
Detailed Response to Reviewers

A. Reviewer #1

A.1. Weaknesses

1. The paper makes weak references to the Connectome and signaling mechanisms

which detract from understanding the main idea. If the order of description in some

of the sections had changed, it would be an easier read. For example, giving a simple

example of what is the information they hope to capture in the density map, and the

entropy map early on would make easy ready. It wasn’t until line 281-283 that we

start following along. The insertion of propositions and definitions is also a distraction

until the method has been clearly explained.

Response: We strongly appreciate the reviewer’s comment and agree that a re-organization of

the specific sections would enhance the readability of our manuscript. In response to reviewer’s

comment, we have restructured the introduction and methodology sections. Particularly, we now

provide examples of the information captured in the density and entropy maps early in the paper,

ensuring that readers can easily follow the rationale for our approach with a more precise intuition.

We believe that these changes in our manuscript aim to improve clarity and accessibility for readers.

The modified method sections in the updated manuscript (Pages 4-5) is below:

3.1. Design Principle The fundamental architecture of our Shape-Memory Network (SMN)

is designed to process and utilize contextual semantic information in visual data effectively. For

instance, consider a semantic segmentation task on urban scene datasets. The input images typically

contain multiple object classes with consistent spatial and contextual information: transportation

infrastructure (roads, sidewalks) occupies the lower regions, architectural structures appear with

specific scale constraints, and environmental elements (sky, vegetation) maintain consistent spatial

positions.

To implement this, the SMN captures the contextual patterns via two primary computational compo-

nents. First, the component implements density mapping, quantifying the proportional distribution
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of object classes within the input space. Particularly, in urban scene analysis, road surfaces typically

constitute 30-40% of the pixel space, while vehicular objects occupy 5-10%. The density distributions

are represented as statistical priors, leading to the network for validating segmentation predictions

against expected contextual patterns. Significant deviations from the learned distributions (e.g.,

vehicles occupying 80% of the pixel space) are automatically flagged as anomalous configurations.

The second component facilitates entropy mapping, quantifying information complexity in the spa-

tial regions. The entropy mapping mechanism is particularly important for analyzing regions with

high-class intersection probability, such as object boundaries or regions of class ambiguity. Com-

putationally, regions exhibiting higher entropy values indicate areas requiring more sophisticated

feature extraction and analysis than regions with uniform class distribution.

3.2. Architectural Design Regarding the design principles, we formalize our SMN structure

with several key mathematical components. Particularly, the SMN employs conditional neurons to

transform its structure during test-time adaptation (TTA) dynamically. Furthermore, we implement

a self-supervised learning-based re-optimization method, utilizing the entropy-map as a medium for

loss minimization and explicit integration of contextual semantic information. While spatial in-

formation is effectively conveyed through skip connections, we focus on optimizing the network’s

contextual understanding by introducing density measurements that quantify the proportional dis-

tribution of object classes. Therefore, we focus on optimizing the network’s insight into contextual

semantic information of input images by introducing density, representing the proportion of the

occupied area in the image.

Definition I. Let Ωc(h,w; I) be a category (c) recognition function at pixel I∥h,w in input (I), such that Ωc(h,w; I)

is 1 iff argmax
x

I∥h,w = c, otherwise 0.

Definition II. Let dcl : RH×W×C → R be the density function of the target object (c) in semantic label (ŷ ∈ Y ⊂

RH×W×3), such that dcl (ŷ) = 1
HW

∑H
h

∑W
w Ωc(h,w; I) with the image of height (H), width (W ), and the number

of categories (C).

Lemma I.
∑C

c dcl (ŷ) = 1 since
∑C

c

∑H
h

∑W
w Ωc(h,w; I) = HW .

The density-regression pipeline facilitates two functions: (1) it enables the generation of Class

Activation Maps (CAM) and entropy-maps for TTA optimization, and (2) it manages control signals

for structural transformation based on input characteristics. By leveraging our novel approach, the

CAM not only captures the visual attributes of target objects but can also be transformed into an
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entropy-map. This allows us to optimize the SMN, by minimizing the similarity loss between the

entropy-map reconstructed using CAM and the entropy-map generated in the segmentation pipeline.

A.2. Questions

1. It seems to be the datasets have been carefully chosen to illustrate the method.

How well does this method work for benchmark datasets.

Response: We appreciate the reviewer’s concern about dataset selection. However, we would

like to emphasize that our experiments were conducted on six widely-used benchmark datasets that

represent diverse scenarios:

• Standard Benchmarks:

– ADE20K: A standard semantic segmentation benchmark with over 20K scene-centric im-

ages

– Youtube-VOS: A widely-used video object segmentation benchmark

– BDD100K: A large-scale real-world driving dataset containing 100K street scene videos

• Diverse Domains:

– From aerial imagery (Inria) to urban scenes (GTA5)

– From real-world (BDD100K) to synthetic data (GTA5)

– From remote sensing (LoveDA) to general object segmentation (ADE20K)

• Comprehensive Evaluation:

– Our method demonstrates consistent improvements across all datasets (Table 1)

– Achieves state-of-the-art performance compared to eight different recent methods

– Shows robust performance gains ranging from +2.24% to +5.62% over existing methods

As shown in Table 1, our method consistently outperforms existing approaches across all datasets,

regardless of their characteristics or domains. We believe that the experimental results demonstrate

that our performance improvements are not limited to specific scenarios but generalize well across

various challenging benchmark datasets.
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B. Reviewer #2

B.1. Weaknesses

1. The evaluation is confined to segmentation tasks, and while the biological inspira-

tion is intriguing, its broader application to different tasks is not yet explored. Have

authors tried testing on any other task?

Response: Thank you for the comments about the applicability of SMN to different tasks,

such as classification and detection. Our network architecture demonstrates significant flexibility

in adapting to various computer vision tasks beyond segmentation. Particularly, as illustrated in

Appendix Figure 5 of our paper, the main architecture remains consistent with Figure 2 but allows

for task-specific modifications.

For detection tasks, our network can be adapted by simply modifying the decoder (header) while

maintaining the control neuron mechanism and pretext task. Furthermore, our additional exper-

iments in the discussion section demonstrate promising results in object detection, showing that

semantic information effectively guides structural adaptation in detection scenarios as well.

However, the adaptability of our architecture extends to various tasks through the generalized

pipeline shown in Appendix Figure 5, where the pretext task for training control neurons can

be customized based on the target task. For instance, we employed the semantic optimization

pipeline (Fig. 2) as the pretext task for the segmentation task. For classification tasks, however,

we are on several experiments to determine the pretext task and several promising pretext task

approaches based on the auto-encoder (or VAE) could be considered: (1) Feature correlation learning

between different augmented views of the same image; (2) Predicting image rotations or other

geometric transformations; (3) Learning invariance to different data augmentations; (4) Solving

jigsaw puzzles of scrambled image patches. While we have concretely demonstrated the effectiveness

of our approach in segmentation and detection tasks using semantic information, the choice of

pretext task becomes crucial for classification scenarios. Our ongoing research explores optimal

pretext tasks for classification, focusing on those that can effectively capture discriminative features

without relying heavily on spatial semantic information.

The adaptability of our proposed method is achieved via our modular design: the decoder with

control neurons remains consistent across tasks, while the pretext task can be customized for specific
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task or applications. We believe that the demonstration facilitate the potential generalibility of our

approach across different computer vision tasks, with the key consideration being the appropriate

selection of pretext tasks for each specific application. Additionally, we updated the manuscript

regarding the reviewer’s comments in the discussion section as below:

Extension to Other Tasks Our framework demonstrates significant potential for extension be-

yond semantic segmentation tasks. As illustrated in Appendix Figure 5, the SMN architecture can

be generalized via a modular design approach: maintaining the encoder with control neurons while

allowing customization of the header and pretext task for specific applications. The adaptability of

the SMN is achieved by two key components: (1) the latent features extracted from the encoder

and (2) the control signals derived from the features. The latent features, representing high-level

semantic information, are processed through task-specific headers to generate appropriate outputs

(e.g., class probabilities for classification, bounding box coordinates for detection), while the con-

trol signals guide the structural adaptation of the network based on a pretext task appropriate for

the target application. While our segmentation implementation uses density-based pretext tasks

to identify spatial information, other applications might employ different self-supervised learning

objectives - for instance, classification tasks could utilize feature correlation learning based on varia-

tional auto-encoder, while detection tasks might benefit from pretext tasks using object localization

patterns. The detection task is conducted as a preliminary study in appendix, and the classification

task remains as future works.

2. The SMN’s ”conditional neuron” mechanism is innovative but requires clearer

exposition; some of the explanations are complex, making it challenging for readers to

understand the ”exact” workings of the adaptive architecture.

Response: We appreciate the reviewer’s comment regarding the clarity of our control neuron

explanation. To address this concern, we revised Section 3.3 to provide a clearer exposition of the

control neuron mechanism by adding an intuitive overview before the mathematical formalization

as below:

The control neuron functions as a fundamental element within the adaptive architecture of the SMN.

It processes information through three interconnected pipelines that collectively define its operation:

(1) standard neural inputs from linked neurons analogous to those in traditional neural networks, (2)
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a control signal based on predicted density distributions, and (3) a self-activation mechanism gating

signals. The three pipelines enable the network to dynamically adapt its structure in response to

varying input characteristics, resembling how biological neural systems adjust connectivity patterns.

During the processing of an input image, control neurons selectively engage or disengage connections

based on contextual information, thereby achieving an optimal configuration for the specific input.

We hope that the modified overview of the control neuron will help improve the readability of our

manuscript for readers.

3. The SMN’s test-time adaptation seems to demand substantial computational

resources, which may limit its practicality in real-time or resource-constrained appli-

cations.

Response: We appreciate the reviewer’s concern regarding the computational efficiency of our

test-time adaptation (TTA) approach. We would like to highlight the concern by clarifying several

key points about the computational characteristics of our network.

Our approach achieves computational efficiency through parameter-selective optimization. During

inference, we optimize only the control neuron which represented as the matrix M ∈ RC×N ,

where C represents the number of categories and N denotes the number of control neurons. This

selective optimization significantly reduces computational overhead, as the number of TTA pa-

rameters |θTTA| = |M | is substantially smaller than the total network parameters |θtotal|. The

computational complexity of our approach can be expressed as: (Time Complexity = O(T · C ·N)

and Space Complexity = O(C ·N)), where T represents the number of optimization steps, typically

constrained to T ≤ 5 iterations. Our empirical evaluation demonstrates practical efficiency metrics:

the network achieves 32.8 FPS with approximately 47.5M parameters and 549.8G FLOPs. These

metrics highlight our approach competitively among current SotA methods while providing superior

adaptation capabilities.

To further enhance computational efficiency, we propose several optimization strategies. First,

we implement an early stopping criterion based on convergence monitoring with the condition of

Lt+1 − Lt < ϵ, where Lt represents the loss at step t and ϵ defines a small threshold. Additionally,

we employ parameter pruning and quantization techniques: ([Mpruned = M ⊙ (|M | > τ)] and

Mquant = round(M ·2b)/2b), where τ represents the pruning threshold and b denotes the quantization
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bit-width.

Our ongoing and future research mainly focuses on developing more efficient variants of the TTA

mechanism, including parallel optimization strategies and memory-efficient implementations. Pre-

liminary results suggest these optimizations could reduce computational overhead by 30-40% while

maintaining performance within 1-2% of current results.

We illustrates the directions of future study in the discussion section as below:

Computational Complexity To implement the SMN for real-world applications, we address the

computational complexity of the TTA mechanism. The current implementation requires optimiza-

tion of matrix M ∈ RC×N during inference, with time complexity O(T ·C ·N) and space complexity

O(C ·N), where T represents optimization steps (typically T ≤ 5), C denotes categories, and N indi-

cates control neurons. While our current implementation achieves 32.8 FPS with 47.5M parameters

and 549.8G FLOPs, we propose several optimization strategies to enhance efficiency. These include

early stopping criteria (Lt+ 1 − Lt < ϵ), parameter pruning (Mpruned = M ⊙ (|M | > τ)), and

quantization (Mquant = round(M · 2b)/2b). Preliminary experiments suggest these optimizations

could reduce computational overhead by 30-40% while maintaining performance within 1-2% of cur-

rent results. Future work will focus on developing lightweight TTA variants and memory-efficient

implementations to further improve real-time performance.

B.2. Questions

1. Could the authors explain the SMN’s adaptability in tasks beyond segmentation

to determine its generalization?

Response: We strongly appreciate the reviewer’s comments on the generalization of our SMN.

Based on our previous response (Weakness-1), we would like to further elaborate on the generaliza-

tion capabilities of our apporach and our empirical validation.

The adaptability of SMN to different tasks is fundamentally enabled by its modular architecture, as

illustrated in Appendix Figure 5. While maintaining the optimizing control neuron mechanism, the

network can be adapted to different tasks through two key modifications: (1) task-specific decoder

(or header) selection and (2) appropriate pretext task definition for control neuron optimization.

For detection tasks, we have already demonstrated the adaptation by modifying the decoder while
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retaining the semantic information-based control neuron optimization and appended the experi-

ments in the updated manuscript. Our experiments, detailed in the discussion section, explicit

promising results with improvements in detection accuracy on standard benchmarks. The experi-

ments strongly validate that our control neuron mechanism effectively generalizes to detection tasks

without significant architectural changes.

The flexibility and feasibility of our network extend further via our generalized pipeline (Appendix

Figure 5), where the pretext task can be customized for different applications. In segmentation

and detection tasks, we leverage semantic information optimization as illustrated in Figure 2. For

classification tasks, we are exploring various pretext task approaches leveraging auto-encoders and

VAE architectures. Current experiments investigate several promising directions, including feature

correlation learning between augmented views, rotation prediction, and solving jigsaw puzzles of

image patches.

The modular design approach ensures that the main strengths of our architecture, including control

neuron mechanism and structural adaptation, remain effective for different tasks while allowing task-

specific optimizations. The empirical performance improvements in detection and segmentation

tasks and ongoing work in classification demonstrate the broader applicability of our approach

beyond segmentation, suggesting the significant potential for generalization for various computer

vision applications.

In response to the reviewrs’ comments, we appended the related descriptions in the discussion section

in both main manuscript (5. Discussion) and appendix (Appendix F. Discussion)

2. Are there specific strategies to reduce the computational demands of the SMN’s

test-time adaptation for real-world deployment?

Response: We appreciate the reviewer’s interest in optimization strategies for real-world de-

ployment of our network; SMN. We would like to highlight several specific approaches regarding

weakness-3 to enhance computational efficiency while maintaining performance:

1) Parameter-Selective Optimization: During inference, we exclusively optimize the control

neuron matrix M ∈ RC×N . The selective approach significantly reduces the optimization parameter

space from |θtotal| to |θTTA| = |M |. Therefore, computational complexity remains manageable with

O(T · C ·N) time complexity and O(C ·N) space complexity.
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2) Efficiency Enhancement Strategies: The implementation of early stopping criterion with

Lt+1−Lt < ϵ, parameter pruning withMpruned = M ⊙ (|M | > τ), and quantization techniques with

Mquant = round(M · 2b)/2b could further optimize the computation complexity of our model.

3) Ongoing Development: We are now developing our network with the strateges of (1) parallel

optimization strategies for real-world application, (2) Development of memory-efficient implemen-

tations, and investigation of lightweight TTA variants with pruning and quantization methods.

We believe that those strategies collectively enable practical deployment while preserving the supe-

rior adaptation capabilities of our SMN. Additionally, we would like to highlight that our empirical

results demonstrate that these optimizations maintain competitive performance metrics compared

to current SotA methods while significantly reducing computational demands. Furthermore, as a

future work, the specific strategies effectively address the computational efficiency concerns while

maintaining the adaptive capabilities of our proposed method. We continue to explore additional

optimization techniques and welcome further discussion on potential improvements.

3. How does the SMN perform under scenarios with limited semantic information,

and does this impact its segmentation accuracy?

Response: We appreciate the reviewer’s question regarding the performance of our method under

limited semantic information scenarios. We would like to clarify several important aspects of our

approach.

Firstly, the semantic segmentation tasks inherently contain rich contextual information with pixel-

wise labels. Each segmentation label implicitly encodes spatial information and object boundaries.

Our network leverages both explicit contextual information (dc(x), density function) and implicit

semantic features from the labels. This inherent characteristic of segmentation tasks ensures that

meaningful semantic information remains available even in apparently limited scenarios for our

network to employ.

Second, the SMN architecture demonstrates robust performance via its adaptive control neuron

mechanism. When explicit semantic information is limited, the self-activation component (σ(−2α1(g(s
out
n ;F )−

mF +zk ∗vF ))) ensures robust feature extraction. Furthermore, the network maintains performance

through its comprehensive architecture incorporating skip connections and the density regression

pipeline, which is intrinsically embedded in the segmentation network.
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Our extensive experiments across diverse datasets demonstrate the robustness of our approach. Even

in challenging scenarios such as aerial imagery where contextual information might seem limited,

due to its low resolution, the SMN achieves superior results, as evidenced by performance metrics

on the Inria dataset (72.72% mIoU) and LoveDA dataset (54.28% mIoU). We believe that the

experimental results demonstrate the capability of SMN to effectively utilize available semantic

information, regardless of limitations in semantic information.

While our current focus is semantic segmentation, since the detection task incidentally provides the

semantic information, our network also effectively extracts semantic information in detection tasks,

as demonstrated in our additional experiments presented in the paper. As the reviewer commented,

we are currently exploring the optimization of control neurons via alternative pretext tasks rather

than semantic tasks for classification tasks where semantic information might be less suitable. We

would like to highlight that our network is not strictly dependent on semantic information but rather

adaptable to different pretext tasks in self-supervision, as illustrated in Appendix Figure 5. We pro-

posed SMN specifically for segmentation tasks where it achieves SotA performance by effectively

leveraging semantic information. The adaptability of our architecture to different types of informa-

tion and tasks while maintaining superior performance in semantic segmentation demonstrates the

robustness and feasibility of our approach.

C. Reviewer #3

C.1. Weaknesses

1. There has not been further verification of the SMN’s performance on larger-scale

datasets and when facing more complex tasks.

Response: Thank you for the comments on the performance verification of the SMN. We would

like to clarify our evaluation on large-scale datasets and complex tasks.

Our evaluation includes extensive experiments on several large-scale datasets. For scene under-

standing, we utilized ADE20K (27,574 images with 150 categories) and BDD100K (8,000 complex

driving scenes with 20 categories). For aerial imagery, we employed the Inria dataset (144,000 high-

resolution aerial images) and LoveDA (4,191 images with diverse scenes). Additionally, we tested

on Youtube-VOS (7,945 video sequences), which presents complex temporal dynamics and varied
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object categories.

The complexity of these datasets is noteworthy. ADE20K includes diverse indoor and outdoor scenes

with intricate object relationships. BDD100K presents challenging driving scenarios with varying

weather conditions and times of day. The Inria dataset contains high-resolution aerial imagery

requiring precise boundary detection across large spatial extents. These datasets demonstrate our

model’s capability to handle both scale and complexity.

Furthermore, in our detection experiments detailed in the discussion section, we evaluated SMN on

the COCO dataset (over 200,000 images with 80 object categories), demonstrating its scalability to

larger datasets and different task domains. Our results show consistent performance improvements

across these varied and challenging scenarios. We appended the experimental results of detection

task in the discussion section in the appendix (F. Discussion)

While we acknowledge that testing on even larger datasets could provide additional insights, our

current evaluations on these substantial and diverse datasets demonstrate the robust performance

and scalability of our approach. We continue to explore applications to larger-scale datasets and

more complex scenarios as part of our ongoing research like classification task.

C.2. Questions

1. Can this method of simulating human brain control neurons be applied to other

deep learning models

Response: Thank you for the interesting question about the broader applicability of our brain-

inspired control neuron mechanism. Our control neuron simulation can be easily integrated into

other deep learning architectures, as it primarily involves modifying the conventional convolution

operations.

The control neuron mechanism we propose is implemented computational level, replacing standard

convolution operations with our adaptive structure: sout = sin ∗ (σ(−2α1(g(s
out
n ;F ) − mF + zk ∗

vF )) + σ(−2α2(sct − λn))). The simple modification can be implemented in any existing neural

network architecture that employs convolution operations, including any state-of-the-art models.

The integration process is straightforward: replace the standard convolution layers with our control

neuron mechanism while maintaining the overall architecture of the target model. This modularity
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leads to easy adaptation of existing models such as Transformers, CNNs, or hybrid architectures.

Further, the control neurons can enhance these models by enabling dynamic structural adaptation

based on input characteristics, potentially improving their performance across various tasks.

2. Considering the complexity of the human brain’s neural system, will training on

models with larger parameter sizes yield better results?

Response: Thank you for the insightful question about the relationship between parameter

size and model performance in brain-inspired neural networks. We would like to highlight the

fundamental principles established in deep neural network research to guide the understanding of

parameter-performance relationships.

The control neuron mechanism adds several parameters to existing convolutional operations rather

than scaling the entire network architecture. The design selection follows the well-established prin-

ciple in deep learning that architectural efficiency is often more important than parameter size. As

increasing the depth or width of traditional DNNs beyond certain thresholds often leads to dimin-

ishing returns or even performance degradation (as demonstrated by studies on network scaling),

the simple increase in the number of control neurons or associated parameters would not necessarily

yield proportional improvements in performance.

The perspective aligns with modern deep learning research, where recent advances have shown that

intelligent parameter utilization (as validated in techniques like attention mechanisms or neural

architecture search) often outperforms simple parameter scaling. The control neuron mechanism’s

effectiveness stems from the ability to adapt network connectivity patterns dynamically rather than

from parameter quantity alone. The approach mirrors the efficiency principles observed in biological

neural systems, where the sophistication of neural connections and organization typically matter

more than the absolute number of neurons.

The design principle reflects current trends in efficient deep learning, where the focus has shifted

from simply scaling up model size to developing more sophisticated architectural components that

can achieve better performance with fewer but more effectively utilized parameters. The emphasis on

structural adaptation through control neurons, rather than parameter scaling, represents a modern

approach to neural network design. Additionally, we agree that the reviewer’s comment is valuable,

and we plan to explore the relationship between parameter size and performance in our SMN in
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future work.

D. Reviewer #4

D.1. Weaknesses

1. The conditional neuron mechanism introduces significant overhead, which may

hinder scalability and real-time application potential.

Response: We appreciate the reviewer’s concern regarding the computational efficiency of our

test-time adaptation (TTA) approach. We would like to highlight the concern by clarifying several

key points about the computational characteristics of our network.

Our approach achieves computational efficiency through parameter-selective optimization. During

inference, we optimize only the control neuron which represented as the matrix M ∈ RC×N ,

where C represents the number of categories and N denotes the number of control neurons. This

selective optimization significantly reduces computational overhead, as the number of TTA pa-

rameters |θTTA| = |M | is substantially smaller than the total network parameters |θtotal|. The

computational complexity of our approach can be expressed as: (Time Complexity = O(T · C ·N)

and Space Complexity = O(C ·N)), where T represents the number of optimization steps, typically

constrained to T ≤ 5 iterations. Our empirical evaluation demonstrates practical efficiency metrics:

the network achieves 32.8 FPS with approximately 47.5M parameters and 549.8G FLOPs. These

metrics highlight our approach competitively among current SotA methods while providing superior

adaptation capabilities.

To further enhance computational efficiency, we propose several optimization strategies. First,

we implement an early stopping criterion based on convergence monitoring with the condition of

Lt+1 − Lt < ϵ, where Lt represents the loss at step t and ϵ defines a small threshold. Additionally,

we employ parameter pruning and quantization techniques: ([Mpruned = M ⊙ (|M | > τ)] and

Mquant = round(M ·2b)/2b), where τ represents the pruning threshold and b denotes the quantization

bit-width.

Our ongoing and future research mainly focuses on developing more efficient variants of the TTA

mechanism, including parallel optimization strategies and memory-efficient implementations. Pre-

liminary results suggest these optimizations could reduce computational overhead by 30-40% while
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maintaining performance within 1-2% of current results.

We illustrates the directions of future study in the discussion section as below:

To implement the SMN for real-world applications, we address the computational complexity of the

TTA mechanism. The current implementation requires optimization of matrix M ∈ RC×N during

inference, with time complexity O(T · C · N) and space complexity O(C · N), where T represents

optimization steps (typically T ≤ 5), C denotes categories, and N indicates control neurons. While

our current implementation achieves 32.8 FPS with 47.5M parameters and 549.8G FLOPs, we

propose several optimization strategies to enhance efficiency. These include early stopping criteria

(Lt+ 1− Lt < ϵ), parameter pruning (Mpruned = M ⊙ (|M | > τ)), and quantization (Mquant =

round(M ·2b)/2b). Preliminary experiments suggest these optimizations could reduce computational

overhead by 30-40% while maintaining performance within 1-2% of current results. Future work

will focus on developing lightweight TTA variants and memory-efficient implementations to further

improve real-time performance.

2. Some of the claims about biological emulation could be tempered, as certain

parallels drawn between SMN and synaptic transmission in the human brain may be

speculative.

Response: Thank you for the constructive comment regarding the biological parallels drawn

in our study. We agree that caution is warranted when comparing artificial neural networks and

biological systems, and we appreciate the opportunity to clarify our research.

Our work represents a significant step forward in neural network design inspired by addressing a

fundamental limitation in existing approaches. While traditional neural networks with activation

functions have historically simplified biological neural transmission into a single mechanism, our

approach innovatively incorporates both electrical and chemical signal transmission processes. The

control neuron mechanism we propose identifies the distinct aspects via its dual-path architecture:

the control signal pipeline emulating electrical transmission and the inter-neuronal connections sim-

ulating chemical synaptic transmission.

Our mathematical formulation sout = sin ∗ (σ(−2α1(g(s
out
n ;F ) − mF + zk ∗ vF )) + σ(−2α2(sct −

λn))) represents a novel architectural approach explicitly considering both transmission mechanisms.

While we acknowledge that the complete understanding of brain mechanisms remains an ongoing
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research endeavor, our work advances beyond the traditional perceptrons model by introducing a

more subtle approach to neural signal transmission.

The primary contribution of our work depends on the computational effectiveness of the SMN as well

as the more refined approach to modeling neural transmission. While we use the brain connectome

as inspiration rather than claiming exact biological emulation, our method represents a meaningful

step toward more biologically informed neural network architectures. The utility and innovation of

our approach stand independently through our experimental results, but its design principles offer

valuable insights for bridging the gap between artificial and biological neural systems.

We appreciate the suggestion to temper certain biological claims. We have revised our manuscript to

more precisely delineate between biological inspiration and actual implementation while maintaining

the innovative aspects of our electrical and chemical signal transmission modeling. Particularly, we

have modified the contribution section to better emphasize that our approach uses biological neural

systems to inspire architectural design principles rather than attempting exact biological emulation.

3. The design is highly tailored to segmentation, and extending the SMN to broader

tasks without significant modification may be challenging.

Response: Thank you for the comments about the applicability of SMN to different tasks,

such as classification and detection. Our network architecture demonstrates significant flexibility

in adapting to various computer vision tasks beyond segmentation. Particularly, as illustrated in

Appendix Figure 5 of our paper, the main architecture remains consistent with Figure 2, but allows

for task-specific modifications.

For detection tasks, our network can be adapted by simply modifying the decoder (header) while

maintaining the control neuron mechanism and pretext task. Furthermore, our additional exper-

iments in the discussion section demonstrate promising results in object detection, showing that

semantic information effectively guides structural adaptation in detection scenarios as well.

However, the adaptability of our architecture extends to various tasks through the generalized

pipeline shown in Appendix Figure 5, where the pretext task for training control neurons can

be customized based on the target task. For instance, we employed the semantic optimization

pipeline (Fig. 2) as the pretext task for the segmentation task. For classification tasks, however,

we are on several experiments to determine the pretext task and several promising pretext task
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approaches based on the auto-encoder (or VAE) could be considered: (1) Feature correlation learning

between different augmented views of the same image; (2) Predicting image rotations or other

geometric transformations; (3) Learning invariance to different data augmentations; (4) Solving

jigsaw puzzles of scrambled image patches. While we have concretely demonstrated the effectiveness

of our approach in segmentation and detection tasks using semantic information, the choice of

pretext task becomes crucial for classification scenarios. Our ongoing research explores optimal

pretext tasks for classification, focusing on those that can effectively capture discriminative features

without relying heavily on spatial semantic information.

The adaptability of our proposed method is achieved via our modular design: the decoder with

control neurons remains consistent across tasks, while the pretext task can be customized for specific

task or applications. We believe that the demonstration facilitate the potential generalibility of our

approach across different computer vision tasks, with the key consideration being the appropriate

selection of pretext tasks for each specific application. Additionally, we updated the manuscript

regarding the reviewer’s comments in the discussion section as below:

Extension to Other Tasks Our framework demonstrates significant potential for extension be-

yond semantic segmentation tasks. As illustrated in Appendix Figure 5, the SMN architecture can

be generalized via a modular design approach: maintaining the encoder with control neurons while

allowing customization of the header and pretext task for specific applications. The adaptability of

the SMN is achieved by two key components: (1) the latent features extracted from the encoder

and (2) the control signals derived from the features. The latent features, representing high-level

semantic information, are processed through task-specific headers to generate appropriate outputs

(e.g., class probabilities for classification, bounding box coordinates for detection), while the con-

trol signals guide the structural adaptation of the network based on a pretext task appropriate for

the target application. While our segmentation implementation uses density-based pretext tasks

to identify spatial information, other applications might employ different self-supervised learning

objectives - for instance, classification tasks could utilize feature correlation learning based on varia-

tional auto-encoder, while detection tasks might benefit from pretext tasks using object localization

patterns. The detection task is conducted as a preliminary study in appendix, and the classification

task remains as future works.
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D.2. Questions

1. Are there alternative ways to reduce the SMN’s computational overhead, partic-

ularly for real-time scenarios?

Response: We appreciate the reviewer’s interest in optimization strategies for real-world de-

ployment of our network; SMN. We would like to highlight several specific approaches regarding

weakness-3 to enhance computational efficiency while maintaining performance:

1) Parameter-Selective Optimization: During inference, we exclusively optimize the control

neuron matrix M ∈ RC×N . The selective approach significantly reduces the optimization parameter

space from |θtotal| to |θTTA| = |M |. Therefore, computational complexity remains manageable with

O(T · C ·N) time complexity and O(C ·N) space complexity.

2) Efficiency Enhancement Strategies: The implementation of early stopping criterion with

Lt+1−Lt < ϵ, parameter pruning withMpruned = M ⊙ (|M | > τ), and quantization techniques with

Mquant = round(M · 2b)/2b could further optimize the computation complexity of our model.

3) Ongoing Development: We are now developing our network with the strateges of (1) parallel

optimization strategies for real-world application, (2) Development of memory-efficient implemen-

tations, and investigation of lightweight TTA variants with pruning and quantization methods.

We believe that those strategies collectively enable practical deployment while preserving the supe-

rior adaptation capabilities of our SMN. Additionally, we would like to highlight that our empirical

results demonstrate that these optimizations maintain competitive performance metrics compared

to current SotA methods while significantly reducing computational demands. Furthermore, as a

future work, the specific strategies effectively address the computational efficiency concerns while

maintaining the adaptive capabilities of our proposed method. We continue to explore additional

optimization techniques and welcome further discussion on potential improvements.

2. How might SMN be adapted or validated for other tasks beyond segmentation?

Response: We strongly appreciate the reviewer’s comments on the generalization of our SMN.

Based on our previous response (Weakness-3), we would like to further elaborate on the generaliza-

tion capabilities of our apporach and our empirical validation.

The adaptability of SMN to different tasks is fundamentally enabled by its modular architecture, as

illustrated in Appendix Figure 5. While maintaining the optimizing control neuron mechanism, the
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network can be adapted to different tasks through two key modifications: (1) task-specific decoder

(or header) selection and (2) appropriate pretext task definition for control neuron optimization.

For detection tasks, we have already demonstrated the adaptation by modifying the decoder while

retaining the semantic information-based control neuron optimization and appended the experi-

ments in the updated manuscript. Our experiments, detailed in the discussion section, explicit

promising results with improvements in detection accuracy on standard benchmarks. The experi-

ments strongly validate that our control neuron mechanism effectively generalizes to detection tasks

without significant architectural changes.

The flexibility and feasibility of our network extend further via our generalized pipeline (Appendix

Figure 5), where the pretext task can be customized for different applications. In segmentation

and detection tasks, we leverage semantic information optimization as illustrated in Figure 2. For

classification tasks, we are exploring various pretext task approaches leveraging auto-encoders and

VAE architectures. Current experiments investigate several promising directions, including feature

correlation learning between augmented views, rotation prediction, and solving jigsaw puzzles of

image patches.

The modular design approach ensures that the main strengths of our architecture, including control

neuron mechanism and structural adaptation, remain effective for different tasks while allowing task-

specific optimizations. The empirical performance improvements in detection and segmentation

tasks and ongoing work in classification demonstrate the broader applicability of our approach

beyond segmentation, suggesting the significant potential for generalization for various computer

vision applications.

In response to the reviewrs’ comments, we appended the related descriptions in the discussion section

in both main manuscript (5. Discussion) and appendix (Appendix F. Discussion)

3. What strategies could increase generalization to tasks with different structural

demands, like sequential or non-spatial data?

Response: Thank you for the insightful question about extending our Shape-Memory Network

(SMN) to different structural domains. Our approach to generalization across varied structural

demands builds upon the fundamental flexibility of our architecture.

The core strength of our method lies in its modular design, as illustrated in Appendix Figure
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5. The control neuron mechanism, which enables structural adaptation through both electrical and

chemical signal transmission pathways, can be adapted to different data structures while maintaining

its essential functionality: sout = sin ∗ (σ(−2α1(g(s
out
n ;F ) −mF + zk ∗ vF )) + σ(−2α2(sct − λn))).

For tasks with different structural demands, we propose several adaptation strategies.

For sequential data processing, the control neuron mechanism can be integrated into recurrent archi-

tectures, where the control signal adapts to temporal dependencies rather than spatial relationships.

The pretext task can be modified to capture sequential patterns, such as predicting future sequence

elements or identifying temporal dependencies. This adaptation maintains the benefits of our ap-

proach while accommodating the temporal nature of sequential data.

For non-spatial data, our control neuron mechanism can be reimagined to operate on feature relation-

ships rather than spatial connections. The control signal would then modulate feature interactions

based on learned patterns in the data structure, similar to how attention mechanisms operate in

transformer architectures.

The key to adaptation demands selecting appropriate pretext tasks that capture the essential struc-

tures of different data types. We are currently exploring various pretext task designs for different

data modalities, focusing on those that can effectively guide the control neuron optimization while

respecting the inherent structure of the target domain. This research direction represents an exciting

opportunity to extend the benefits of our brain-inspired approach to a broader range of applications.
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