAs for each category are leveraged to generate entropy-map via a probability-
based normalization method.

18

Published as a conference paper at ICLR 2025

Appendix Figure 3: Schematic illustration of control neurons.

C CONTROL NEURON

Note that the control neuron represents an element in a feature-map (See Appendix Fig.1). Therefore,
the control neuron refers to pixel-wise activation rather than convolutional weights. Suppose there are
N numbers of control neurons in the SMN, and each control neuron has individual intrinsic threshold
value (λn) for nth control neuron. The output of the control neuron is activated when (1) the value of
the control signal (sct) is above the intrinsic threshold value, such that sct ≥ λn or (2) self-activation
is true. Therefore, the sout

n is activated when the following condition is satisfied:

(self-activation)|(sct ≥ λn) (6)

Here, the self-activation indicates that the current control neuron (pixel or element) is more informative
than other elements in the same feature-map. To avoid the loss of the informative features from the
feature extraction process, the self-activation is designed. Therefore, the logical or (|) operator is
placed in Eq. 6. Suppose fk for the encoded feature-map by E. In fk with its height (Hk) and width
(Wk), the number of control neurons are HkWk, and the nth control neuron is more informative
when the condition below is satisfied:

sout
n is in top − k% among all elements in fk. (7)

In the previous study Lee et al. (2022), the sampling elements met the Eq. 7 is formulated as below:

sout
n is informative when sout

n ≥ mfk + zk ∗ vfk (8)

where mfk and vfk are the mean and the standard deviation values of all elements in fk, and the zk
refers to a statistical z-value for the Z-table corresponding to k%.

To generalize, suppose a feature-map (F) in the SMN, and the nth control neuron in F . Therefore,
we can define the function (g(sout

n ;F)) that determines whether sout
n is informative or not as below:

g(sout
n ;F) =

{
1(if sout

n ≥ mF + zk ∗ vF)
0(else)

(9)

In this case, the zk is not trainable since the zk is not arithmetically placed, but in the conditional
statement. To make the zk be trainable, the Heaviside step function and its approximation are utilized.
Additionally, the Heaviside step function (H(x)) is approximated to the sigmoid function (σ(−2αx))
with a large value of α. Therefore, we formulate the Eq. 9 as below:

g(sout
n ;F) = H(g(sout

n ;F)−mF + zk ∗ vF)
= σ

(
− 2α(g(sout

n ;F)−mF + zk ∗ vF)
) (10)

Here, α and zk are trainable. Therefore, the self-activation that determines the current condition
neuron is informative or not is trained during the training phase, and the pre-trained self-activation
determines the activation of the condition neuron in the inference phase.

19

Published as a conference paper at ICLR 2025

Furthermore, another condition in Eq. 6 related to the control signal is formulated using the approxi-
mation of the Heaviside step function as below:

σ
(
− 2α(sct − λn)

)
(11)

In addition, the logical or operator is replaced by the addition operator in arithmetic and analysis, and
thus the Eq. 6 is substituted as below:

σ
(
− 2α(g(sout

n ;F)−mF + zk ∗ vF)
)
+ σ

(
− 2α(sct − λn)

)
(12)

Therefore, let the input signals be sin, and thus the final output (sout
n) value of the nth control signal is

provided as below:

sout
n = sin ∗

(
σ
(
− 2α1(g(s

out
n ;F)−mF + zk ∗ vF)

)
+ σ

(
− 2α2(s

ct − λn)
))

(13)

Here, in addition to the trainable parameters in Appendix A, the zk, α1, and α2 are trainable, and
zk represents the adaptive threshold to discriminate the informative features, and α1 and α2 are the
conditional values for the approximation. In the empirical analysis and experiments, the value of α is
trained at nearly 10.0.

D EXPERIMENTAL ENVIRONMENT DESCRIPTION

Implementations The experiments were implemented in the Apple Macbook Pro with M1 Max
and 64GB unified memories. Besides, we developed our neural network and the state-of-the-art deep
learning models using Tensorflow (for ARM processor) version 2.9.0 (Abadi et al., 2016) for precise
implementation. For the training, the batch size (Bottou, 2010) of the training was set to 32, and the
Adam optimizer was utilized with the default values of all parameters (Kingma & Ba, 2014). Every
parameter of the neural networks and the optimizer was initialized with the Gaussian distribution, of
which the mean and the standard deviation values are 0.0 and 1.0.

Comparative Models To demonstrate the segmentation performance of the Shape-Memory Net-
work (SMN), four groups of deep learning models were utilized as shown in the followings; (1)
Baseline models including the early vanilla models of U-NetRonneberger et al. (2015), and Seg-
Former (Xie et al., 2021); (2) Multi-Path models for the segmentation task including LADDER-
NET (Zhuang, 2018) and MPDNet (Bai & Zhou, 2020); (3) SotA models for the segmentation task,
including InterImage (Wang et al., 2022b) and BeiT-3 (Wang et al., 2022c); (4) SotA models for the
video object segmentation (VOS), including Xmem (Cheng & Schwing, 2022) and AOST (Yang
et al., 2022). The baseline networks were compared to demonstrate the standard feasibility of the
SMN for the segmentation task. While the SoTA models, used here, were utilized to exhibit superior
segmentation performance of the SMN for the benchmark datasets of scene parsing and autonomous
driving, including VOS. Here, the best-performing SotA models were selected by referring to Kaggle
benchmark lists. Additionally, the multi-path models were employed to compare the SMN in terms
of the ensemble models for Eq. (1) in the manuscript.

Dataset In the experiments, five categories of distinct datasets were employed to evaluate the
segmentation performance of the SMN compared to other baseline and SotA models; (1) Scene
parsing benchmark using ADE20K (Zhou et al., 2017) and Youtube-VOS (Xu et al., 2018); (2)
Autonomous driving using BDD100K (Yu et al., 2020); (3) Aerial image datasets of Inria (Maggiori
et al., 2017b;a) and LoveDA (Wang et al., 2021); (4) Medical Imaging datasets using MRI for a brain
tumor (Buda et al., 2019) and ultrasound dataset for breast cancer (Al-Dhabyani et al., 2019); (5)
Synthetic images of GTA5 (Richter et al., 2016). To demonstrate the general feasibility of SMN for
semantic segmentation, the datasets for scene understanding and autonomous driving datasets were
utilized. In addition, since the density, which is a crucial feature for SMN, of objects is most important
in the segmentation of aerial images, the benchmarks using aerial images were utilized. Furthermore,
to evaluate the scalability of the SMN, the medical imaging datasets and benchmark for the synthetic
images were employed. Note that since the density of the target object, especially the disease area,

20

Published as a conference paper at ICLR 2025

is a significant key feature in medical imaging, the SMN could be expected to provide its superior
segmentation performance in the medical imaging field. Furthermore, the precise segmentation
performance of the SMN could provide the potential for transfer learning and extensibility to large-
scale models. For training models, the images in each dataset are divided into ten-fold for the k-fold
cross-validation.

Comparison to Domain Adaptation Models A great deal of DA methods, such as adversarial
training (Ganin et al., 2016), maximum mean discrepancy minimization (Tzeng et al., 2014), unsuper-
vised DA (Ganin & Lempitsky, 2015), and self-ensembling (French et al., 2017), have demonstrated
success in reducing discrepancies between distinct source and target domains. However, methods
typically assume the availability of labeled source domain data and unlabeled target domain data
during the training phase, a condition that may not hold in real-world scenarios. Test-time DA
(TTDA) methods, in contrast, aim to refine models at the inference stage, by leveraging the test
data distribution without explicit access to the labels. Techniques such as transductive parameter
transfer (Shu et al., 2018), and test-time self-supervised learning (Azimi et al., 2022; Lee et al.,
2021; Wang et al., 2022a) have been proposed to bridge the gap between the training and test data
distributions.

Despite the promising results achieved by the aforementioned methods, they are primarily designed
for addressing domain discrepancies between two or more distinct domains, rather than within a
single domain. To apply the domain adaptation method, two significantly distinct domains should be
identified. However, in our study, the key factor for the domain discrepancy is contextual semantic
information, and the contextual semantic information could be identified by the deep learning models,
not by the human, and thus the labels for the different domains regarding the contextual semantic
information could not be provided. Therefore, despite the promising performance of the domain
adaptation decreasing the domain gap, the domain adaptation method could not be applied and
implemented to resolve the issues addressed in the problem statement (Sec. 2).

E EXPERIMENTS

Verification of M Appendix Fig. 4 illustrates the similarity between Mi and Mj for samples
of xi and xj in the same domain X alongside three error rates. This experiment was conducted to
measure the justification that fine-tuning M could represent similar or different architecture for the
SMN within different domains.

To measure the similarity, the following function is devised:

S(x, y; r) :=

{
1 (if |x−y|

x ≤ r)

0 (else)
(14)

where 0 ≤ r ≤ 1 represents the error rate, and thus S represent 1 if two elements is within the error
rate. Here, the Similarity of the Intrinsic Threshold is calculated below:

Appendix Table 1: Detailed description of the datasets. To validate, 10-fold cross-validation was
used.

Dataset Samples Train Test Category

ADE20K 27,574 24,817 2,757 150
Youtube-VOS 7,945 7,150 795 65

BDD100K 8,000 7,200 800 20
Inria 144,000 129,600 14,400 2

LoveDA 4191 3,772 419 8
BrainMRI 7,858 7,073 785 2

BUSI 789 709 80 2
GTA5 24,966 22,470 2,496 27

21

Published as a conference paper at ICLR 2025

Appendix Figure 4: Similarity of the intrinsic threshold of control neurons containing the similar
density of the target objects.

1

CN

C,N∑
c,n

S(Mi∥c,n,Mj∥c,n; r) (15)

If the error rate decreases, the Similarity of the Intrinsic Threshold guarantees a higher similarity,
whereas a large value of the error rate is a rough condition. Therefore, Appendix Fig. 4 verifies that
the fine-tuned M exhibits similar values regarding the same domain.

The SMN contains a small number of parameters compared to other state-of-the-art models, but the
SMN significantly provides precise prediction in the segmentation task due to its effective fine-tuning
mechanism. Additionally, despite the fine-tuning mechanism of the SMN, the SMN exhibits an
efficient FPS due to only a small number of parameters (M) being optimized in an inference phase.

Segmentation Performance This section illustrates the evaluation results of our model compared
to other deep learning models, including baseline models, multi-path models, SotA models for
segmentation, and the SotA models for VOS.

In addition, the figure below illustrates the samples of the predicted segmentation by the SMN and
other comparative models in eight datasets.

22

Published as a conference paper at ICLR 2025

23

Published as a conference paper at ICLR 2025

24

Published as a conference paper at ICLR 2025

25

Published as a conference paper at ICLR 2025

Appendix Table 3: Segmentation Results of the SMN and other comparative models.

Network Complexity The SMN contains the trainable parameters of (1) parameters of encoder and
decoder, such that θE and θD; (2) parameters (W c

k) for the CAM pipeline as a dense layer; (3) matrix
(M) to map the predicted density to a control signal. To verify the feasibility and scalability for a
real-world application, we compared the SMN to other deep learning models in terms of the number
of parameters (# of Param), the FLoating point Operations Per Second (FLOPs), and Frame Per
Second for generating predictions (FPS). The predictions were performed using the Apple Macbook
Pro with M1 Max and 64GB unified memories.

26

Published as a conference paper at ICLR 2025

Appendix Table 2: Comparison analysis in terms of mean IoU.

ADE20K Youtube-VOS BDD100K GTA5

2*Baseline Model U-Net 42.61% (±3.75) 77.12% (±3.38) 36.69% (±1.41) 65.84% (±1.81)

SegFormer 46.72% (±3.93) 81.07% (±2.37) 42.59% (±3.83) 65.99% (±2.17)

2*Multi-Path LADDERNet 52.66% (±3.44) 86.04% (±3.53) 41.13% (±3.44) 68.64% (±3.61)

MPDNet 44.3% (±3.11) 83.57% (±2.54) 40.03% (±3.6) 70.69% (±3.42)

2*Seg SotA InternImage 51.04% (±2.67) 85.13% (±2.2) 47.25% (±3.5) 70.94% (±3.27)

BEiT-3 51.67% (±2.08) 86.67% (±3.02) 39.85% (±1.22) 70.9% (±3.23)

2*VOS Xmem 44.88% (±1.78) 83.36% (±3.31) 42.69% (±3.35) 68% (±2.31)

AOST 52.06% (±3.12) 87.09% (±2.04) 43.09% (±1.41) 71.06% (±2.32)

2*Ours Ours - SA 48.84% (±2.42) 85.66% (±1.04) 43.81% (±3.59) 69.07% (±2.97)

Ours 55.76% (±2.9) 88.66% (±2.44) 48.83% (±1.14) 76.58% (±1.14)

Inria LoveDA BrainMRI BUSI

2*Baseline Model U-Net 62.96% (±3.34) 47.71% (±3.12) 75.11% (±1.64) 63.69% (±2.55)

SegFormer 67.97% (±3.19) 51.33% (±3.34) 74.28% (±3.36) 71.41% (±3.19)

2*Multi-Path LADDERNet 64.77% (±3.09) 49.66% (±3.59) 69.75% (±3.34) 60.36% (±2.88)

MPDNet 64.51% (±1.09) 48.25% (±3.43) 67.43% (±3.89) 67.51% (±1.28)

2*Seg SotA InternImage 68.6% (±3.27) 49.81% (±1.17) 76.08% (±3.82) 70.47% (±2.27)

BEiT-3 66.69% (±1.82) 49.63% (±1.75) 66.08% (±3.78) 67.46% (±1.63)

2*VOS Xmem 64.85% (±2.78) 51.29% (±3.12) 61.57% (±3.04) 67.24% (±3.41)

AOST 69.3% (±3.75) 50.57% (±3.43) 75.22% (±2.83) 60.16% (±3.2)

2*Ours Ours - SA 68.6% (±2.57) 50.4% (±2.69) 68.86% (±2.95) 72.99% (±3.42)

Ours 72.72% (±1.06) 54.28% (±1.31) 74.82% (±1.77) 75.22% (±1.24)

Appendix Table 4: Comparison analysis in terms of networks’ complexities.

U-Net SegFormer InternImage BeiT-3 Xmem AOST SMN (Ours)

Resolution 512× 512 512× 512 384× 384 384× 384 512× 512 512× 512 512× 512

of Param 31.0M 64.1M 335M 1843M - 65.6M 47.5M

FLOPs 224.6G 95.7G 163.2G 2859.9G - - 549.8G

FPS 42.5 30.7 42.6 10.2 41.7 35.2 32.8

27

Published as a conference paper at ICLR 2025

F DISCUSSION

Extension to Other Tasks Our framework demonstrates significant potential for extension beyond
semantic segmentation tasks. As illustrated in Appendix Fig. 5, the SMN architecture can be
generalized via a modular design approach: maintaining the encoder with control neurons while
allowing customization of the header and pretext task for specific applications. The adaptability of
the SMN is achieved by two key components: (1) the latent features extracted from the encoder
and (2) the control signals derived from the features. The latent features, representing high-level
semantic information, are processed through task-specific headers to generate appropriate outputs
(e.g., class probabilities for classification, bounding box coordinates for detection), while the control
signals guide the structural adaptation of the network based on a pretext task appropriate for the target
application. While our segmentation implementation uses density-based pretext tasks to identify
spatial information, other applications might employ different self-supervised learning objectives
- for instance, classification tasks could utilize feature correlation learning based on variational
auto-encoder, while detection tasks might benefit from pretext tasks using object localization patterns.

The adaptability of our SMN architecture extends beyond semantic segmentation tasks through
its modular design approach, as illustrated in Fig. 5. The architecture maintains its main feature
extraction mechanism with control neurons while enabling task-specific customization through two
key components: the decoder (header) and the pretext task. This design principle allows the network
to be adapted for various computer vision tasks while preserving the benefits of our control neuron
mechanism.

Appendix Figure 5: Generalized pipeline of SMN for various computer vision tasks.

In our preliminary study, we demonstrate this adaptability in object detection tasks, where we modified
only the decoder while maintaining the control neuron mechanism and semantic information-based
optimization. Our initial experiments on the COCO dataset show competitive results compared to
recent state-of-the-art detection models like DiffusionDet, achieving 47.43 AP, 65.64 AP50, and 52.21
AP75. Notably, our approach achieves this performance with minimal architectural modifications,
demonstrating particularly strong results in APl (63.24) for large object detection. For detection
tasks, we leverage the same semantic information optimization strategy as used in segmentation,
demonstrating the transferability of our core mechanism across different vision tasks.

COCO AP AP50 AP75 APs APm APl

DiffusionDet (1@ 500) 47.18 65.74 51.42 31.18 50.19 62.24

DiffusionDet (4@ 500) 47.36 65.62 52.13 30.72 50.37 63.18

Ours (SMN) 47.43 65.64 52.21 30.8 50.39 63.24

The flexibility of the SMN extends further through our generalized pipeline (Fig. 5), where the pretext
task can be customized for different applications. While segmentation and detection tasks benefit

28

Published as a conference paper at ICLR 2025

from semantic information optimization, other computer vision applications may require different
self-supervised learning approaches. For classification tasks, we are exploring various pretext task
approaches leveraging auto-encoders and VAE architectures, including feature correlation learning
between augmented views, rotation prediction, and solving jigsaw puzzles of image patches. This
modular architecture design, separating the core feature extraction mechanism from task-specific
components, ensures that the primary strengths of our approach remain effective across different
applications. The empirical experiments in both segmentation and detection tasks and additional
ongoing exploration in classification demonstrate the broader applicability of our brain-inspired
approach across various computer vision tasks, with the selection of appropriate pretext tasks being
the key consideration for each specific application.

Reproducibility More detailed experimental results, including class-wise IoU values, and the code
for the SMN will be available at https://github.com/Anonymous/Repo.

29

	Introduction
	Problem Statement
	Method
	Shape-Memory Network
	Entropy-Map reconstruction via Class Activation Map
	Control Neuron

	Main Results
	Comparison Analysis
	Explicit Utilization of Contextual Semantic Information

	Discussion
	Conclusion
	Acknowledgement
	Shape-Memory Network
	Entropy-Map Reconstruction from Class Activation Map
	Control Neuron
	Experimental Environment Description
	Experiments
	Discussion

