
1 Robot Prototype1

Figure 1: Prototype of the flexible robotic
arm composed of a reinforced multi-
backbone robot. The robot is connected to
four brushless DC motors using lead screws.
An ArUco marker [1, 2] is placed on the robot
tip, and a camera is used to track the marker’s
position.

The robot, as depicted in Figure 1, consists of a flex-2

ible backbone rigidly affixed to spacers, accompa-3

nied by four rods fixed at the end spacer and passing4

through the remaining spacers with sufficient clear-5

ance, forming the primary body of the robot.6

To drive the robot, four brushless DC motors from7

Maxon Motors, equipped with quadratic encoders8

and 150:1 reduction gearheads, are utilized. Precise9

motor position control is achieved through four PID10

position controller modules (EPOS4 Compact 50/511

CAN), which receive encoder feedback and commu-12

nicate with a PC using the CAN protocol to establish13

and retrieve controller set-points and configurations.14

Lead screws, connected to braided tubes via 3D15

printed connectors, are attached to the motors to con-16

vert motor power into tube-pulling and pushing ac-17

tions. A schematic of the robot is shown in Figure 2.18

2 Network Architecture and Training19
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Figure 2: Schematic of the robot.

Table 1 presents a summary of the hyperparameters and20

network structure. It should be noted that we employed an21

early-stopping technique to prevent overfitting when training22

the model. With early stopping, the model’s training is23

halted before it starts to overfit the training data, even if all24

iterations or epochs have not been completed. This allows25

the model to avoid memorizing the training data excessively26

and improves its ability to generalize to new, unseen data.27

Table 1: Hyperparameters and network structure.
Hyperparameter value

No. of hidden neuron (𝜃) 112 (64,32,16)
Augmented vector size (p) 64

No. of hidden layers 3
Activation functions ELU

Learning rate 0.001
Type of ode-solver fixed-adams

Absolute tolerance for ode-solver 1e-9
Relative tolerance for ode-solver 1e-7

Number of iteration 7000

3 Controller Configuration28

This section will provide the details of the controller configurations including its hyperparameters,29

running cost, and terminal cost functions.30

The dynamics of the controlled system is captured by the trained FK model (augmented neural ODE31

model), while the running cost and terminal state cost are defined as follows:32

• Running cost: our running cost function is composed of three costs and defined as follows:33
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cost_tracking = 𝑤tracking · ∥x − xreference∥2

cost_obstacles = 𝑤obstacle · (𝑑1 < 0.01) + (𝑑2 < 0.01))
cost_jerk = 𝑤jerk · ∥u − uprevious∥2

cost_affordance = 𝑤affordance · affordance_measure
running_cost = cost_tracking + cost_obstacle + cost_jerk + cost_affordance

where x represents the current state of the system, xreference is the corresponding state in34

the reference trajectory, u denotes the current control input, and uprevious represents the35

previous control input. The weights 𝑤tracking, 𝑤obstacle, and 𝑤jerk control the importance of36

each term in the overall cost function. 𝑤affordance determines a suitable metric or measure37

that quantifies the affordance for the given task or goal. The first term penalizes the deviation38

of the reference trajectory. These deviations are weighted by a factor of 200, encouraging39

the system to closely follow the desired trajectory. The second term is a penalty term that40

considers the distance between the current states and two obstacle locations, denoted as 𝑑141

and 𝑑2. If the distance to either obstacle is less than 0.01, a high penalty of 100,000 is added.42

This incentivizes the system to avoid approaching the obstacles too closely. To discourage43

jerky and abrupt movements, we considered another penalty term. This term penalizes high44

rates of change in acceleration or control inputs. In our implementation, 𝑤jerk is set to 0.1.45

• Terminal cost: our terminal cost is defined as: terminal_cost = 𝑤terminal · ∥x − xgoal∥2,46

where 𝑤terminal is the weighting factor that controls the importance of the terminal cost.47

The 𝜆 parameter was set to 1 to balance the importance between the running cost and terminal48

state cost. The control inputs were constrained within the range defined by umin = [-0.01,-0.01,-49

0.01] and umax = [0.01,0.01,0.01]. Gaussian noise with a standard deviation of 𝑛𝑜𝑖𝑠𝑒𝑠𝑖𝑔𝑚𝑎 =50

0.001 ∗ torch.eye(3) was added to control samples for exploration. The MPPI optimization process51

involved generating 500 control samples per iteration, with a prediction horizon of 10 time steps.52

These parameter values were chosen to achieve effective control performance and can be fine-tuned53

for specific application requirements.54

4 Affordance55

In the context of robotics, an affordance is a relationship between an actor (i.e., robot), an action56

performed by the actor, an object on which this action is performed, and the observed effect [3].57

The general idea of the affordance theory can be used in robotics to provide some information of58

mapping between objects, agents and the actions they can take on each other, as there is no unified59

formalization of it in robotics.60

In our implementation, we incorporate a set of affordance terms (penalties for violating the motion61

restrictions) into the running cost of the controllers which can be selectively activated or deactivated62

by the operator, depending on the task phase. Thanks to the versatility of MPPI, which can handle63

non-convex running costs, allows us to effectively utilize these affordance terms for a more intuitive64

and context-aware interaction between the operator, the robot, and the environment, enabling more65

effective and efficient teleoperation. By adding the affordance measure to the running cost, we give66

more weight to actions that align with the desired affordance.67

References68

[1] S. Garrido-Jurado, R. M. noz Salinas, F. Madrid-Cuevas, and M. Marín-Jiménez. Automatic69

generation and detection of highly reliable fiducial markers under occlusion. Pattern Recognition,70

47(6):2280 – 2292, 2014. ISSN 0031-3203. doi:http://dx.doi.org/10.1016/j.patcog.2014.01.005.71

URL http://www.sciencedirect.com/science/article/pii/S0031320314000235.72

2

http://dx.doi.org/http://dx.doi.org/10.1016/j.patcog.2014.01.005
http://www.sciencedirect.com/science/article/pii/S0031320314000235


[2] S. Garrido-Jurado, R. M. noz Salinas, F. Madrid-Cuevas, and R. Medina-Carnicer. Generation of73

fiducial marker dictionaries using mixed integer linear programming. Pattern Recognition, 51:74

481 – 491, 2016. ISSN 0031-3203. doi:http://dx.doi.org/10.1016/j.patcog.2015.09.023. URL75

http://www.sciencedirect.com/science/article/pii/S0031320315003544.76

[3] L. Montesano, M. Lopes, A. Bernardino, and J. Santos-Victor. Learning object affordances:77

from sensory–motor coordination to imitation. IEEE Transactions on Robotics, 24(1):15–26,78

2008.79

3

http://dx.doi.org/http://dx.doi.org/10.1016/j.patcog.2015.09.023
http://www.sciencedirect.com/science/article/pii/S0031320315003544

	Robot Prototype
	Network Architecture and Training
	Controller Configuration
	Affordance

