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Figure 1: We propose GOI, an innovative approach to 3D open-vocabulary scene understanding based on 3D Gaussian Splat-
ting [20]. In the top row, we emphasize our key contribution: the Optimizable Semantic-space Hyperplane (OSH). Instead of
relying on a manually set, fixed empirical threshold for relative feature selection, which frequently lacks universal accuracy,
OSH is fine-tuned for each query to accurately locate target regions in response to natural language prompts. The bottom row
showcases our superior performance in open-vocabulary querying compared to other approaches.
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Abstract
3D open-vocabulary scene understanding, crucial for advancing
augmented reality and robotic applications, involves interpreting
and locating specific regions within a 3D space as directed by natu-
ral language instructions. To this end, we introduce GOI, a frame-
work that integrates semantic features from 2D vision-language
foundation models into 3D Gaussian Splatting (3DGS) and identifies
3D Gaussians of Interest using an Optimizable Semantic-space Hy-
perplane. Our approach includes an efficient compression method
that utilizes scene priors to condense noisy high-dimensional se-
mantic features into compact low-dimensional vectors, which are
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subsequently embedded in 3DGS. During the open-vocabulary
querying process, we adopt a distinct approach compared to ex-
isting methods, which depend on a manually set fixed empirical
threshold to select regions based on their semantic feature distance
to the query text embedding. This traditional approach often lacks
universal accuracy, leading to challenges in precisely identifying
specific target areas. Instead, our method treats the feature selec-
tion process as a hyperplane division within the feature space,
retaining only those features that are highly relevant to the query.
We leverage off-the-shelf 2D Referring Expression Segmentation
(RES) models to fine-tune the semantic-space hyperplane, enabling
a more precise distinction between target regions and others. This
fine-tuning substantially improves the accuracy of open-vocabulary
queries, ensuring the precise localization of pertinent 3D Gaussians.
Extensive experiments demonstrate GOI’s superiority over previous
state-of-the-art methods. The dataset, model, and code are available
at https://quyans.github.io/GOI-Hyperplane/.
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1 Introduction
The field of computer vision has witnessed a remarkable evolution
in recent years, driven by advancements in artificial intelligence
and deep learning. A critical aspect of this progress is the enhanced
ability of computer systems to interpret and interact with the three-
dimensional world. The growing complexity in technology use
has spurred a significant demand for advanced 3D visual under-
standing. This evolution brings to the fore the significance of the
open-vocabulary querying task [5, 28, 34] — the capacity to pro-
cess and respond to user queries formulated in natural language,
enabling a more natural and flexible interaction between users and
the digital world. Such advancements hold the potential to enhance
how human navigate and manipulate complex three-dimensional
data [14, 19, 47], bridging the gap between human cognitive abilities
and computerized processing [7, 21].

Due to the scarcity of large-scale and diverse 3D scene datasets
with language annotations, earlier Methods [21, 29] distill the mul-
timodal knowledge from off-the-shelf vision-language models, such
as CLIP [42] and LSeg [24], into Neural Radiance Fields (NeRF) [35].
However, NeRF’s implicit representation limits its speed and ac-
curacy, hindering practical application. Recently, the 3D Gaussian
Splatting (3DGS) [20] has emerged as an effective representation
of 3D scenes, with explorations in constructing semantic fields
[40, 49, 60]. This semantics lifting approach requires pixel-aligned

features, whereas CLIP encodes a image into one global seman-
tic feature. [21, 30, 49] utilize a multi-scale feature pyramid that
incorporates CLIP embeddings from image crops. However, this ap-
proach results in blurred semantic boundaries, even with DINO [3]
features, leading to unsatisfactory query results.

In this work, we introduce 3D Gaussians Of Interest (GOI).
We utilize the vision-language foundation model APE [48] to ex-
tract pixel-aligned semantic features from multi-view images. GOI
leverages these semantic features to reconstruct a 3D Gaussian
semantic field. Due to the explicit nature of 3DGS, embedding
high-dimensional features into each 3D Gaussian is computation-
ally demanding. To address this, we introduce the Trainable Fea-
ture Clustering Codebook (TFCC), which compresses noisy high-
dimensional features using scene priors. This approach significantly
reduces storage and rendering costs while maintaining the informa-
tional capacity of each feature. Moreover, current open-vocabulary
query strategies call for setting a fixed empirical threshold to as-
certain features proximate to the query text. This, however, results
in a failure to precisely query the targets. We introduce the Opti-
mizable Semantic-space Hyperplane (OSH) to address this issue.
OSH is fine-tuned by the Referring Expression Segmentation (RES)
model, which aims to identify binary segmentation masks in 2D
RGB images for text queries and is recognized for its robust spatial
and localization capabilities. The OSH enhances GOI’s spatial per-
ception for more precise phrasal queries like “the table under the
bowl”, aligning query results more closely with target regions. Ad-
ditionally, we have meticulously expanded and annotated a subset
of the Mip-NeRF360 [1] dataset, tailored for the open-vocabulary
query task. Owing to our method’s proficient 3D open-vocabulary
scene understanding, it is practical for a range of downstream ap-
plications, notably scene manipulation and editing.

In summary, the main contributions of our work include:

• We propose GOI, an innovative framework based on 3DGaussian
Splatting for accurate 3D open-vocabulary semantic perception.
The Trainable Feature Clustering Codebook (TFCC) is further
introduced to efficiently condense noisy high-dimensional se-
mantic features into compact, low-dimensional vectors, ensuring
well-defined segmentation boundaries.

• We introduce theOptimizable Semantic-spaceHyperplane (OSH),
which eschews the fixed empirical threshold for relative feature
selection due to its limited generalizability. Instead, OSH is fine-
tuned for each text query with the off-the-shelf RES model to
precisely locate target regions.

• Extensive experiments demonstrate that our method outper-
forms the state-of-the-art methods, achieving substantial im-
provements in mean Intersection over Union (mIoU) of 30% on
the Mip-NeRF360 dataset [1] and 12% on the Replica dataset [50].

2 Related Work
2.1 Neural Scene Representation
Recent methods in representing 3D scenes with neural networks
have made substantial progress. Notably, Neural Radiance Fields
(NeRF) [35] have excelled in novel view synthesis, producing highly
realistic new viewpoints. However, NeRF’s reliance on a neural

https://quyans.github.io/GOI-Hyperplane/
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network for complete implicit representation of scenes leads to
tedious training and rendering times. Many subsequent methods
[6, 12, 18, 36, 43, 44] have concentrated on improving its perfor-
mance. In order to enhance the quality of surface reconstruction,
[10, 13, 33, 52, 53] uses the signed distance function (SDF) for
surface expression and uses a novel volume rendering scheme to
learn an SDF representation. On the other hand, some approaches
[8, 9, 39, 41, 55, 56] have explored the combination of implicit and
explicit representations, utilizing traditional geometric structures,
such as point clouds or mesh, to enhance NeRF’s performance and
to enable more downstream tasks. Kerbl et al. proposed 3D Gauss-
ian Splatting (3DGS) [20], which greatly accelerates the rendering
speed of novel view synthesis and achieves high-quality scene re-
construction. Unlike NeRF that represents a 3D scene implicitly
with neural networks, 3DGS represent a scene as a set of 3D Gauss-
ian ellipsoids, and accomplish efficient rendering by rasterizing the
Gaussian ellipsoids into images. The technique adopted by 3DGS,
which entails encoding scene information into a collection of Gauss-
ian ellipsoids, provides distinct advantages [25, 26, 54]. It permits
easy manipulation of specific parts in the reconstructed scene with-
out significantly affecting other components. We have extended
the 3DGS to achieve open-vocabulary 3D scene perception.

2.2 2D Visual Foundation Models
Foundation Models (FM) are becoming an impactful paradigm in
the content of AI. They are typically pre-trained on vast amounts
of data, possess numerous model parameters, and can be adapted
to a wide range of downstream tasks [2]. The efficacy of 2D visual
foundation models is evident in multiple visual tasks, such as object
localization [31] and image segmentation [15–17]. The incorpora-
tion of multimodality substantially amplifies the perceptual ability
of these models. For instance, CLIP [42], by using contrastive learn-
ing, aligns the outputs of text encoders and image encoders into
the unified feature space. Similarly, SAM [22] showcases immer-
sive capabilities as a promptable segmentation model, delivering
competitive, even superior zero-shot performance vis-à-vis earlier
fully-supervised models. DINO [4, 37], a self-supervised Vision
Transformer (ViT) model, is trained on vast unlabeled images. The
model deciphers a semantic representation of images, encompass-
ing components such as object boundaries and scene layouts.

Moreover, recent efforts are focused on leveraging existing pre-
trained models, thereby pushing the limit of Foundation Models.
Grounding DINO [32] represents an open-set object detector exe-
cuting target detection based on textual descriptions. It utilizes CLIP
and DINO as basic encoders, and proposes a tight fusion approach
for better synthesizing of visual-language information. Grounded
SAM [45] integrates Grounding DINO with SAM, facilitating the
detection and segmentation for arbitrary queries. APE [48] is a
universal visual perception model designed for diverse tasks like
segmentation and grounding. Rigorously designed visual-language
fusion and alignment modules enable APE to detect anything in an
image swiftly without heavy cross-modal interactions.

2.3 3D Scene Understanding
Earlier works, such as Semantic NeRF [59] and Panoptic NeRF
[11], introduced the transfer of 2D semantic or panoptic labels into

3D radiance fields for zero-shot scene comprehension. Following
this, [23, 51] capitalized on pixel-aligned image semantic features,
which they lifted to 3D, rather than relying on pre-defined seman-
tic labels. Vision-language models like CLIP exhibited impressive
performance in zero-shot image understanding tasks. A subsequent
body of work [21, 23, 30] proposed leveraging CLIP and CLIP-based
visual encoders to extract dense semantic features from images,
with the aim of integrating them into NeRF scenes.

The recently proposed 3D Gaussian Splatting has achieved lead-
ing benchmarks in areas of novel view synthesis and reconstruction
speed. This advancement has made the integration of 3D scenes
with feature fields more efficient. LangSplat [40], LEGaussians [49],
Feature 3DGS [60], Gaussian Grouping [57] explored the integra-
tion of pixel-aligned feature vectors from 2Dmodels like LSeg, CLIP,
DINO and SAM into 3D Gaussian frameworks so as to enabling 3D
open-vocabulary query and localization of scene areas.

3 Methods
3.1 Problem Definition and Method Overview
Given a set of posed images 𝐼 = {𝐼1, 𝐼2, . . . , 𝐼𝐾 }, a 3D Gaussian
scene 𝑆 can be reconstructed using the standard 3D Gaussian Splat-
ting technique [20] based on 𝐼 . Our method expands 𝑆 with open-
vocabulary semantics, enabling us to precisely locate the Gaussians
of interest based on a natural language query.

We begin by recapping the vanilla 3DGaussian Splatting (Sec. 3.2).
Figure 2 illustrates the overview pipeline of our method. Initially,
we utilize a frozen image encoder, well-aligned with the language
space, to process each image 𝐼𝑘 and derive the 2D semantic fea-
ture maps 𝑉 = {𝑉1,𝑉2, . . . ,𝑉𝐾 } (Sec. 3.3). To integrate these 2D
high-dimensional feature maps into 3DGS, while ensuring min-
imal storage and optimal computational performance, Trainable
Feature Clustering Codebook (TFCC) is proposed (Sec. 3.4). We
expand 3DGS to reconstruct 3D Gaussian Semantic Field (Sec. 3.5).
Following this, we explain how to utilize the RES model to opti-
mize the Semantic-space Hyperplane, thereby achieving accurate
open-ended language queries in 3D Gaussians (Sec. 3.6).

3.2 Vanilla 3D Gaussian Splatting
3D Gaussian Splatting utilizes a set of 3D Gaussians, essentially
Gaussian ellipsoids, which bears a significant resemblance to point
clouds, to model the scene and accomplish fast rendering by ef-
ficiently rasterizing Gaussians into images, given cameras poses.
Specifically, each 3D Gaussian is parameterized by its centroid
𝑥 ∈ R3, a 3D anisotropic covariance matrix Σ in world coordinates,
an opacity value 𝛼 , and spherical harmonics (SH) 𝑐 . In the ren-
dering process, 3D Gaussians are projected on to the 2D image
plane, which transforms 3D Gaussian ellipsoids into 2D ellipses. Σ
is transformed to Σ′ in camera coordinates:

Σ′ = 𝐽𝑊 Σ𝑊𝑇 𝐽𝑇 , (1)

where𝑊 denotes the world-to-camera tranformation matrix and 𝐽

is the Jacobian matrix for the projective transformation. In practical,
Σ is decomposed into a rotation matrix 𝑅 and a scaling matrix 𝑆 :

Σ = 𝑅𝑆𝑆𝑇𝑅𝑇 . (2)
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Figure 2: The framework of our GOI. Top left: Reconstruction of a 3D Gaussian scene [20], encoding multi-view images. Bottom
left: The optimization process. For each training view, a low-dimensional (LD) feature map is rendered through Gaussian
Rasterizer and transformed into a predicted feature map via the Trainable Feature Clustering Codebook (TFCC). Right: The
pipeline illustrates open-vocabulary querying. The processes denoted by R and F correspond to rendering and feature map
prediction, respectively. The red line indicates operations exclusive to the initial query with a new text prompt. During these
operations, the Optimizable Semantic-space Hyperplane (OSH) is fine-tuned to more precisely delineate the target region.

This decomposition is to ensure that Σ is physically meaningful
during the optimization. To summarize, the learnable parameters
of the 𝑖-th 3D Gaussian are represented by 𝜃𝑖 = {𝑥𝑖 , 𝑅𝑖 , 𝑆𝑖 , 𝛼𝑖 , 𝑐𝑖 }.

A volumetric rendering process, similar to NeRF, is then em-
ployed in the rasterization to compute the color 𝐶 of each pixel.

𝐶 =
∑︁
𝑖∈𝐺

𝑐𝑖𝛼𝑖𝑇𝑖 , (3)

where 𝐺 denotes a set of 3D Gaussians sorted by their depth, and
𝑇𝑖 represents the transmittance, defined as the cumulative product
of the opacity values of Gaussians that superimpose on the same
pixel, computed through 𝑇𝑖 =

∏𝑖−1
𝑗=1 (1 − 𝛼 𝑗 ).

3.3 Pixel-level Semantic Feature Extraction
Prior research has broadly employed CLIP for feature lifting in the
3D radiance field, owing to its superior capability in managing open-
vocabulary queries. [23, 60] use LSeg [24] to extract pixel-aligned
CLIP features. However, LSeg proves inadequate in recognizing
long-tail objects. To compensate for CLIP’s limitation for yielding
only image-level features, methodologies such as [21, 40, 49] adopt
a feature pyramid approach, using cropped image encoding to
represent local features. These methods extract pixel-level features
from the CLIP model, but the encoded feature maps lack geometric
correspondence to the scene objects. As such, pixel-aligned DINO
features are introduced and predicted simultaneously with the CLIP

features, thus bounding CLIP with the object geometry. Leveraging
the success of SAM, [27, 40] utilizes SAM explicitly to constrain the
object-level boundaries of the features. However, using multiple
models for feature extraction substantially increases the complexity
for training and image prepocessing.

We leverage the Aligning and Prompting Everything All at Once
model (APE) [48], which is also able to align the features of vision
and language. In APE, a fixed language model formulates language
features, and a visual encoder is trained from scratch. The core of
the visual encoder, derived from the DeformableDETR [61], pro-
vides APE with formidable detection and localization capacities.
Additionally, APE possesses efficient modules for vision-language
fusion and alignment. These modules diminish cross-modal in-
teraction and thus reducing computational costs. Therefore, APE
presents a robust solution for feature lifting. For this purpose, we
makeminor modifications to the APEmodel to extract pixel-aligned
features with fine boundaries efficiently (~2s per image). We treat
the encoded pixel-aligned feature maps as the pseudo ground truth
features, denoted as 𝐺𝑇 .

We extract APE feature maps from all training viewpoints and
embed them into each 3D Gaussian to reconstruct a 3D semantic
field. During the open-vocabulary querying process, we use the
pretrained APE language model to encode the language prompts.
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3.4 Trainable Feature Clustering Codebook
Due to APE being trained on mass data and the need to align text
and image features, it results in a higher feature dimensionality
(256). As the previous works [40, 49] havementioned, directly lifting
high-dimensional semantic features into each 3D Gaussian results
in excessive storage and computational demands. The semantics
of a single scene cover only a small portion of the original CLIP
feature space. Therefore, leveraging scene priors for compression
can effectively reduce these costs. On the other hand, due to the
inherent multi-view inconsistency of encoded 2D semantic feature
map, Gaussians tend to overfit each training viewpoint, inheriting
this inconsistency and causing discrepancies between 3D and 2D
within an object. Therefore, we introduce the Trainable Feature
Clustering Codebook (TFCC), which leverages scene priors to com-
press the semantic space of a scene into an 𝑁 length codebook.
This approach effectively reduces redundant and noisy semantic
features while preserving sufficient scene information and clear
semantic boundaries.

3.5 3D Gaussian Semantic Fields
We introduce a low-dimensional semantic feature, symbolized as
𝑓 , into each 3D Gaussian, capitalizing on the redundancy of high-
dimensional semantics across the scene and dimensions to facilitate
efficient rendering. To create a 2D semantic representation, we
employ a volumetric rendering process similar to color rendering
(Sec. 3.2) onto the low-dimensional semantic feature.

𝑓 =
∑︁
𝑖∈𝐺

𝑓𝑖𝛼𝑖𝑇𝑖 . (4)

𝑓 is the pixel-wise low-dimensional feature. We utilize an MLP as a
feature decoder to obtain logits 𝑒 , which are subsequently activated
by the Softmax function to find the corresponding TFCC entry’s
index. This process acquires the feature 𝑣 in the high-dimensional
semantic space for each 𝑓 . Given that volumetric rendering is es-
sentially a process of weighted averages, the 3D Gaussian feature 𝑓
and the rendered 2D pixel-wise feature 𝑓 are fundamentally equiv-
alent. The low-dimensional feature 𝑓 and 𝑓 can both be recovered
to semantic feature 𝑣 through the MLP decoder D and the TFCC
T with 𝑁 entries,

𝑣 = T
[

argmax
𝑗=1,2,...,𝑁

(𝑒 𝑗 )
]
, (5)

where 𝑒 = D(𝑓 ) and 𝑒 ∈ R𝑁 . Thus, both 2D and 3D features can
be restrained to a compact and finite semantic space.

Initially in the semantic field optimization, we focus on learning
the TFCC from 𝐺𝑇 features. To enhance reconstruction efficiency,
we adopt 𝑘-means clustering through 𝐺𝑇 feature maps 𝑉 for the
codebook initialization. Also, we find some resemblance between
the learning of TFCC and the contrastive pre-training from CLIP:
Features in the codebook are to align with the 𝐺𝑇 features, and
each 𝐺𝑇 feature, denoted as 𝑣𝑔𝑡 , is assigned to one TFCC entry
with the highest similarity. However, the assignment of a pixel
feature to a particular entry is not predetermined, rather it pivots
on similarity. Therefore, we devise a self-supervised loss function

aimed at reducing the self-entropy of the clustering process.

L𝑒𝑛𝑡 = −
∑︁𝑁

𝑗=1
𝑝 𝑗 log(𝑝 𝑗 ), (6)

where 𝑝 𝑗 = Softmax
(
cos

〈
𝑣𝑔𝑡 ,T [ 𝑗]

〉
· 𝑞
)
and 𝑞 is the annealing

temperature. To accelerate the process, we also optimize the entry
with the highest similarity, introducing a loss similar to [49],

𝑑 = argmax
𝑗=1,2,...,𝑁

(
cos

〈
𝑣𝑔𝑡 ,T [ 𝑗]

〉)
, (7)

L𝑚𝑎𝑥 = 1 − cos
〈
𝑣𝑔𝑡 ,T [𝑑]

〉
. (8)

Thus, the loss in optimizing the TFCC is

L𝑇 = 𝜆𝑒𝑛𝑡L𝑒𝑛𝑡 + 𝜆𝑚𝑎𝑥L𝑚𝑎𝑥 . (9)

Subsequently, we undertake a joint optimization of the low-
dimensional features 𝑓 and the MLP decoderD. Ideally, the feature
recovered from low-dimensional feature should closely correlate
with the𝐺𝑇 feature 𝑣𝑔𝑡 . As a result, we impose a stronger constraint
geared towards aligning the entries’ logits of the low-dimensional
features with the assigned 𝐺𝑇 entry 𝑑 ,

L 𝑗𝑜𝑖𝑛𝑡 = ∥𝑒 − onehot(𝑑)∥2
2 . (10)

Finally, to bolster the robustness of this procedure, we intro-
duce an end-to-end regularization, directly optimizing the cosine
similarity of 2D semantic feature and corresponding ground truth,

L𝑒2𝑒 = 1 − cos
〈
𝑣𝑔𝑡 , 𝑣

〉
. (11)

The comprehensive loss function designated for our semantic field
reconstruction process is represented as L,

L = L𝑇 + 𝜆 𝑗𝑜𝑖𝑛𝑡L 𝑗𝑜𝑖𝑛𝑡 + 𝜆𝑒2𝑒L𝑒2𝑒 . (12)

3.6 Optimizable Semantic-space Hyperplane
Thanks to the vision-language models like CLIP and APE, which
align features well in image and text spaces. Our 3D Gaussian se-
mantic field, once trained, supports open-vocabulary 3D queries
with any text prompt.Most existingmethods enable open-vocabulary
queries by computing the cosine similarity between semantic and
text features, defined as follows: cos(𝜃 ) =

𝜙𝑖𝑚𝑔 ·𝜙𝑡𝑒𝑥𝑡
∥𝜙𝑖𝑚𝑔 ∥ ∥𝜙𝑡𝑒𝑥𝑡 ∥ , where

𝜙𝑖𝑚𝑔 and 𝜙𝑡𝑒𝑥𝑡 represent the image and text features, respectively.
After normalizing the features, the score can be simplified as 𝑆𝑐𝑜𝑟𝑒 =
𝜙𝑖𝑚𝑔 · 𝜙𝑡𝑒𝑥𝑡 . The higher the score, the greater the similarity be-
tween the two features. By manually setting an empirical thresh-
old 𝜏 , regions with score exceeding 𝜏 are retained, thus enabling
open-vocabulary queries. The aforementioned process can be con-
ceptualized as a hyperplane separating semantic features into two
categories: features of interest and features not of interest, based
on the queried text feature and 𝜏 . The hyperplane is represented as
follows:

𝑊𝑥 + 𝑏 = 0. (13)
Here𝑊 denotes the queried text feature, 𝑥 represents semantic
features and 𝑏 is the bias derived from 𝜏 . However, the empirical
parameter 𝜏 is not universally applicable to all queries, often result-
ing in an inability to precisely locate target areas. Consequently,
we propose the Optimizable Semantic-space Hyperplane (OSH).
Utilizing a RES model, such as Grounded-SAM [45], we obtain a
2D binary mask of the target area and optimize the hyperplane
via one-shot logistic regression. This optimization ensures that the
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classification results of the hyperplane more closely align with the
target area of the query.

As shown on the right side of Figure 2, From a specific camera
pose, an RGB image and a feature map are obtained through the
rgb and semantic feature rendering processes described in Sec. 3.5,
respectively. For a text query 𝑡 , the text encoder of APE generates
a text embedding 𝜙𝑡𝑒𝑥𝑡 , which is used as the initial weight of the
hyperplane𝑊𝑥 + 𝑏 = 0. The Feature Map is classified by the hy-
perplane, resulting in the prediction of a binary mask𝑚. The text
query 𝑡 and the RGB image are processed by the RES Model to
generate a binary mask �̂� of the target area as the pseudo-label.
This mask is subsequently used with 𝑚 in logistic regression to
optimize𝑊 and 𝑏. We fine-tune the OSH with the objective:

L𝑂𝑆𝐻 = − 1
𝑃

𝑃∑︁
𝑖=1

[𝑤 ·�̂�𝑖 log(𝜎 (𝑚𝑖 ))+(1−�̂�𝑖 ) log(1−𝜎 (𝑚𝑖 ))], (14)

where 𝑃 denotes all samples, 𝜎 (·) denotes Sigmoid function. Follow-
ing the one-shot logistic regression, the optimized Semantic-space
Hyperplane can be represented by

𝑊 ′𝑥 + 𝑏′ = 0. (15)

Note that the parameters of the 3D Gaussians remain frozen during
this process. The red lines in Figure 2 indicate operations that occur
only during the initial query with a new text prompt. Subsequently,
the OSH can delineate regions of interest in both 2D rendered views
and 3D Gaussians. Specifically, for a semantic feature 𝐹 , derived
from a 2D semantic feature map at pixel 𝑝 or from a 3D Gaussian
𝑔 , if𝑊 ′𝐹 + 𝑏′ > 0, it indicates that 𝐹 is sufficiently close to the
queried text, warranting retention of 𝑝 or 𝑔 in the query results set.

4 Implementation Details
Our method is implemented based on 3D Gaussian Splatting [20].
We modified the CUDA kernel to render semantic features on the
3D Gaussians, ensuring that the extended semantic features also
support gradient backpropagation. Our model, based on a 3D Gauss-
ian Scene reconstructed via vanilla 3D Gaussian Splatting, can be
trained on a single A100-40G GPU in approximately 10 minutes.

5 Experiments
5.1 Evaluation Setup
Datasets. To assess the effectiveness of our approach, we conduct
experiments on two datasets: The Mip-NeRF360 dataset [1] and
the Replica dataset [50]. Mip-NeRF360 is a high-quality real-world
dataset that contains a number of objects with rich details. It is
extensively used in 3D reconstruction. We selected four scenes
(Room, Bonsai, Garden, and Kitchen), both indoors and outdoors,
for our evaluations. Additionally, we designed an open-vocabulary
semantic segmentation test set under these scenes. We manually
annotated a few prominent objects in each scene, providing 2D
masks and descriptive phrases, such as “sofa in dark green”. Replica
is a 3D synthetic dataset that features high-fidelity indoor scenes.
Each scene comprises RGB images along with semantic annota-
tions. We conducted experiments on four commonly used scenes
from the Replica dataset: office0, office1, room0, and room1. For a
given viewpoint image, our evaluation concentrates on assessing
the effectiveness of single-query results within an open-vocabulary

context rather than obtaining a similarity map for all vocabularies
in a closed set and deciding mask regions based on similarity scores
[27, 30, 60]. Therefore, in designing our experiments, we drew in-
spiration from the methodologies of refCOCO and refCOCOg [58].
For each semantic ground truth in the Replica test set, we cataloged
the class names present and sequentially used these class names as
text queries to quantitatively measure the performance metrics.
Baseline Methods and Evaluation Metrics. To assess the ac-
curacy of open-vocabulary querying results, we employ mean In-
tersection over Union (mIoU), mean Pixel Accuracy (mPA), and
mean Precision (mP) as evaluation metrics. Additionally, to evalu-
ate model performance metrics, we measure the training duration
and the rendering time.

5.2 Comparisons
We conduct a comparative evaluation of our approach in contrast
with LangSplat [40], Gaussian Grouping [57], Feature 3DGS [60],
and LERF [21].

Qualitative Results. We present the qualitative results pro-
duced by our method alongside comparisons with other approaches.
Figure 3 offers a detailed showcase of the open-vocabulary query
performance on the Mip-NeRF360 test data. It especially highlights
the utilization of phrases that describe the appearance, texture, and
relative positioning of different objects.

LERF [21] generates imprecise and vague 3D features, which hin-
der the clear discernment of boundaries between the target region
and others. Feature 3DGS [60] employs a 2D semantic segmenta-
tion model LSeg [24] as its feature extractor. However, like LSeg, it
lacks proficiency in handling open-vocabulary queries. It frequently
queries all objects related to the prompt. Gaussian Grouping [57]
leverages the instance mask via SAM [22] to group 3D Gaussians
into 3D instances devoid of semantic information. It uses Grounding
DINO [32] to pinpoint regions of interest for enabling 3D open-
vocabulary queries. However, this approach leads to granularity
issues, often identifying only a fraction of the queried object, such
as the major part of “green grass” or the flower stem from the “flow-
erpot on the table”. LangSplat [40] uses SAM to generate object
segmentation masks and subsequently employs CLIP to encode
these regions. However, this strategy results in CLIP encoding only
object-level features, leading to an inadequate understanding of
the correlations among objects within a scene. For instance, when
querying “the tablemat next to the red gloves”, it erroneously high-
lights the “red gloves” rather than the intended “tablemat”.

Our methodology effectively uses semantic redundancy to clus-
ter features into a TFCC, enabling efficient encoding of diverse
object features. Consequently, this approach precisely pinpoints
objects such as the sofa, grass, and road while maintaining accurate
boundaries. Our strategy further excels at discerning the intricate
interrelationships among various objects within a scene. Unlike
LangSplat, we encode entire images with the image encoder to inte-
grate scene-level information into the semantic features. Addition-
ally, we deploy dynamically optimize a semantic-space hyperplane,
effectively filtering out unnecessary objects from the 3D Gaussians
of Interest. For instance, in the cases of “flowerpot on the table” and
“the tablemat next to the red gloves”, we successfully segment the
primary subjects of the phrase rather than the secondary objects.
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Figure 3: Visualization comparisons of open-vocabulary querying results are presented. From top to bottom: Ground truth,
querying results from LERF [21], Feature 3DGS [60], Gaussian Grouping [57], LangSplat [40], and our method. From left to
right, the images display the querying results corresponding to text descriptions, which are noted at the bottom line.

Table 1: Evaluation metrics for comparing our method with
others on Mip-NeRF360 [1] evaluation dataset.

Method mIoU mPA mP

LERF [21] 0.2698 0.8183 0.6553
Feature 3DGS [60] 0.3889 0.8279 0.7085
GS Grouping [57] 0.4410 0.7586 0.7611
LangSplat [40] 0.5545 0.8071 0.8600

Ours 0.8646 0.9569 0.9362

Quantitative Results. Table 1 and Table 2 provide a compara-
tive analysis of the efficacy of our work relative to other projects
across multiple datasets. As displayed, our segmentation precision
significantly exceeds existing open-vocabulary methods, including
LERF and recent 3DGS-based approaches.We observed a substantial

Table 2: Evaluation metrics for comparing our method with
others on Replica [50] evaluation dataset.

Method mIoU mPA mP

LERF [21] 0.2815 0.7071 0.6602
Feature 3DGS [60] 0.4480 0.7901 0.7310
GS Grouping [57] 0.4170 0.73699 0.7276
LangSplat [40] 0.4703 0.7694 0.7604

Ours 0.6169 0.8367 0.8088

mean Intersection over Union (mIoU) improvement of 30% on the
Mip-NeRF360 dataset and 12% on the Replica dataset, respectively.

Moreover, Table 3 underscores the effectiveness of our approach.
We detail the image pre-processing time for extracting semantic
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Table 3: Time evaluation for training and rendering on Mip-
NeRF360 [1] dataset.

Method Pre-process Training Total FPS

LERF [21] 3min 40min 43min 0.17
Feature 3DGS [60] 25min 10h 23min 10h 48min ~10
GS Grouping [57] 27min 113min 140min ~100
LangSplat [40] 50min 25+99min 174min ~30

Ours 8min 25+12min 45min ~30

Table 4: Evaluation metrics for ablation studies on Mip-
NeRF360 [1] dataset.

Setting mIoU mPA mP

Baseline 0.4753 0.8638 0.7577
w/o OSH 0.6282 0.9464 0.8157
w/o TFCC 0.7537 0.9011 0.9115
Full model 0.8646 0.9569 0.9362

features, scene reconstruction duration, total training time, and ren-
dering frame rates for each approach under consideration. Using a
highly efficient visual encoder derived from APE, we reduced single
image encoding time to 2 seconds. Furthermore, unlike the training
strategies of LERF, Feature 3DGS, and Gaussian Grouping, which
start training from scratch, both LangSplat and our method build
3D semantic fields from pre-trained 3DGS scenes. To ensure fair-
ness, the time required for pre-training scenes using 3D Gaussian
Splatting (25 minutes) is included in the overall training time cal-
culation of ours and LangSplat. Through meticulous TFCC design
and training regularization, we successfully reconstruct a semantic
field in under 12 minutes.

Baseline

w/o TFCC w/o OSH Full Model

Ground TruthQuery Text

“glass”

Figure 4: Visualization comparison of ablation experiments
using the query text “glass”.

5.3 Ablation Studies
To discover each component’s contribution to 3D open-vocabulary
scene understanding in our proposed pipeline, a series of ablation
experiments are conducted for the Mip-NeRF360 dataset [1], using
the same 2D semantic feature maps extracted from the APE [48]

image encoder. We employ the approach of lifting compressed low-
dimensionality semantic features into 3D Gaussians as our baseline.
This is contrasted with results from models not utilizing the TFCC
module, those not employing the OSH module, and the results from
the complete model.

As illstrated in Table 4, OSH and TFCC are critical to the effec-
tiveness of our approach; without them, there would be a significant
deterioration in performance (-27% ~ -12% mIoU). As shown in Fig-
ure 4, the baseline model (top-right) struggles due to its scattered
features, making it difficult for the model with the OSH module
(bottom-middle) to identify a suitable hyperplane. In contrast, the
model with TFCC (bottom-left) demonstrates more clustered fea-
tures and distinct semantic boundaries.

5.4 Application
Our method can be applied to a variety of downstream tasks, with
the most direct application being the editing of 3D scenes. As shown
in the figure 5, we use the text query “flowerpot on the table” to
locate the 3D Gaussians of interest. Our method enables the high-
lighting of target areas, localized deletion, and movement. Further-
more, by integrating with Stable-Diffusion [46], We can employ
the Score Distillation Sampling (SDS) [38] loss function to achieve
high-quality 3D generation tasks in specific areas.

Ground Truth GOI Location

GOI Deletion GOI Move GOI Inpainting

“Flowerpot 
on the table”

Query Text

Figure 5: Visualization of scene manipulation results using
ourmethod. The query text is used to locate the 3DGaussians
of interest (GOI). “A beautiful vase” is used as the prompt for
the 3D inpainting process after locating the GOI.

6 Conclusion
In this paper, we introduce GOI, a method for reconstructing 3D
semantic fields, capable of delivering precise results in 3D open-
vocabulary querying. By leveraging the Trainable Feature Clus-
tering Codebook, GOI effectively compresses high-dimensional
semantic features and integrates these lower-dimensional features
into 3DGS, significantly reducing memory and rendering costs
while preserving distinct semantic feature boundaries. Moreover,
moving away from traditional methods reliant on fixed empirical
thresholds, our approach employs an Optimizable Semantic-space
Hyperplane for feature selection, thereby enhancing querying ac-
curacy. Through extensive experiments, GOI has demonstrated
improved performance over existing methods, underscoring its
potential for downstream tasks, such as localized scene editing.
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