
Under review as a conference paper at ICLR 2024

ISHA: INCREMENTAL SUCCESSIVE HALVING
FOR HYPERPARAMETER OPTIMIZATION
WITH BUDGET CONSTRAINTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Hyperparameter optimization (HPO) is indispensable for achieving optimal perfor-
mance in machine learning tasks. While some approaches focus on sampling more
promising hyperparameter configurations, methods based on the successive halving
algorithm (SHA) focus on efficiently evaluating hyperparameter configurations
through the adaptive allocation of evaluation resources and stopping unpromising
candidates early. Yet, SHA comes with several hyperparameters itself, one of
which is the maximum budget that can be allocated to evaluate a single hyperpa-
rameter configuration. Asynchronous extensions of SHA (ASHA) devise a strategy
of autonomously increasing the maximum budget and simultaneously allowing
for better parallelization. However, while working well in practice with many
considered hyperparameter configurations, there are limitations to the soundness of
these adaptations when the overall budget for HPO is limited. This paper provides
a theoretical analysis of ASHA in applications with budget constraints. We propose
incremental SHA (iSHA), a synchronous extension of SHA, allowing to increase
the maximum budget. A theoretical and empirical analysis of iSHA shows that
soundness is maintained while guaranteeing to be more resource-efficient than
SHA. In an extensive set of experiments, we also demonstrate that, in general,
iSHA performs superior to ASHA and progressive ASHA.

1 INTRODUCTION

Hyperparameter optimization (HPO) is a crucial step in the process of engineering machine learning
(ML) applications, as optimal performance can only be obtained if parameterized ML algorithms are
tuned to the task at hand (Feurer & Hutter, 2019; Bischl et al., 2021). Such a task is specified in the
form of a dataset D and a loss function ℓ. Typically, HPO is carried out in a trial-and-error fashion by
evaluating ℓ on the given data D for various candidate hyperparameter configurations.

In the early days of HPO, grid search and random search (Bergstra et al., 2011) have been the main
tools. However, they can be criticized for their disability in finding an optimal hyperparameter
configuration as well as their computational cost. In the age of deep learning, a highly efficient HPO
method is inevitable, as evaluating hundreds or even thousands of configurations is prohibitive. To
address this challenge, several HPO methods have been proposed to improve sampling or evaluation
efficiency. For the former, the methods mainly focus on Bayesian Optimization (Hutter et al., 2011),
whereas, for the latter, the HPO problem is extended by a budget parameter. Using this parameter, the
optimizer can specify for which budget a hyperparameter configuration should be evaluated. This
area of the HPO literature is also referred to as multi-fidelity optimization.

Probably the simplest procedure in this area is the Successive Halving Algorithm (SHA), which
first evaluates a set of candidates for a minimum starting budget R0, discards the worse half and
continues evaluation with the better half for a doubled budget. This procedure is repeated until a
maximum budget of R is reached. Thus, concentrating the budget on more promising hyperparameter
configurations, the reliability of the evaluations is gradually increased, but also the cost of their
evaluations. In contrast, less promising solutions are discarded early on with little budget.

However, for the user of such an HPO method, there are again new hyperparameters to be set: the
number of hyperparameter configurations in the starting set n, the minimum starting budget R0, and

1

Under review as a conference paper at ICLR 2024

the maximum budget R. Furthermore, in a generalization of SHA, there is an additional reduction
parameter η, which specifies that only 1/η of the configurations are considered for the next higher
budget level. For Hyperband (Li et al., 2018), a heuristic is presented to achieve a satisfactory
result with different n and R0, Li et al. (2020) propose an approach that does not need to specify
the maximum budget R in advance. This is accomplished by an asynchronous extension of SHA
(ASHA), in which decisions about candidate evaluations for larger budgets are made asynchronously,
allowing for higher parallelization. This approach has recently been further developed into PASHA
(Bohdal et al., 2022) that progressively increases the budget if the ranking of the configurations in the
top two high-fidelity sets has not stabilized.

However, asynchronous decision-making comes at the risk of mistakenly promoting hyperparameter
configurations to the next budget level. While Li et al. (2020) invoke the law of large numbers to
argue that this is not an issue, the problem remains in the case of finite budget constraints, where only
a limited number of hyperparameter configurations can be considered.

Contributions. To shed light on these limitations, propose potential remedies, and further improve
the reliability of these HPO tools, we analyze ASHA and progressive ASHA (PASHA) (Bohdal et al.,
2022) from a theoretical and empirical viewpoint. Our contributions can be summarized as follows:

• We provide the first theoretical results for ASHA, analyzing its capabilities in setups with con-
straints on the overall budget. These findings are accompanied by empirical evidence for a set of
HPO benchmarks.

• We propose an incremental (synchronous) extension of SHA (iSHA) that still allows one to increase
the maximum allocatable budget R during an HPO run but makes decisions synchronously.

• A theoretical and empirical analysis of iSHA is provided, finding iSHA to be theoretically sound
relative to the original SHA, while being provably more resource-efficient.

• In an extensive empirical study, we compare iSHA to the original SHA, and PASHA embedded
into the Hyperband framework. We find iSHA to give more robust results compared to PASHA,
often yielding higher quality hyperparameter configurations, while being more resource-efficient
than SHA.

2 HYPERPARAMETER OPTIMIZATION

Hyperparameter optimization (HPO) deals with the problem of finding a suitable parameterization
λ of an ML algorithm A with a corresponding hyperparameter space Λ for a given task. When
facing a typical supervised ML setting, we consider an instance space X and a target space Y , and
elements x ∈ X to be (non-deterministically) associated with elements y ∈ Y via a joint probability
distribution P . We assume to be given a (training) dataset D = {x(i), y(i)}Ni=1 ⊂ X × Y from a
dataset space D. An ML algorithm A is a mapping from the dataset space D and the hyperparameter
space Λ to a hypothesis spaceH := {h : X → Y} ⊆ YX , i.e.,

A : D× Λ→ H, (D,λ) 7→ h .

The ultimate goal of HPO is to find a parameterization λ∗ of A, resulting in a hypothesis that
minimizes the generalization error (riskR) with respect to some loss function ℓ : Y × Y → R:

R
(
h = A(D,λ)

)
= E(x,y)∼P ℓ(y, h(x)) =

∫
(x,y)∈X×Y

ℓ(y, h(x)) dP (x, y) .

Since the generalization error cannot be computed directly, it is estimated by splitting the data D into
a training and validation set, Dtrain and Dval, and computing the validation error:

λ̂ ∈ argmin
λ∈Λ

EDtrain,Dval

[
E(x,y)∈Dval

[
ℓ(y,A(Dtrain,λ)(x))

]]
.

To ease notation, we summarize the expectation as ℓ̂(λ).

As the computation of ℓ̂ for a λ might be costly w.r.t. the available resources (e.g., wall-clock time,
number of used data points, etc.), in multi-fidelity HPO, the validation error is usually determined
for a certain resource allocation, and thus, its actual value depends on the resources used. Hence,
we denote by ℓ̂r(λ) the validation error of A with parameterization λ and resource allocation r.
Obviously, the choice of r involves a tradeoff: The more resource units are used, the more accurate
the estimate, but the more costly its calculation, and vice versa.

2

Under review as a conference paper at ICLR 2024

Roughly speaking, a multi-fidelity HPO method seeks to find an appropriate parameterization λ ofA,
while preferably using as few resources as possible, and/or allocating at most a maximum assignable
budget R to the evaluation of a hyperparameter configuration λ during the search. For convenience,
we assume that R is an element of N ∪ {∞}, where R =∞ means that resources are not restricted.
We define ℓ̂∗(λ) := limr→R ℓ̂r(λ) for any λ ∈ Λ and ν∗ := infλ∈Λ ℓ̂∗(λ). The goal of an HPO
method is then to identify an HPC λ belonging to argminλ∈Λ ℓ̂∗(λ)− ν∗.

3 SUCCESSIVE HALVING AND HYPERBAND

The successive halving algorithm (SHA) (Karnin et al., 2013) solves the non-stochastic best arm
identification problem within a fixed budget and was already applied successfully to HPO by Jamieson
& Talwalkar (2016a). As a preparation step, a set of n hyperparameter configurations is sampled.
Then, starting from a minimum budget R0 for which all the n candidates are evaluated, it iteratively
discards the worse half and continues to evaluate the remaining candidates with doubled budget. This
procedure is repeated until either only a single hyperparameter configuration is left or a maximum
allocatable budget R is reached. Typically, n is chosen such that at least one candidate reaches the
final iteration of the algorithm. A budget level for which hyperparameter configurations are evaluated
is also referred to as rung in the following. Furthermore, we write that a hyperparameter configuration
is promoted to the next rung if it was not discarded and thus considered in the next iteration of SHA.
While SHA allows allocating exponentially more budget on the more promising hyperparameter
configurations, its final performance crucially depends on its parameterization. The parameters n,
R and R0 need to be chosen with care and depending on the task. Starting with too-low an initial
budget R0, we face the problem of rejecting actually promising hyperparameter configurations too
early, namely those that require more budget, e.g., more data or more training iterations, to perform
well enough to remain in the set of promising candidates. In particular, this is typically the case for
more complex models, which are known to have more capacity to learn more complex relationships
between input space and target space. It is also true for models that are regularized to avoid overfitting.
While those models typically need some budget to start to perform well enough, oftentimes, they
eventually outperform unregularized candidates resulting in overfitting behavior.

The Hyperband (HB) algorithm (Li et al., 2018) comes with a heuristic of how to choose different
values for n and R0, and subsequently uses SHA as a subroutine. This way, different allocation
strategies are considered for the tradeoff between (i) considering many configurations n starting with
a rather small R0, and (ii) giving some configurations more budget from the beginning. The latter is
motivated by the fact that in machine learning, some hyperparameter configurations may require a
larger amount of resources to show off their better performance. We refer to each call of SHA as a
bracket (Li et al., 2018), for which the set of hyperparameters is sampled uniformly at random and
given to SHA as an input.

4 RELATED WORK

To achieve state-of-the-art performance, hyperparameter optimization (HPO) is an inevitable step in
the machine learning process, dealing with finding the most suitable hyperparameter configuration
(HPC) of a machine learning algorithm for a given dataset and performance measure. Considering
HPO as a black-box optimization problem, various methods can be used to tackle this problem (Feurer
& Hutter, 2019; Bischl et al., 2021). Arguably, straightforward solutions include a grid search and a
random search. However, both are rather expensive, and thus, methods emerged to improve sample
efficiency and evaluation efficiency. While former methods are mostly centered around Bayesian
optimization (Frazier, 2018; Hutter et al., 2011), the latter emerged in the branch of multi-fidelity
optimization.

In multi-fidelity optimization, the goal is to distribute the budget for evaluating hyperparameter
configurations in a way that more budget is concentrated on the more promising configurations and
less so on inferior candidates. The Successive Halving algorithm (SHA), initially proposed by Karnin
et al. (2013) and later used by Jamieson & Talwalkar (2016b;a) for HPO, devises a powerful HPO
method, which has been incorporated as a subroutine in the well-known HPO method Hyperband
(Li et al., 2018). Hyperband has been extended in various directions such as improving its sampling

3

Under review as a conference paper at ICLR 2024

efficiency (Falkner et al., 2018; Awad et al., 2021; Mallik et al., 2023) and introducing shortcuts in
the evaluation process (Mendes et al., 2021).

Figure 1: Illustration of how
iSHA continues a previously
conducted SHA run.

Algorithm 1 Incremental Successive-Halving Algorithm (iSHA)

Input: S set of HPCs, r, maximum resource R, reduction
factor η, (Ck)k old sequence of HPCs, (Lk)k old sequence of
losses
Initialize: S0 ← S, ñ = |C0|, n = |S0|+ |C0|, s = logη(R)
for k ∈ {0, 1, . . . , s} do

nk = ⌊n/ηk⌋ − ⌊ñ/ηk⌋ , rk = rηk

pull each arm in Sk for rk times
if k ≤ s− 1 then

Sk+1 ← keep the best ⌊n/ηk+1⌋ − ⌊ñ/ηk+1⌋ arms
from Sk ∪ Ck\Ck+1

else
Sk+1 ← keep the best ⌊n/ηk+1⌋ arms from Sk ∪ Ck

end if
end for
Output: Remaining configuration

But also SHA has been subject to improvements. In (Li et al., 2020), SHA was extended to asyn-
chronous SHA (ASHA), which helps to better leverage parallel computing resources by promoting
candidates asynchronously to the next rung. Simultaneously, the maximum budget R can be adapted
on-the-fly. Progressive ASHA (PASHA) proposed by Bohdal et al. (2022) builds on ASHA and
incorporates a mechanism to only introduce higher rungs where necessary. While both ASHA and
PASHA have been extensively studied empirically, a thorough (theoretical) analysis of the costs of
the asynchronous promotion scheme is still lacking. Also, these empirical studies have considered
comparably large setups with vast amounts of resources. In our study, we consider small-scale setups
and analyze the behavior of ASHA and PASHA in that scope.

5 INCREMENTAL SUCCESSIVE HALVING

Due to the static budget setting in SHA, the execution of SHA cannot simply be continued for an
adapted parameterization, e.g., a higher maximum allocatable budget R. By re-running SHA from
scratch, however, knowledge about previously evaluated hyperparameter configurations (HPCs) is
discarded and resources already allocated are wasted.

As another extreme, ASHA and PASHA allow to dynamically increase the maximum allocatable
budget R, devising a scheme for asynchronous promotions to higher rungs. However, as we show in
Sections 6 and 7.2, the asynchronous promotions in ASHA and PASHA can be erroneous and thus
impede the identification of the optimal hyperparameter configurations.

With incremental successive halving (iSHA), we propose a middle ground for budget-constrained
scenarios, i.e., scenarios in which we cannot rely on the law of large numbers as required by Li et al.
(2020). Similar to ASHA and PASHA, we allow the maximum allocatable budget to be increased
after an SHA run, making SHA in principle stateful. Algorithm 1 translates this into pseudocode.
Differences from the original SHA are highlighted in blue. While Algorithm 1 also covers the case of
ASHA, adding a single configuration at a time, we assume |S|+ |C0| = |C0| · η for our theoretical
and empirical analysis.

In Figure 1 we see the mechanism underlying iSHA to continue a previously conducted run of
SHA that resulted in the rungs C0, C1 and C2. The initially sampled set of HPCs C0 is padded with
newly sampled HPCs S0 to initially achieve the same number of HPCs as if SHA had been restarted.
However, only the new configurations are executed (following the typical SHA budget allocation)
and finally compared with the previous configurations from C0. The already promoted configuration
in C1 from the previous SHA run will remain and only the required number of configurations will be
promoted, i.e., S1, such that the size of the union of C1 and S1 matches the size of the second rung if
SHA had been restarted. This mechanism is then iteratively continued for subsequent rungs.

4

Under review as a conference paper at ICLR 2024

Intuitively speaking, the strategy of iSHA is to continue a previous SHA run in the most efficient, and
thus, resource-saving way. However, similarly to ASHA and PASHA, this efficiency may come at
the cost of a potential drop in performance, as previously made decisions cannot be revoked. More
specifically, in the worst case, all promotions of the previous run would not have occurred if we had
known the complete set of candidate HPCs from the start. Only filling up the rungs leaves less space
for the desired candidates to be promoted to the highest rung.

Nevertheless, we prove in the next section that we are still able to identify near-optimal solutions with
a high probability, which will be confirmed by empirical results in Section 7.2 later on. Furthermore,
we demonstrate that this robustness gives iSHA an edge over ASHA and PASHA when it comes to
the quality of returned hyperparameter configurations in settings with limited budget.

6 THEORETICAL RESULTS

We split the theoretical results into three parts. First, we provide a theoretical analysis of ASHA.
Second, we give some theoretical guarantees for iSHA, our extension of SHA, and third, we extend
these guarantees to an incremental extension of Hyperband. Since the Successive Halving algorithm
solves a multi-armed bandit problem (Jamieson & Talwalkar, 2016b), in the following analysis, we
will stick to the notation and terms of multi-armed bandits. Multi-arm bandit problems are transferred
to HPO by (a) considering a hyperparameter configuration λ as an arm i and (b) when drawing an
arm i for k times, observing the loss ℓi,k (compare to Section 2).

In the same spirit as in (Jamieson & Talwalkar, 2016b; Li et al., 2018), we need the following
assumption as a prerequisite for the theoretical analyses of the next subsections.

Assumption 6.1. For each arm i ∈ N, the limit νi := limt→∞ ℓi,t exists.

Moreover, we denote the convergence speed by γ(t) ≥ supi |ℓi,t − νi|, ∀t ∈ N.

6.1 THEORETICAL ANALYSIS OF ASHA

We now analyze ASHA (Li et al., 2020), which, to the best of our knowledge, is the only algorithm
with a similar goal of more efficient resource use as our proposed incremental SH variant.

Theorem 6.2 (Necessary Budget for ASHA). Fix n arms and assume ν1 ≤ . . . ≤ νn. Let

zASHA = (⌊logη(n)⌋+ 1) · n ·max
{
maxk∈[K] η

−kγ−1
(ν⌊|rungk−1|/η⌋+1

−ν1

2

)
,

η−K maxi∈rungK\{1} γ
−1
(
νi−ν1

2

) }
,

where K ≤ ⌊logη(n)⌋ is the top rung of ASHA. If ASHA is run with some budget B ≥ zASHA, then
the best arm 1 is returned.

The dependence is linear-logarithmic in n, and the limit gap from the best arm to the other arms
occurs in the inverted convergence rate γ−1. The first term in the maximum makes sure that the best
arm reaches the top rung K, while the second term makes sure that the best arm will eventually be
returned. As a corollary of the proof of Theorem 6.2 (see Section C), we obtain the following result.

Corollary 6.3 (Worst Case Promotion Costs). Assume all rungs to be full, i.e., no promotion is
possible, and the top rung K only contains the current incumbent arm. If at that time a new best arm
(configuration) î is sampled, then promoting î to the sole solution of the new top rung K + 1 requires
the sampling of ηK − 1 additional arms (HPCs) and a total of ηK+1 many jobs.

From these results, we can draw two major conclusions. The more configurations have already been
considered in ASHA when î enters the pool of considered hyperparameter configurations, i.e., the
later in the process, the more budget needs to be spent to promote î to the top rung. Particularly, in a
scenario with a limited budget, e.g., limited by the overall budget or by the number of configurations
to be sampled, ASHA fails to return î, if the required budget for promoting the best configuration
exceeds the remaining budget. A similar result can be shown for PASHA.

5

Under review as a conference paper at ICLR 2024

6.2 THEORETICAL ANALYSIS OF INCREMENTAL SUCCESSIVE HALVING

For iSHA (Algorithm 1), we first prove a lower bound on the budget to return a nearly optimal arm
(configuration). The proof is given in Appendix B.1.
Theorem 6.4 (Necessary Budget for iSHA). Fix n arms from which ñ arms were already promoted,
and assume ν1 ≤ · · · ≤ νn. For any ϵ > 0 let

ziSHA =η⌈logη(n)⌉ ·maxi=2,...,n i
(
1 + min

{
R, γ−1

(
max

{
ϵ
4 ,

νi−ν1

2

}) })
.

If any of the iSHA is run with some budget B ≥ zC−SH, then an arm ı̂ is returned that satisfies
νı̂ − ν1 ≤ ϵ/2.

Further, we can specify the improvement of iSHA over the costly re-run of SH.
Theorem 6.5 (Improvement of number of pulls of iSHA in comparison to SHA). Fix n arms, a
maximal size of R, r and η. Assume that we have already run SHA on ñ arms and the same values
for B, r, and η. Let η− = η − 1 and s+ = s+ 1. If we ran SHA, iSHA over s rounds with the above
variables, we have

#{total pulls of iSHA}
#{total pulls of SH} ≤ 1− (s+)(ñR+ ηs)(η−)− (ηs

+ − 1)(2R+ n)

(s+)(nR+ ηs)(η−)− (ηs+ − 1)(R+ n)
.

Again, as a corollary of the proof of Theorem 6.5 (see Section Appendix B.2), we obtain the following
result regarding the “limit case”, i.e., if we would increase the maximum size R infinitely often, or,
equivalently, the number of possible rungs s infinitely often.
Corollary 6.6. If we run iSHA and SHA infinitely many times with

(i) an ever-increasing maximum size R, and
(ii) such that the newly sampled number of configurations in each new run of iSHA fulfills
|S|+ |C0| = |C0| · η, where C0 is the number of configurations in the previous run,

then the ratio of total pulls of iSHA and total pulls of SHA converges to 1− η−1.

Note that a comparison similar to Theorem 6.5 is difficult to make, since ASHA does not include the
parameter R.

6.3 INCREMENTAL-HYPERBAND

Like the original version of SHA and its extensions ASHA and PASHA, we can also employ iSHA as
a subroutine in Hyperband. To this end, Hyperband needs to be made incremental in itself, as done
in Algorithm 2 in the appendix, which we call iHB (incremental Hyperband). In the following, we
provide a theoretical analysis of this incremental version of Hyperband with iSHA as a subroutine.
Figure 2 illustrates how every Hyperband bracket is updated after increasing the maximum budget R.

An optimal hyperparameter configuration λ∗ as defined above may not always exist. Even if it does, it
could be infeasible to search for it as our hyperparameter configuration space is usually very large or
even infinite. Therefore, we will relax our goal and seek to find a configuration that is at least “nearly
optimal”, akin to the literature on HPO problems: For ϵ > 0, we call λ̂ an ϵ-optimal configuration iff
νλ̂ − νλ∗ ≤ ϵ. To ensure that the search for such a configuration does not resemble the search for a
needle in a haystack, we need an assumption which guarantees that the probability of the existence of
an ϵ-optimal configuration in our sampled set of configurations is high enough.
Assumption 6.7. The proportion of ϵ-optimal configurations in Λ is α ∈ (0, 1).

Note that we now have at least one ϵ-optimal configuration in a sampled set of configurations with
probability at least 1 − δ, if the sample size is at least ⌈log1−α(δ)⌉ for a fixed failure probability
δ ∈ (0, 1). With this, we can state the following theorem, the proof of which is given in Appendix B.3.
Theorem 6.8. Let η,R, α and δ be fixed such that

R ≥ max
{⌈

log1−α(δ)
⌉
(η−) + 1, ηγ̄−1

(
Lη,Lη,R

+ 4 +
⌊Lη,R⌋

2
−
∑⌊Lη,R⌋+1

k=1 logη (k)

⌊Lη,R⌋+ 1

)}
for γ̄−1 := maxs=0,...,⌊Lη,R⌋ maxi=2,...,ns

i
(
1 + min

{
R, γ−1

(
max

{
ϵ
4 ,

νi−ν1

2

})})
and Lη,R = logη(R), then iHB finds an ϵ-optimal configuration with probability at least 1− δ.

6

Under review as a conference paper at ICLR 2024

...

...

...

Figure 2: Illustration of how the brackets of incremental hyperband are arranged and filled up when
the maximum budget R is increased.

To conclude, despite the incremental extension of Hyperband, we can maintain the theoretical
guarantees of the original Hyperband. Although promotions in iSHA are also to some extent
performed asynchronously, we can still identify the best arm when doing promotions in a batch,
provided a sufficiently large batch size.

7 EMPIRICAL EVALUATION

In addition to the theoretical results of the previous section, we evaluate iSHA empirically and
compare it to PASHA (Bohdal et al., 2022), and SHA (Jamieson & Talwalkar, 2016a).

We are especially interested in the following two research questions:

RQ1 Is iSHA able to retain the quality of returned HPCs as compared to applying SHA from scratch?
RQ2 How does the proposed iSHA compare to the state-of-the-art algorithm PASHA?

7.1 EXPERIMENT SETUP

In our experimental evaluation, we compare iSHA, to PASHA, and SHA as subroutines embedded in
Hyperband to answer the research questions RQ1 and RQ2. Note that we do not include ASHA as it
was demonstrated to perform inferior to PASHA in (Bohdal et al., 2022). To this end, we conduct an
extensive set of experiments tackling various HPO tasks, considering various types of learners and
two different fidelity parameters: the number of epochs and the fraction of the training data used for
fitting a model.

As a benchmark library, we use YAHPO Gym (Pfisterer et al., 2022), which provides fast-to-evaluate
surrogate benchmarks for HPO with particular support for multi-fidelity optimization, rendering it
a perfect fit for our study. From YAHPO Gym, we select the benchmarks listed in Table 1. All the
benchmarks consist of several datasets, which are referred to as benchmark instances, allowing for a
broad comparison. Due to space limitations, we only present a summary of the results here, whereas
detailed results can be found in Appendix D.

Furthermore, we set the initial max size Rt−1 = 16 and increase it after the first run by a factor of η
to Rt = η Rt−1, as this is a budget that is supported by all benchmark scenarios. Since ASHA and
PASHA automatically increase the maximum budget depending on the observed performances, we
only ensure an upper limit of Rt for both to ensure a fair comparison. As a termination criterion, we
use that the number of HPCs would exceed the pool size of the Hyperband bracket. For benchmarks
considering a fraction of the training dataset as fidelity parameter, we translate a budget r by r/Rt

into a fraction between 0 and 1.

Furthermore, we repeat each combination of algorithm, η, and benchmark instance for 30 seeds
resulting in a total amount of 30 × 3 × 2 × 378 = 68, 040 hyperparameter optimization runs. We
computed all experiments on a single workstation equipped with 2xIntel Xeon Gold 5122 and 256GB
RAM. The code and data will be made publicly available via GitHub.

7

Under review as a conference paper at ICLR 2024

Table 1: List of considered benchmarks from YAHPO-Gym with the type of learner, number of
considered datasets, objective function, and the type of budget that can be used as a fidelity parameter.

Benchmark Model # Inst. Objective Fidelity

lcbench neural network 34 val_accuracy epochs
rbv2_svm SVM 106 acc fraction

rbv2_ranger random forest 119 acc fraction
rbv2_xgboost XGBoost 119 acc fraction

0.650 0.675 0.700 0.725 0.750 0.775 0.800
Rel. Budget

0.6

0.4

0.2

0.0

0.2

Re
l.

Pe
rfo

rm
an

ce

overall, eta=2
PASHA
iSHA

0.80 0.82 0.84 0.86 0.88
Rel. Budget

2.0

1.5

1.0

0.5

0.0

0.5

Re
l.

Pe
rfo

rm
an

ce

overall, eta=3

PASHA
iSHA

Figure 3: Scatter plots relating the performance on the y-axis and the consumed budget on the x-axis
to the performance achieved and budget consumed by SHA. Note that the ranges for the performance
and budget vary from η = 2 (left) to η = 3 (right). For the relative budget lower is better whereas for
relative performance higher is better.

7.2 EMPIRICAL RESULTS

In Figure 3 we present the performance of the finally chosen hyperparameter configuration and the
budget spent by the Hyperband optimizer in relation to the performance of the solution returned and
the budget consumed by SHA. Hence, a relative performance of 0.0 means that the solution quality
matches the one returned by SHA, a larger (smaller) value an improvement (degradation) w.r.t. SHA.
The relative budget denotes the share of the budget that SHA consumes by re-running from scratch.
Therefore, a relative budget of 1 means that the consumed budget is on par with the budget of SHA.
A lower relative budget correspondingly means that less budget was consumed.

As can be seen, our iSHA extension robustly yields competitive performance to re-running SHA
from scratch for a larger maximum assignable budget R, while substantially reducing the consumed
budget to roughly 75% for η = 2 and 84.5% for η = 85%. Regarding RQ1, we can confirm that
iSHA retains the quality of returned HPCs.

On the contrary, the performance and budget consumption of PASHA shows a lot of variance,
including variations in all possible directions: improvements and degradations in performance, using
more or less budget than iSHA. Since higher rungs are only introduced in PASHA whenever necessary,
i.e., if the soft ranking over the configurations of the last two rungs changes, PASHA has the potential
to reduce the consumed budget even more than iSHA does. However, there is no guarantee that
PASHA will use less budget than iSHA, and also in terms of performance, PASHA is clearly less
robust.

Table 2: Aggregated statistics across benchmark instances comparing the performance and budget to
natively applying SHA. Differences in accuracy larger than 0.001 are considered for improvements
or degradations. (left: η = 2, right: η = 3)

η = 2 Performance Budget
Approach Impr Degr Tie Mean Std

PASHA 21 69 288 0.7521 0.0274
iSHA 7 14 357 0.7520 0.0

η = 3 Performance Budget
Approach Impr Degr Tie Mean Std

PASHA 24 88 266 0.8483 0.0145
iSHA 9 14 355 0.8443 0.0

8

Under review as a conference paper at ICLR 2024

Performance Budget
0

50

100

150

200

Co
un

t
108

168
199 210

71

0

PASHA vs iSHA - overall, eta=2
PASHA
iSHA
Tie

Performance Budget
0

50

100

150

200

Co
un

t

116

156

208 222

54

0

PASHA vs iSHA - overall, eta=3
PASHA
iSHA
Tie

Figure 4: Bar charts counting the number of datasets for which either PASHA or iSHA performed best
with respect to performance and accumulated budget for evaluating hyperparameter configurations.
The plots show the results for η = 2 on the left and η = 3 on the right.

This is again confirmed by the results in Table 2, where we simply count the number of benchmark
instances for which an improvement, degradation, or tie w.r.t. the performance of SHA is obtained.
While PASHA gives the most improvements in terms of performance for both values of η, it also
comes with the most performance degradations which even outnumber the improvements by a factor
of 3 to 4. Furthermore, we provide the average and the standard deviations for the relative budget
consumed across the benchmark instances. On average, for both values of η, iSHA consumes the
least budget, whereas, for PASHA, the standard deviation is an order of magnitude larger compared
to the other approaches.

In a direct comparison between PASHA and iSHA, we compare the quality of the finally returned
hyperparameter configurations to each other in Figure 4. Furthermore, we compare the accumulated
budget of the two approaches and count how many times either of the two performed better than the
other one. For the performance comparison, we only consider differences in performance larger than
0.001 as better performance. From the plots we can see that on the majority of the datasets iSHA
performs better than PASHA for both performance and accumulated budget and independent of the
choice for η. However, the savings in the budget are a little more pronounced in the case of η = 3.

From these results, we can conclude that iSHA is a robust and more resource-efficient incremental
version of SHA, and the theoretical guarantees given in the previous section can be validated in
practice as well. PASHA is able to reduce the consumed budget drastically, and its heuristic nature
may allow one to achieve substantial reductions in budget, albeit these improvements are not obtained
consistently. Overall, we find iSHA to perform way more robust in general, and as detailed in the
appendix, compare favorably in a direct comparison to PASHA.

8 CONCLUSION AND FUTURE WORK

In this paper, we proposed an extension to the well-known HPO method Successive Halving (SHA),
called Incremental Successive Halving (iSHA), aiming to improve its efficiency when the max size
hyperparameter R of SHA needs to be increased post-hoc. We derived theoretical guarantees on the
quality of the final choice, as well as on the saved budget, when a previous SHA run is continued.
Furthermore, we provide the first theoretical analysis of asynchronous SHA, emphasizing the price
that needs to be paid for the asynchronous promotions. In an empirical study, we also find that iSHA
yields results similar to the much more expensive baseline variant of SHA and often better results
than the current state-of-art among the asynchronous variants of SHA. In fact, our approach only
requires the budget of the sole run with the increased max size.

In future work, we plan to combine our SHA extensions with more sophisticated strategies for
sampling hyperparameter configurations, as for example done by Awad et al. (2021) or Falkner et al.
(2018) and HyperJump, to improve iHB’s efficacy and efficiency even further. Another interesting
avenue of future research is outlined by PriorBand where a prior distribution is incorporated for
sampling new hyperparameter configurations (Mallik et al., 2023).

9

Under review as a conference paper at ICLR 2024

REFERENCES

Noor H. Awad, Neeratyoy Mallik, and Frank Hutter. DEHB: evolutionary hyberband for scalable,
robust and efficient hyperparameter optimization. In Proceedings of the Thirtieth International
Joint Conference on Artificial Intelligence, pp. 2147–2153, 2021.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-
parameter optimization. In John Shawe-Taylor, Richard S. Zemel, Peter L. Bartlett, Fer-
nando C. N. Pereira, and Kilian Q. Weinberger (eds.), Advances in Neural Information
Processing Systems 24: 25th Annual Conference on Neural Information Processing Sys-
tems 2011. Proceedings of a meeting held 12-14 December 2011, Granada, Spain, pp.
2546–2554, 2011. URL https://proceedings.neurips.cc/paper/2011/hash/
86e8f7ab32cfd12577bc2619bc635690-Abstract.html.

Bernd Bischl, Martin Binder, Michel Lang, Tobias Pielok, Jakob Richter, Stefan Coors, Janek Thomas,
Theresa Ullmann, Marc Becker, Anne-Laure Boulesteix, et al. Hyperparameter optimization:
Foundations, algorithms, best practices and open challenges. arXiv preprint arXiv:2107.05847,
2021.

Ondrej Bohdal, Lukas Balles, Beyza Ermis, Cédric Archambeau, and Giovanni Zappella. Pasha:
Efficient hpo with progressive resource allocation. arXiv preprint arXiv:2207.06940, 2022.

Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB: robust and efficient hyperparameter opti-
mization at scale. In Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pp. 1436–1445. PMLR, 2018.

Matthias Feurer and Frank Hutter. Hyperparameter optimization. In Frank Hutter, Lars Kotthoff,
and Joaquin Vanschoren (eds.), Automated Machine Learning - Methods, Systems, Challenges,
The Springer Series on Challenges in Machine Learning, pp. 3–33. Springer, 2019. doi: 10.1007/
978-3-030-05318-5_1. URL https://doi.org/10.1007/978-3-030-05318-5_1.

Peter I. Frazier. A tutorial on bayesian optimization. CoRR, abs/1807.02811, 2018. URL http:
//arxiv.org/abs/1807.02811.

Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential model-based optimization for
general algorithm configuration. In Learning and Intelligent Optimization - 5th International
Conference, volume 6683 of Lecture Notes in Computer Science, pp. 507–523. Springer, 2011.

Kevin Jamieson and Ameet Talwalkar. Non-stochastic best arm identification and hyperparameter
optimization. In Proceedings of the 19th International Conference on Artificial Intelligence and
Statistics, volume 51 of Proceedings of Machine Learning Research, pp. 240–248. PMLR, 2016a.

Kevin G. Jamieson and Ameet Talwalkar. Non-stochastic best arm identification and hyperparameter
optimization. In Arthur Gretton and Christian C. Robert (eds.), Proceedings of the 19th Interna-
tional Conference on Artificial Intelligence and Statistics, AISTATS 2016, Cadiz, Spain, May 9-11,
2016, volume 51 of JMLR Workshop and Conference Proceedings, pp. 240–248. JMLR.org, 2016b.
URL http://proceedings.mlr.press/v51/jamieson16.html.

Zohar Karnin, Tomer Koren, and Oren Somekh. Almost optimal exploration in multi-armed bandits.
In International Conference on Machine Learning, pp. 1238–1246. PMLR, 2013.

Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Ekaterina Gonina, Jonathan Ben-Tzur, Moritz Hardt,
Benjamin Recht, and Ameet Talwalkar. A system for massively parallel hyperparameter tuning.
Proceedings of Machine Learning and Systems, 2:230–246, 2020.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband:
A novel bandit-based approach to hyperparameter optimization. Journal of Machine Learning
Research, 18(185):1–52, 2018.

Neeratyoy Mallik, Edward Bergman, Carl Hvarfner, Danny Stoll, Maciej Janowski, Marius Lindauer,
Luigi Nardi, and Frank Hutter. Priorband: Practical hyperparameter optimization in the age of
deep learning. arXiv preprint arXiv:2306.12370, 2023.

10

https://proceedings.neurips.cc/paper/2011/hash/86e8f7ab32cfd12577bc2619bc635690-Abstract.html
https://proceedings.neurips.cc/paper/2011/hash/86e8f7ab32cfd12577bc2619bc635690-Abstract.html
https://doi.org/10.1007/978-3-030-05318-5_1
http://arxiv.org/abs/1807.02811
http://arxiv.org/abs/1807.02811
http://proceedings.mlr.press/v51/jamieson16.html

Under review as a conference paper at ICLR 2024

Pedro Mendes, Maria Casimiro, and Paolo Romano. Hyperjump: Accelerating hyperband via risk
modelling. arXiv preprint arXiv:2108.02479, 2021.

Florian Pfisterer, Lennart Schneider, Julia Moosbauer, Martin Binder, and Bernd Bischl. YAHPO
gym - an efficient multi-objective multi-fidelity benchmark for hyperparameter optimization.
In International Conference on Automated Machine Learning, AutoML 2022, volume 188 of
Proceedings of Machine Learning Research, pp. 3/1–39. PMLR, 2022.

11

Under review as a conference paper at ICLR 2024

ORGANIZATION OF APPENDIX

A Pseudo-Codes 12

B Proofs 14

B.1 Proof of Theorem 6.4 . 14

B.2 Comparison of SHA and iSHA . 18

B.3 Incremental-Hyperband . 21

C Theoretical Analysis of ASHA 23

D Detailed Empirical Results 25

D.1 Results for lcbench . 25

D.2 Results for rbv2_xgboost benchmark . 25

D.3 Results for rbv2_ranger benchmark . 26

D.4 Results for rbv2_svm benchmark . 26

D.5 Direct comparison of iSHA to PASHA . 27

A PSEUDO-CODES

Incremental Hyperband. The incremental Hyperband variant mentioned in Section 6.3 is given
in Algorithm 2, where all differences to the original Hyperband algorithm by Li et al. (2018) are
indicated by a blue text color.

Variants of iSHA. While iSHA is arguably the most efficient way to continue a previous
run of SHA, there are also other possible ways to do so. One way, which we call discarding
Incremental-SuccessiveHalving (given in Algorithm 3), is when the start pool of hyperparameter
configurations is extended by the new hyperparameter configurations, it is allowed to discard
hyperparameter configurations that were promoted in the previous run and have already been
evaluated on a larger budget. Another way that is more efficient and reuses previous evaluations of
hyperparameter configurations, is by conserving the information about hyperparameter configurations
that have already been evaluated for a specific budget but have been discarded in a previous iteration.
In this way, hyperparameter configurations that were already discarded are allowed to return to the
pool of promising candidates. This variant will be called preserving Incremental-SuccessiveHalving
algorithms and is given in Algorithm 4.

12

Under review as a conference paper at ICLR 2024

Algorithm 2 Incremental-Hyperband (iHB)

Input: max size R, η ≥ 2, old max size R̃ ∈ {0, R/η}, old sequence of configuration samples
((Cs,k)k∈{0,...,s})s∈{0,...,logη(R̃)} and losses ((Ls,k)k∈{0,...,s})s∈{0,...,logη(R̃)}
Initialize: smax = ⌊logη(R)⌋, B = (smax + 1)R

if R̃ > 0 then
s̃max = ⌊logη(R̃)⌋ = smax − 1, B̃ = (s̃max + 1)R̃

end if
for s ∈ {smax, smax − 1, . . . , 0} do

ns = ⌈BR
ηs

(s+1)⌉, rs = R/ηs

if R̃ > 0 and s > 0 then
s̃ = s− 1, ñs = ⌈ B̃R̃

ηs̃

(s̃+1)⌉, r̃s = R̃/ηs̃ = rs
else

ñs = 0
end if
S ← sample ns − ñs configurations
xID-SuccessiveHalving(S,B, rs, R, η, (Cs̃,k)k∈{0,...,s̃}, (Ls̃,k)k∈{0,...,s̃})

end for
Output: Configuration with smallest intermediate loss

Algorithm 3 Discarding Incremental-SuccessiveHalving (d-iSHA)

Input: S set of arms, budget B, r, max size R, η, (Ck)k old sequence of configurations, (Lk)k
old sequence of losses
Initialize: S0 ← S ∪ C0, n = |S0|
for k ∈ {0, 1, . . . , s} do

nk = ⌊n/ηk⌋, rk = rηk

pull each arm in Sk\Ck for rk times
Sk+1 ← keep the best ⌊n/ηk+1⌋ arms from Sk

end for
Output: Remaining configuration

Algorithm 4 Preserving Incremental-SuccessiveHalving (p-iSHA)

Input: S set of arms, budget B, r, max size R, η, (Ck)k old sequence of configurations, (Lk)k
old sequence of losses
Initialize: S0 ← S ∪ C0, n = |S0|
for k ∈ {0, 1, . . . , s} do

nk = ⌊n/ηk⌋, rk = rηk

pull each arm in Sk\Ck for rk times
Sk+1 ← keep the best ⌊n/ηk+1⌋ arms from Sk ∪ Ck

end for
Output: Remaining configuration

13

Under review as a conference paper at ICLR 2024

B PROOFS

B.1 PROOF OF THEOREM 6.4

Proof of Theorem 6.4. This proof consists of two parts: First, we will focus on the efficient
Incremental-SuccessiveHalving Algorithm given in Algorithm 1. Second, we will show a
similar lower bound on the number of necessary samples for the discarding and preserving
Incremental-SuccessiveHalving algorithms given in Algorithm 3 and Algorithm 4.

Part I: iSHA analysis

Step 1: Algorithm 1 never exceeds the budget B, which can be seen as follow. The budget used is
bounded by

s∑
k=0

nkrk =

s∑
k=0

(
⌊n/ηk⌋ − ⌊ñ/ηk⌋

) Rηk

ηs

≤
s∑

k=0

(
⌊n/ηk⌋

) Rηk

ηs

≤
s∑

k=0

(smax + 1)ηs

(s+ 1)

R

ηs

≤ (smax + 1)R = B.

Step 2: Let nk = |Sk| + |Ck| and ñk = |Ck| such that n0 = n and ño = ñ. Without loss
of generality, we assume that the limit values of the losses are ordered, such that ν1 ≤ ν2 ≤
· · · ≤ νn. Note, that due to the above condition also the limit values of arms in Sk and resp.
in Ck are ordered, e.g. for νi, νj ∈ Sk with i < j we have νi ≤ νj . Let in the following be
i′k = min {⌊nk/η⌋+ 1, ⌊ñk/η⌋+ ⌊nk/η⌋+ 1}. Assume that B ≥ zeC−SH, then we have for each
round k

rk ≥
B

(nk − ñk)⌈logη(n)⌉
− 1

≥ η

nk − ñk
max

i=2,...,n
i

(
1 + min

{
R, γ−1

(
max

{ ϵ
4
,
νi − ν1

2

})})
− 1

≥ η

nk − ñk
i′k

(
1 + min

{
R, γ−1

(
max

{ ϵ
4
,
νi′k − ν1

2

})})
− 1

(∗)
≥ η

nk − ñk
(nk − ñk)/η

(
1 + min

{
R, γ−1

(
max

{ ϵ
4
,
νi′k − ν1

2

})})
− 1

=

(
1 + min

{
R, γ−1

(
max

{ ϵ
4
,
νi′k − ν1

2

})})
− 1

= min
{
R, γ−1

(
max

{ ϵ
4
,
νi′k − ν1

2

})}
,

where the fourth line (∗) follows from:

• Case 1: i′k = ⌊ñk/η⌋+ 1.
We have

i′k ≥ nk/η ≥ (nk − ñk)/η.

• Case 2: i′k = ⌊ñk/η⌋+ ⌊nk−1/η⌋+ 1.
If ñk = 0, we have

i′k =

⌊
nk−1

η

⌋
+ 1 ≥ nk−1

η
≥ nk

η
≥ nk − ñk

η
.

14

Under review as a conference paper at ICLR 2024

If ñk ≥ 1, we have

i′k ≥
ñk

η
− 1 +

nk−1

η
− 1 + 1

=
ñk − nk−1 − η

η

≥ nk + (η − 1)nk + ñk − η

η

≥ nk

η
≥ nk − ñk

η
,

where line 3 follows from nk = ⌊nk−1/η⌋ and line 4 from nk ≥ ñk ≥ 1 and η ≥ 2, so we
have η − 1 ≥ 1, so we can estimate nk ≥ 1.

Next, we show that ℓi,t − ℓ1,t > 0 for all t ≥ τi := γ−1
(
νi−ν1

2

)
. Given the definition of γ, we have

for all i ∈ [n] that |ℓi,t − νi| ≤ γ(t) ≤ νi−ν1

2 where the last inequality holds for t ≥ τi. Thus, for
t ≥ τi we have

ℓi,t − ℓ1,t = ℓi,t − νi + νi − ν1 + ν1 − ℓ1,t

= ℓi,t − νi − (ℓ1,t − ν1) + νi − ν1

≥ −2γ(t) + νi − ν1

≥ −2νi − ν1
2

+ νi − ν1

= 0.

Under this scenario, we will eliminate arm i before arm 1 since on each round the arms are sorted by
their empirical losses and the top half are discarded. Note that by the assumption the νi limits are
non-decreasing in i so that the τi values are non-increasing in i.

Fix a round k and assume 1 ∈ Sk ∪ Ck (note, 1 ∈ S0 ∪ C0). The above calculation shows that

t ≥ τi =⇒ ℓi,t ≥ ℓ1,t. (1)

We regard two different scenarios in the following.

• Case 1: k ≤ s− 1.
In this case, we keep the best ⌊nk/η⌋ − ⌊ñk/η⌋ arms from the set Sk ∪ Ck\Ck+1 and have
already promoted the best ⌊ñk/η⌋ from Ck.

{1 ∈ Sk ∪ Ck, 1 /∈ Sk+1 ∪ Ck+1}

⇐⇒

{ ∑
i∈Sk∪Ck\Ck+1

1{ℓi,rk < ℓ1,rk} ≥ ⌊nk/η⌋ − ⌊ñk/η⌋,

∑
i∈Ck

1{ℓi,rk < ℓ1,rk} ≥ ⌊ñk/η⌋

}

=⇒

{ ∑
i∈Sk∪Ck\Ck+1

1{rk < τi} ≥ ⌊nk/η⌋ − ⌊ñk/η⌋,

∑
i∈Ck

1{rk < τi} ≥ ⌊ñk/η⌋

}

=⇒

{ ⌊nk/η⌋−⌊ñk/η⌋+⌊ñk/η⌋+1∑
i=2

1{rk < τi ∧ i ∈ Sk ∪ Ck\Ck+1} ≥ ⌊nk/η⌋

− ⌊ñk/η⌋,
⌊ñk/η⌋+⌊nk−1/η⌋+1∑

i=2

1{rk < τi ∧ i ∈ Ck} ≥ ⌊ñk/η⌋

}

15

Under review as a conference paper at ICLR 2024

=⇒
{
rk < min

{
τ⌊nk/η⌋+1, τ⌊ñk/η⌋+⌊nk−1/η⌋+1

}}
⇐⇒

{
rk < τmax{⌊nk/η⌋+1,⌊ñk/η⌋+⌊nk−1/η⌋+1}

}
,

where the first line follows by the definition of the algorithm and the second by Equation 1.
In the third line we assume the worst case scenario, where the best ⌊nk/η⌋ − ⌊ñk/η⌋ arms
in Sk ∪ Ck\Ck+1 are all worse than the best ⌊ñk/η⌋ arms in Ck (which are kept in the
set Ck+1) and vice versa that the best ⌊ñk/η⌋ arms in Ck are worse than all arms in Sk.
The fourth line follows by τi being non-increasing (for all i < j we have τi ≥ τj and
consequently, 1{rk < τi} ≥ 1{rk < τj} so the first indicators of the sum not including 1
would be on before any other i’s in Sk ⊂ [n] sprinkled throughout [n]).

• Case 2: k = s.
In this case we keep the best ⌊nk/η⌋ arms from Sk ∪ Ck and have Ck+1 = ∅, thus we get
analogously as above

{1 ∈ Sk ∪ Ck, 1 /∈ Sk+1} ⇐⇒

{ ∑
i∈Sk∪Ck

1{ℓi,rk < ℓ1,rk} ≥ ⌊nk/η⌋

}

=⇒

{ ∑
i∈Sk∪Ck

1{rk < τi} ≥ ⌊nk/η⌋

}

=⇒

⌊nk/η⌋+1∑

i=2

1{rk < τi} ≥ ⌊nk/η⌋

⇐⇒

{
rk < τ⌊nk/η⌋+1

}
.

Overall, we can conclude, that 1 ∈ Sk ∪ Ck and 1 /∈ Sk+1 ∪ Ck+1 if
rk < τmax{⌊nk/η⌋+1,⌊ñk/η⌋+⌊nk/η⌋+1}. This implies

{1 ∈ Sk ∪ Ck, rk ≥ τi′k} =⇒ {1 ∈ Sk+1 ∪ Ck+1}. (2)

Recalling that rk ≥ γ−1
(
max

{
ϵ
4 ,

νi′
k
−ν1

2

})
and

τi′k = γ−1
(νi′

k
−ν1

2

)
, we examine the following three exhaustive cases:

• Case 1:
νi′

k
−ν1

2 ≥ ϵ
4 and 1 ∈ Sk ∪ Ck

In this case, rk ≥ γ−1
(νi′

k
−ν1

2

)
= τi′k . By Equation 2 we have that 1 ∈ Sk+1 ∪Ck+1 since

1 ∈ Sk ∪ Ck.

• Case 2:
νi′

k
−ν1

2 < ϵ
4 and 1 ∈ Sk ∪ Ck

In this case rk ≥ γ−1
(
ϵ
4

)
but γ−1

(
ϵ
4

)
< τi′k . Equation 2 suggests that it may be possible

for 1 ∈ Sk ∪ Ck but 1 /∈ Sk+1 ∪ Ck+1. On the good event that 1 ∈ Sk+1 ∪ Ck+1,
the algorithm continues and on the next round either case 1 or case 2 could be true. So
assume 1 /∈ Sk+1 ∪ Ck+1. Here we show that {1 ∈ Sk ∪ Ck, 1 /∈ Sk+1 ∪ Ck+1} =⇒
maxi∈Sk+1∪Ck+1

νi ≤ ν1 + ϵ/2. Because 1 ∈ S0 ∪ C0, this guarantees that Algorithm 1
either exits with arm î = 1 or some arm î satisfying ν̂i ≤ ν1 + ϵ/2.

Let p = min{i ∈ [n] : νi−ν1

2 ≥ ϵ
4}. Note that p > i′k by the criterion of the case and

rk ≥ γ−1
(ϵ
4

)
≥ γ−1

(
νi − ν1

2

)
= τi, ∀i ≥ p.

Thus, by Equation 1 (t ≥ τi =⇒ ℓi,t ≥ ℓ1,t) we have that arms i ≥ p would always have
ℓi,rk ≥ ℓ1,rk and be eliminated before or at the same time as arm 1, presuming 1 ∈ Sk ∪Ck.
In conclusion, if arm 1 is eliminated so that 1 ∈ Sk ∪ Ck but 1 /∈ Sk+1 ∪ Ck+1 then
maxi∈Sk+1∪Ck+1

νi ≤ maxi<p νi < ν1 + ϵ/2 by the definition of p.

16

Under review as a conference paper at ICLR 2024

• Case 3: 1 /∈ Sk ∪ Ck

Since 1 ∈ S0 ∪ C0, there exists some r < k such that 1 ∈ Sr ∪ Cr and 1 /∈ Sr+1 ∪ Cr+1.
For this r, only case 2 is possible since case 1 would proliferate 1 ∈ Sr+1 ∪Cr+1. However,
under case 2, if 1 /∈ Sr+1 ∪ Cr+1 then maxi∈Sr+1∪Cr+1 νi ≤ ν1 + ϵ/2.

Because 1 ∈ S0 ∪ C0, we either have that 1 remains in Sk ∪ Ck (possibly alternating between cases
1 and 2) for all k until the algorithm exits with the best arm 1, or there exists some k such that case 3
is true and the algorithm exits with an arm î such that ν̂i ≤ ν1 + ϵ/2.

Part II: iSHA variants analysis

Next, we proof the same guarantee for the discarding and preserving Incremental-SuccessiveHalving
algorithms given in Algorithm 3 and Algorithm 4.
Therefore we proceed in two steps: First, we will reduce the d-iSHA algorithm to the SH algorithm
to take over its theoretical guarantees. Second, we will show where the proof of SH has to be
modified to achieve the same theoretical guarantees for our p-iSHA algorithm.

Step 1: We will distinguish two different cases in the following in order to reduce the discarding
Incremental-SuccessiveHalving algorithm 3 to the original version of Successive Halving by Jamieson
& Talwalkar (2016a) (or Karnin et al. (2013)).

• Case 1: (Ck)k = ∅.
If we have (Ck)k = ∅, we have simply the Successive Halving algorithm by Jamieson &
Talwalkar (2016a) and can keep their theoretical guarantees.

• Case 2: (Ck)k ̸= ∅.
Thus the interesting case which we will consider in the following is the case (Ck)k ̸= ∅.
Assume that Algorithm 3 is called as subroutine by Algorithm 2. Since (Ck)k ̸= ∅,
Algorithm 3 was already called before with number of arms ñ and budget r̃s = R̃/ηs̃ =
R
η /η

s−1 = R/ηs = rk for s ∈ {0, . . . , ⌊logη(R)⌋}. Thus, the arms in (Ck)k were already
pulled for rk times and their loss values (Lk)k were observed. Combining these with the
loss values we observe in each iteration k in Algorithm 3 for rk pulls of the arms in Sk\Ck,
we can keep the best ⌊n/ηk+1⌋ arms from Sk regarding the observed losses of the recent
pulls of Sk\Ck and the before observed losses of Ck. Therefore, we get the same arms in
Sk+1 as starting Algorithm 4 from scratch with (Ck)k = ∅ and S = S ∪ C0 and can apply
Case 1.

To conclude both cases, we can keep the theoretical result that was proven by Li et al. (2018) for the
original version of Successive Halving in a finite horizon setting (R <∞).

Step 2: To achieve the same guarantee for the preserving Incremental-SuccessiveHalving algorithm,
we can proceed analogue as in the proof of Successive Halving by Li et al. (2018). For a fixed round
k and 1 ∈ Sk ∪ Ck, since 1 ∈ S0 ∪ C0, we have

{1 ∈ Sk ∪ Ck, 1 /∈ Sk+1} ⇔

{ ∑
i∈Sk∪Ck

1{ℓi,rk < ℓ1,rk} ≥ ⌊nk/η⌋

}

⇒

{ ∑
i∈Sk∪Ck

1{rk < τi} ≥ ⌊nk/η⌋

}

⇒

nk+|Ck\(Sk∩Ck)|+1∑

i=2

1{rk < τi} ≥ ⌊nk/η⌋

⇔ {rk < τ⌊nk/η⌋+1}.

The rest of the proof is the same as that for Successive Halving in Li et al. (2018).

17

Under review as a conference paper at ICLR 2024

B.2 COMPARISON OF SHA AND ISHA

Proof of Theorem 6.5. Let us first regard the number of total pulls when we run SHA(n, r) in
comparison to a run of iSHA(n, r), where we assume that we had already run SHA(ñ, r̃). We
concentrate in the following on a lower bound on the pulls of SHA(n, r).

s∑
k=0

nkrk =

s∑
k=0

⌊
n

ηk

⌋
·
⌊
Rηk

ηs

⌋

≥
s∑

k=0

(
n

ηk
− 1

)(
Rηk

ηs
− 1

)

=

s∑
k=0

nR

ηs
− Rηk

ηs
− n

ηk
+ 1

=
(s+ 1)(nR+ ηs)

ηs
− R

ηs

s∑
k=0

ηk − n

s∑
k=0

(
1

η

)k

=
(s+ 1)(nR+ ηs)

ηs
− R(ηs+1 − 1)

ηs(η − 1)
− n(1− (1/η)s+1)

1− 1/η︸ ︷︷ ︸
=

n

(
ηs+1−1

ηs+1

)
η−1
η

=
n(ηs+1−1)
ηs(η−1)

=
(s+ 1)(nR+ ηs)

ηs
− (ηs+1 − 1)(R+ n)

ηs(η − 1)

=
(s+ 1)(nR+ ηs)(η − 1)− (ηs+1 − 1)(R+ n)

ηs(η − 1)
,

where we used the closed form for the geometric series in the fifth line and simple transformations in
all other lines.

An upper bound on the total pulls of iSHA(n, r) is given by
s∑

k=0

nkrk =

s∑
k=0

(
⌊n/ηk⌋ − ⌊ñ/ηk⌋

) ⌊Rηk

ηs

⌋

≤
s∑

k=0

(
n− ñ

ηk
+ 1

)
· Rηk

ηs

=
(s+ 1)(n− ñ)R

ηs
+

R

ηs

s∑
k=0

ηk

=
(s+ 1)(n− ñ)R

ηs
+

R(ηs+1 − 1)

ηs(η − 1)

=
(s+ 1)(n− ñ)R(η − 1) +R(ηs+1 − 1)

ηs(η − 1)
.

Finally, we compare both by building the quotient

#{total pulls of iSHA (n, r)}
#{total pulls of SH(n, r)}

≤ (s+ 1)(n− ñ)R(η − 1) +R(ηs+1 − 1)

(s+ 1)(nR+ ηs)(η − 1)− (ηs+1 − 1)(R+ n)

= 1− (s+ 1)(ñR+ ηs)(η − 1)− (ηs+1 − 1)(2R+ n)

(s+ 1)(nR+ ηs)(η − 1)− (ηs+1 − 1)(R+ n)
.

It is worth mentioning that we can do a similar analysis for the discarding and preserving Incremental-
SuccessiveHalving algorithms given in Algorithm 3 and Algorithm 4:

18

Under review as a conference paper at ICLR 2024

Analogously as in the proof of Theorem 6.5, we first need an upper bound on the total pulls in a run
of d-iSHA(n, r). While we only sample n− ñ new arms in the first round of d-iSHA, the best n/η
arms may be all from the newly sampled ones and thus none of the arms which are kept into the next
round of d-iSHA was already pulled with a higher budget in the run of SH(ñ, r̃). In this worst case,
we can estimate

s∑
k=0

nkrk = (n− ñ)

⌊
R

ηs

⌋
+

s∑
k=1

⌊
n

ηk

⌋⌊
Rηk

ηs

⌋

≤ (n− ñ)R

ηs
+

s∑
k=1

nR

ηs

=
(n− ñ)R

ηs
+

snR

ηs

=
R((s+ 1)n− ñ)

ηs
.

Again, we can now compute the quotient of the pulls as follows.

#{total pulls of d-iSHA (n, r)}
#{total pulls of SH(n, r)}

≤ (η − 1)R((s+ 1)n− ñ)

(η − 1)(s+ 1)(nR+ ηs)− (ηs+1 − 1)(R+ n)

= 1− (η − 1)((s+ 1)ηs +Rñ)− (ηs+1 − 1)(R+ n)

(η − 1)(s+ 1)(nR+ ηs)− (ηs+1 − 1)(R+ n)
.

Note that we can apply the same for the number of pulls of p-iSHA since we have the same worst-
case scenario where we only keep newly sampled configurations into the next round of p-iSHA and
none of the previously promoted configurations.

To get an intuition for the improvement in the number of total pulls, we show in Figure 5 and Figure 6
the above terms for different values of rounds s, maximal budgets per round R and discarding portion
η. Note that the above results assume the worst-case scenario for the p-iSHA resp. the d-iSHA
algorithm in which all previously promoted configurations perform worse than all newly sampled
ones. In most problem scenarios the average improvement in the number of total pulls of p-iSHA
resp. d-iSHA will lie between the plotted curves of the worst case scenario in Figure 5 and the best
case scenario which coincidences with iSHA and is shown in Figure 6. Since our proposed methods
will never need a greater number of total pulls than SH, we plotted the minimum value of 1 and our
derived fractions in Theorem 6.5.

Proof of Corollary 6.6. In the following, we only regard the asymptotic behavior of the number
of pulls for an infinite large budget. In this case, we can ignore the flooring functions since the
asymptotic behavior is not affected by those. We get for the asymptotic ratio between the number of
pulls of rerunning SH and iSHA that

lim
s→∞

∑s
k=0

(
⌊n/ηk⌋ − ⌊ñ/ηk⌋

) ⌊
Rηk

ηs

⌋
∑s

k=0

⌊
n
ηk

⌋
·
⌊
Rηk

ηs

⌋ = lim
s→∞

∑s
k=0

(n−ñ)R
ηs∑s

k=0
nR
ηs

=
n− ñ

n

= 1− η−1,

where we used that in each new run of iSHA it holds that n = |S|+ |C0| = |C0| · η, where C0 is the
number of configurations in the previous run with cardinality ñ.

19

Under review as a conference paper at ICLR 2024

Figure 5: Fraction of the number of total pulls of p-iSHA resp. d-iSHA and SHA for different
values of rounds of SH s, maximal budgets per round R and discarding fraction η.

Figure 6: Fraction of number of total pulls of iSHA for different values of rounds of SHA s and
maximal budgets per round R.

20

Under review as a conference paper at ICLR 2024

B.3 INCREMENTAL-HYPERBAND

Proof of Theorem 6.8. To derive the necessary budget of iHB in Algorithm 2, we simply have to sum
up all necessary budgets for each call of xiSHA. Luckily, the necessary budgets for iSHA, d-iSHA
and p-iSHA do not differ, thus a run of iHB uses independent of the variant of the called Successive
Halving algorithm a total budget of

⌊logη(R)⌋∑
s=0

Budget_xiSHA(ns, rs)

=

⌊logη(R)⌋∑
s=0

η

⌈
logη

(⌈
(⌊logη(R)⌋+ 1) · ηs

s+ 1

⌉)⌉
· max
i=2,...,ns

i

(
1 + min

{
R, γ−1

(
max

{
ϵ

4
,
νi − ν1

2

})})
= (∗).

Due to simple estimates and transformations, we get

η

⌈
logη

(⌈
(⌊logη(R)⌋+ 1) · ηs

s+ 1

⌉)⌉
≤ η

⌈
logη

(⌈
(logη(R) + 1)

⌉
·
⌈

ηs

s+ 1

⌉)⌉
= η

⌈
logη

(⌈
logη(R) + 1

⌉)
+ logη

(⌈
ηs

s+ 1

⌉)⌉
≤ η

⌈
logη

(
logη(R) + 2

)
+ logη

(
ηs

s+ 1
+ 1

)⌉
≤ η

⌈
logη

(
logη(R)

)
+ 2 + logη

(
ηs

s+ 1

)
+ 1

⌉
= η

⌈
logη

(
logη(R)

)
+ logη (η

s)− logη (s+ 1) + 3
⌉

≤ η
(
logη

(
logη(R)

)
+ s− logη (s+ 1) + 4

)
.

Note that the fourth line follows from
logη(x+ 1) ≤ logη(x) + 1

⇔ x+ 1 ≤ η · x

⇔ x ≥ 1

η − 1
.

In our setting, we have η ≥ 2, thus logη(x+1) ≥ logη(x)+1 if and only if x ≥ 1. We have ηs

s+1 ≥ 1

for s ≥ 0 and also wlog. logη(R) ≥ 2, otherwise the value of smax and thus the run of Hyperband
would be trivial.
We can continue with

(∗) ≤
⌊logη(R)⌋∑

s=0

η
(
logη

(
logη(R)

)
+ s− logη (s+ 1) + 4

)
· max
s=0,...,⌊logη(R)⌋

max
i=2,...,ns

i

(
1 + min

{
R, γ−1

(
max

{
ϵ

4
,
νi − ν1

2

})})
︸ ︷︷ ︸

=:γ̄−1

= η

(⌊logη(R)⌋+ 1
) (

logη(logη(R)) + 4
)
+

⌊logη(R)⌋∑
s=0

s−
⌊logη(R)⌋∑

s=0

logη(s+ 1)

 γ̄−1

= η

((
⌊logη(R)⌋+ 1

) (
logη(logη(R)) + 4

)
+
⌊logη(R)⌋

(
⌊logη(R)⌋+ 1

)
2

− logη

⌊logη(R)⌋∏
s=0

(s+ 1)

)γ̄−1

21

Under review as a conference paper at ICLR 2024

= η

((
⌊logη(R)⌋+ 1

) (
logη(logη(R)) + 4

)
+
⌊logη(R)⌋

(
⌊logη(R)⌋+ 1

)
2

− logη
((
⌊logη(R)⌋+ 1

)
!
))

γ̄−1.

Since we choose the budget B in our iHB algorithm as B = (smax +1)R =
(
⌊logη(R)⌋+ 1

)
R, we

can divide both by
(
⌊logη(R)⌋+ 1

)
and get

R ≥ η

(
logη(logη(R)) + 4 +

⌊logη(R)⌋
2

−
logη

((
⌊logη(R)⌋+ 1

)
!
)

⌊logη(R)⌋+ 1

)
γ̄−1.

Recall that in each call of xiSHA in round s of iHB we compare ns = (⌊logη(R)⌋ + 1) ηs

s+1
hyperparameter configurations, thus we get an overall number of samples of

(
⌊logη(R)⌋+ 1

) ⌊logη(R)⌋∑
s=0

ηs

s+ 1

≥
⌊logη(R)⌋∑

s=0

ηs

Geometric Sum
=

η⌊logη(R)⌋+1 − 1

η − 1

≥ R− 1

η − 1
.

By assumption 6.7 we have an ϵ-optimal hyperparameter configuration in our sample set with
probability at least 1− δ if and only if

R− 1

η − 1
≥
⌈
log1−α(δ)

⌉
⇔ R ≥

⌈
log1−α(δ)

⌉
(η − 1) + 1.

22

Under review as a conference paper at ICLR 2024

C THEORETICAL ANALYSIS OF ASHA

Proof of Theorem 6.2. For sake of simplicity, we denote the configurations by their indices and as-
sume without loss of generality that the configurations are ordered, such that the optimal configuration
has index 1, the second best 2 etc. In the worst case, we observe the configurations in such an order
that we have never two consistent rankings in two successive rungs, thus we have to enlarge the rung
each time we have at least η configurations in the recent top rung K. With this, we get in each rung k
at least ⌊n/ηk⌋ configurations for which the budget bk = rηk is used by algorithm design. In addition,
we can bound the index of the top rung K by ⌊logη(n)⌋, because we have at least η times many
configurations in rung k + 1 in comparison to rung k and the first rung has index 0. We can compute
the following upper bound for the budget of ASHA:

B =

K∑
k=0

|rungk| · bk

≤
K∑

k=0

⌊
n

ηk

⌋
· rηk

≤
K∑

k=0

r · n

= (K + 1) · rn
≤ (⌊logη(n)⌋+ 1)rn.

By simple transformations we get

r ≥ B

(⌊logη(n)⌋+ 1)n
.

We prove the correctness of ASHA indirectly, so we assume in the following that ASHA does not
return the near-optimal configuration. For sake of convenience, we write [K−1]0 = {0, 1, 2, . . . ,K−
1}. We can regard two different cases for this scenario.

• Case 1: Configuration 1 does not even reach the top rung K.

1 /∈ rungK ⇔ ∃k ∈ [K − 1]0 : 1 ∈ rungk ∧ 1 /∈ rungk+1

⇔ ∃k ∈ [K − 1]0 :
∑

i∈rungk\{1}

1{ℓ1,bk > ℓi,bk} >
|rungk|

η

⇔ ∃k ∈ [K − 1]0 :
∑

i∈rungk\{1}

1{νi − ν1 < νi − ℓi,bk − ν1 + ℓ1,bk} >
|rungk|

η

⇒ ∃k ∈ [K − 1]0 :
∑

i∈rungk\{1}

1{νi − ν1 < |νi − ℓi,bk |+ |ν1 − ℓ1,bk |} >
|rungk|

η

⇒ ∃k ∈ [K − 1]0 :
∑

i∈rungk\{1}

1{νi − ν1 < 2γ(bk)} >
|rungk|

η

⇒ ∃k ∈ [K − 1]0 : ν⌊|rungk|/η⌋+1 − ν1 < 2γ(bk)

⇒ ∃k ∈ [K − 1]0 : rηk = bk < γ−1

(
ν⌊|rungk|/η⌋+1 − ν1

2

)
⇔ ∃k ∈ [K − 1]0 : r < η−kγ−1

(
ν⌊|rungk|/η⌋+1 − ν1

2

)
⇒ B

(⌊logη(n)⌋+ 1)n
≤ r < max

k∈[K]
η−kγ−1

(
ν⌊|rungk−1|/η⌋+1 − ν1

2

)
⇒ B < (⌊logη(n)⌋+ 1)n max

k∈[K]
η−kγ−1

(
ν⌊|rungk−1|/η⌋+1 − ν1

2

)
.

23

Under review as a conference paper at ICLR 2024

By contradiction, we get the following condition for the budget of ASHA to ensure that
configuration 1 gets promoted into the top rung K:

B ≥ (⌊logη(n)⌋+ 1)n max
k∈[K]

η−kγ−1

(
ν⌊|rungk−1|/η⌋+1 − ν1

2

)
.

• Case 2: Configuration 1 is contained in the top rung K, but is not returned by ASHA.

return(ASHA) ̸= {1} ∧ 1 ∈ rungK
⇔ ∃i ∈ rungK\{1} : ℓ1,bK > ℓi,bK
⇔ ∃i ∈ rungK\{1} : νi − ν1 < νi − ℓi,bK − ν1 + ℓ1,bK
⇒ ∃i ∈ rungK\{1} : νi − ν1 < |νi − ℓi,bK |+ |ν1 − ℓ1,bK |
⇒ ∃i ∈ rungK\{1} : νi − ν1 < 2γ(bK)

⇒ ∃i ∈ rungK\{1} : rηK = bK < γ−1

(
νi − ν1

2

)
⇒ ∃i ∈ rungK\{1} :

B

(⌊logη(n)⌋+ 1)n
≤ r < η−Kγ−1

(
νi − ν1

2

)
⇒ B < (⌊logη(n)⌋+ 1)nη−K max

i∈rungK\{1}
γ−1

(
νi − ν1

2

)
.

By contradiction, ASHA returns a near-optimal solution if it is contained in the top rung K
and if

B ≥ (⌊logη(n)⌋+ 1)nη−K max
i∈rungK\{1}

γ−1

(
νi − ν1

2

)
.

To summarize both cases, ASHA needs a budget of

B ≥ (⌊logη(n)⌋+ 1)n ·max

{
max
k∈[K]

η−kγ−1
(

ν⌊|rungk−1|/η⌋+1
−ν1

2

)
, η−K max

i∈rungK\{1}
γ−1

(
νi−ν1

2

)}
to ensure that the optimal configuration will be returned.

24

Under review as a conference paper at ICLR 2024

D DETAILED EMPIRICAL RESULTS

In this section we provide the results of the empirical study in more detail, providing individual
figures for every benchmark set and value for η.

D.1 RESULTS FOR LCBENCH

0.72 0.74 0.76 0.78 0.80
Rel. Budget

0.6

0.4

0.2

0.0

0.2

Re
l.

Pe
rfo

rm
an

ce

lcbench, eta=2

PASHA
iSHA
d-iSHA
p-iSHA

η = 2 Performance Budget
Approach Impr Degr Tie Mean Std

iSHA 2 6 26 0.752 0.0
p-iSHA 3 2 29 0.7667 0.0019
d-iSHA 0 0 34 0.7695 0.0024
PASHA 2 13 19 0.7642 0.0215

0.83 0.84 0.85 0.86 0.87
Rel. Budget

2.0

1.5

1.0

0.5

0.0

0.5

Re
l.

Pe
rfo

rm
an

ce

lcbench, eta=3

PASHA
iSHA
d-iSHA
p-iSHA

η = 3 Performance Budget
Approach Impr Degr Tie Mean Std

iSHA 4 4 26 0.8443 0.0
p-iSHA 5 0 29 0.8524 0.0015
d-iSHA 0 0 34 0.8543 0.0022
PASHA 4 18 12 0.8528 0.0102

D.2 RESULTS FOR RBV2_XGBOOST BENCHMARK

0.66 0.68 0.70 0.72 0.74 0.76 0.78
Rel. Budget

0.02

0.01

0.00

0.01

Re
l.

Pe
rfo

rm
an

ce

rbv2_xgboost, eta=2

PASHA
p-iHB
d-iHB
e-iHB

η = 2 Performance Budget
Approach Impr Degr Tie Mean Std

iSHA 4 2 113 0.752 0.0
p-iSHA 2 0 117 0.7646 0.0019
d-iSHA 0 0 119 0.7654 0.0021
PASHA 11 24 84 0.7451 0.0252

0.80 0.82 0.84 0.86 0.88
Rel. Budget

0.03

0.02

0.01

0.00

Re
l.

Pe
rfo

rm
an

ce

rbv2_xgboost, eta=3

PASHA
p-iHB
d-iHB
e-iHB

η = 3 Performance Budget
Approach Impr Degr Tie Mean Std

iSHA 3 7 109 0.8443 0.0
p-iSHA 3 0 116 0.8525 0.0018
d-iSHA 0 0 119 0.8527 0.0018
PASHA 12 42 65 0.8536 0.0185

25

Under review as a conference paper at ICLR 2024

D.3 RESULTS FOR RBV2_RANGER BENCHMARK

0.68 0.70 0.72 0.74 0.76 0.78 0.80 0.82
Rel. Budget

0.010

0.005

0.000

0.005
Re

l.
Pe

rfo
rm

an
ce

rbv2_ranger, eta=2

PASHA
p-iHB
d-iHB
e-iHB

η = 2 Performance Budget
Approach Impr Degr Tie Mean Std

iSHA 1 3 115 0.752 0.0
p-iSHA 1 1 117 0.7636 0.002
d-iSHA 0 0 119 0.7648 0.0036
PASHA 5 18 96 0.7557 0.0294

0.83 0.84 0.85 0.86 0.87 0.88
Rel. Budget

0.004

0.002

0.000

0.002

Re
l.

Pe
rfo

rm
an

ce

rbv2_ranger, eta=3

PASHA
p-iHB
d-iHB
e-iHB

η = 3 Performance Budget
Approach Impr Degr Tie Mean Std

iSHA 2 2 115 0.8443 0.0
p-iSHA 2 0 117 0.8517 0.0019
d-iSHA 1 0 118 0.8521 0.0022
PASHA 7 12 100 0.8447 0.011

D.4 RESULTS FOR RBV2_SVM BENCHMARK

0.66 0.68 0.70 0.72 0.74 0.76 0.78 0.80
Rel. Budget

0.004

0.003

0.002

0.001

0.000

0.001

Re
l.

Pe
rfo

rm
an

ce

rbv2_svm, eta=2

PASHA
p-iHB
d-iHB
e-iHB

η = 2 Performance Budget
Approach Impr Degr Tie Mean Std

iSHA 0 3 103 0.752 0.0
p-iSHA 0 2 104 0.7646 0.0019
d-iSHA 0 0 106 0.7654 0.002
PASHA 3 14 89 0.7522 0.0273

0.82 0.83 0.84 0.85 0.86 0.87
Rel. Budget

0.004

0.003

0.002

0.001

0.000

0.001

Re
l.

Pe
rfo

rm
an

ce

rbv2_svm, eta=3

PASHA
p-iHB
d-iHB
e-iHB

η = 3 Performance Budget
Approach Impr Degr Tie Mean Std

iSHA 0 1 105 0.8443 0.0
p-iSHA 0 2 104 0.8519 0.0016
d-iSHA 0 0 106 0.8522 0.0018
PASHA 1 16 89 0.8448 0.012

26

Under review as a conference paper at ICLR 2024

D.5 DIRECT COMPARISON OF ISHA TO PASHA

Performance Budget
0

50

100

150

200

Co
un

t

108

168
199 210

71

0

PASHA vs e-iHB - overall, eta=2
PASHA
e-iHB
Tie

Performance Budget
0

50

100

150

200

Co
un

t

116

156

208 222

54

0

PASHA vs e-iHB - overall, eta=3
PASHA
e-iHB
Tie

Performance Budget
0

5

10

15

20

25

Co
un

t

12
8

20

26

2
0

PASHA vs iSHA - lcbench, eta=2
PASHA
iSHA
Tie

Performance Budget
0

10

20

30

Co
un

t

6 5

27
29

1 0

PASHA vs iSHA - lcbench, eta=3
PASHA
iSHA
Tie

Performance Budget
0

20

40

60

Co
un

t 39

67

51 52

29

0

PASHA vs iSHA - rbv2_xgboost, eta=2
PASHA
iSHA
Tie

Performance Budget
0

20

40

60
Co

un
t

41

59
52

60

26

0

PASHA vs iSHA - rbv2_ranger, eta=3
PASHA
iSHA
Tie

Performance Budget
0

20

40

60

Co
un

t

29

50

71 69

19

0

PASHA vs iSHA - rbv2_ranger, eta=2
PASHA
iSHA
Tie

Performance Budget
0

20

40

60

Co
un

t

41

59
52

60

26

0

PASHA vs iSHA - rbv2_ranger, eta=3
PASHA
iSHA
Tie

Performance Budget
0

20

40

60

Co
un

t

28

43

57
63

21

0

PASHA vs iSHA - rbv2_svm, eta=2
PASHA
iSHA
Tie

Performance Budget
0

10

20

30

40

50

Co
un

t 33

5455 52

18

0

PASHA vs iSHA - rbv2_svm, eta=3
PASHA
iSHA
Tie

Figure 7: Direct comparison of iSHA to the state of the art PASHA counting for how many of the
considered benchmark instances which method yielded a better performance or used less budget.
We present bar charts for an overall impression including all evaluated benchmark instances and
individually for every benchmark set.

27

	Introduction
	Hyperparameter Optimization
	Successive Halving and Hyperband
	Related Work
	Incremental Successive Halving
	Theoretical Results
	Theoretical Analysis of ASHA
	Theoretical Analysis of Incremental Successive Halving
	Incremental-Hyperband

	Empirical Evaluation
	Experiment Setup
	Empirical Results

	Conclusion and Future Work
	Pseudo-Codes
	Proofs
	Proof of Theorem 6.4
	Comparison of SHA and iSHA
	Incremental-Hyperband

	Theoretical Analysis of ASHA
	Detailed Empirical Results
	Results for lcbench
	Results for rbv2_xgboost benchmark
	Results for rbv2_ranger benchmark
	Results for rbv2_svm benchmark
	Direct comparison of iSHA to PASHA

