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A ADDITIONAL IMPLEMENTATIONAL
DETAILS

Our work is based on pretrained vanilla Gaussian scenes. Sub-
sequent to this fundamental step, we embark on a procedure of
semantic field optimization, comprising 1500 iterations. Through-
out this period, our principal focus is on the optimization of the
semantic field, while maintaining the stasis of other parameters. In
this stage, we resort to the default values of the unrelated hyper-
parameters in 3D Gaussian Splatting [2] for anything outside of
semantic field optimization.

A.1 Trainable Feature Clustering Codebook
We incorporate a low-dimensional semantic feature with 10 di-
mensions 𝑓 within each 3D Gaussian. By default, the Trainable
Feature Clustering Codebook (TFCC) is configured with 𝑁 = 300
entries. As a result, the input dimension of MLP decoder D is set
to 10, while the output logits 𝑒 from D are a 300-dimensional vec-
tor. Importantly, the decoder D is simplified to contain solely a
lone fully-connected layer, deemed sufficient for efficacious feature
decoding.

In order to augment the efficiency of reconstruction, 𝑘-means
clustering is employed for initializing the TFCC. Between 30 to
50 feature maps are sampled from densely observed viewpoints.
Subsequently, for each pixel-wise feature, we adopt the 𝑘-means
clustering based on the cosine similarity amid features.

The resultant loss in the course of the TFCC and low-dimensional
feature 𝑓 optimization is

L = L𝑇 + 𝜆 𝑗𝑜𝑖𝑛𝑡L 𝑗𝑜𝑖𝑛𝑡 + 𝜆𝑒2𝑒L𝑒2𝑒

= 𝜆𝑒𝑛𝑡L𝑒𝑛𝑡 + 𝜆𝑚𝑎𝑥L𝑚𝑎𝑥 + 𝜆 𝑗𝑜𝑖𝑛𝑡L 𝑗𝑜𝑖𝑛𝑡 + 𝜆𝑒2𝑒L𝑒2𝑒 ,
(1)

We allocate a weightage of 𝜆𝑒𝑛𝑡 = 0.3 forL𝑒𝑛𝑡 , whilst the remainder
are set as 1. The annealing temperature 𝜏 derived from L𝑒𝑛𝑡 begins
at 1, escalating to 2 post 1000 iterations.

A.2 Optimizable Semantic-space Hyperplane
We use the Grounded-SAM [4] model as our Referring Expression
Segmentation (RES) model. The text query 𝑡 and the RGB image
are processed by the RES model to generate a binary mask 𝑚̂ of
the target area as the pseudo-label. This mask is subsequently used
with𝑚 in logistic regression to optimize𝑊 and 𝑏. We fine-tune the
OSH with the objective:

L𝑂𝑆𝐻 = − 1
𝑃

𝑃∑︁
𝑖=1

[𝑤 ·𝑚̂𝑖 log(𝜎 (𝑚𝑖 )) + (1−𝑚̂𝑖 ) log(1−𝜎 (𝑚𝑖 ))], (2)

where 𝑃 denotes all samples, 𝜎 (·) denotes Sigmoid function,𝑤 is
a hyperparameter. Considering that regions of interest tend to be
significantly smaller than non-interest regions, we set 𝑤 = 1

10 to
increase the penalty weight for misclassifying target areas, thereby
accelerating convergence.

B EXPERIMENTAL DETAILS
B.1 Expanding the Mip-NeRF360 Dataset
Within each of the four selected scenes (Room, Bonsai, Garden,
and Kitchen) from the Mip-NeRF360 dataset [1], we’ve identified
four notably distinctive objects. For every individual object, we’ve
established ten distinct viewpoints in the scenario, and employed
the SAM [3] ViT-H model to generate object masks for these pre-
selected perspectives. Moreover, we present textual descriptions
founded on either the appearance of the chosen objects (e.g., “sofa
in dark green”), or their spatial relationship with other objects (e.g.,
“table under the bowl”). Consequently, our expanded evaluation
set for Mip-NeRF360 includes tuples encapsulating the viewpoint
image, ground truth mask, and a concise text description.

We have listed the textual descriptions of each individual object
selected within the scenes in Table 1. Additionally, in Figure 2, we
exhibit the ground truth segmentation masks pertinent to select
objects in our expanded Mip-NeRF360 evaluation dataset.

Scene Text Description

Room bowl on the table, brown slipper,
sofa in dark green, table under the bowl

Bonsai black chair, flowerpot on the table,
orange bottle, purple table

Garden brown table, flowerpot on the table,
green football, green grass

Kitchen chair, red gloves, table mat, wooden table
Table 1: Text description for select objects of each scene in
our extended version of theMip-NeRF360 evaluation dataset.

B.2 More Results
B.2.1 Qualitative Results. Figure 1 serves as a visual representation
of our comprehensive query results derived from the Mip-NeRF360
dataset. The effect of executing queries on an identical object, but
from varying viewpoints, is lucidly demonstrated. The takeaway is
that our outcomes have effectively demarcated the object bound-
aries and simultaneously exhibited consistency when observed
from multiple viewpoints.

B.2.2 Quantitative Results. We base our evaluation on metrics
such as mean Intersection over Union (mIoU), mean Pixel Accuracy
(mPA), andmean Precision (mP), akin to the LEGaussian [5] method.
The efficiency and efficacy of our approach have previously been
demonstrated. Furthermore, Tables 2 and 3 provide a detailed ex-
position of our scene-level metrics derived from the Mip-NeRF360
[1] and Replica [6] datasets. Notably, our proposed methodology
consistently outperforms, irrespective of the scene encompassing
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Scene: Room Scene: Bonsai Scene: Garden Scene: Kitchen

“sofa in dark green” “flowerpot on the table” “green grass” “the tablemat next to the red gloves”

“bowl on the table” “back wheel of the bike” “flowerpot on the table” “yellow Lego”

“wooden floor” “purple table” “green football” “red gloves”

Figure 1: Extensive query visualization on the Mip-NeRF360 dataset. In each column, the images delineated on the top row and
the descriptions in the bottom line typify the scene under examination. Within each depicted scene, we have identified three
distinct objects to constitute our query. Three distinctive viewpoints from the same scene are exhibited for every given prompt.

the datasets. Additionally, we provide a video that juxtapose our
methodology with others, facilitating a more effective elucidation
of our superior performance.

B.3 3D Manipulations
As addressed in Sec. 3.5, the low-dimensional feature 𝑓 in 3D Gaus-
sians and the rendered 2D pixel-wise feature 𝑓 are fundamentally

equivalent. We can also retrieve the high-dimensional semantic
feature 𝑣 for the feature 𝑓 , as depicted in the following equation.

𝑣 = T
[
argmax
𝑗=1,2,...,𝑁

(𝑒 𝑗 )
]
, where 𝑒 = D(𝑓 ) (3)
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Scene: Room Scene: Bonsai Scene: Garden Scene: Kitchen

Scene: Room

“bowl on the table” “orange bottle” “green grass” “wooden table”

“table under the bowl” “flowerpot on the table” “green football” “wooden table”

“brown slipper” “purple table” “flowerpot on the table” “red gloves”

“sofa in dark green” “black chair” “brown table” “chair”

Figure 2: Ground truth segmentation masks for select objects in our extended version of the Mip-NeRF360 evaluation dataset.

Scene Metric Works
LERF Feat. 3DGS GS Grouping LangSplat Ours

Room
mIoU 0.0806 0.1748 0.4909 0.6263 0.8504
mPA 0.8458 0.8246 0.8190 0.9104 0.9718
mP 0.5400 0.5919 0.7663 0.8442 0.9485

Bonsai
mIoU 0.3214 0.4623 0.4305 0.5914 0.9147
mPA 0.8852 0.8027 0.8244 0.8083 0.9630
mP 0.6603 0.7793 0.7926 0.9338 0.9129

Garden
mIoU 0.2986 0.4507 0.4203 0.5006 0.8499
mPA 0.8586 0.8863 0.6825 0.7579 0.9577
mP 0.6504 0.7774 0.7302 0.8227 0.9312

Kitchen
mIoU 0.3788 0.4678 0.4222 0.4995 0.8434
mPA 0.6837 0.7981 0.7085 0.7517 0.9351
mP 0.7708 0.6853 0.7152 0.8392 0.9520

Average
mIoU 0.2698 0.3889 0.4410 0.5545 0.8646
mPA 0.8183 0.8279 0.7586 0.8071 0.9569
mP 0.6553 0.7085 0.7511 0.8600 0.9362

Table 2: Per-scene and average performance on the Mip-NeRF360 dataset

wherein T and D are the TFCC and the MLP decoder, and the
subscript 𝑗 iterates over the elements of the logits 𝑒 , ascending from
1 up to its length 𝑁 .

Through this process, we are able to comprehend the 3DGaussian-
level semantic feature. Subsequently, via the Optimizable Semantic-
space Hyperplane, we can effectively extract the Gaussians of inter-
est. Consequently, our GOI approach can be harnessed for down-
stream tasks, enabling efficient 3D manipulations such as deletion,
localization, and inpainting.
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Scene Metric Works
LERF Feat. 3DGS GS Grouping LangSplat Ours

Room 0
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mP 0.7004 0.7786 0.7135 0.7395 0.7384

Office 1
mIoU 0.1630 0.3181 0.2829 0.3682 0.5024
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Average
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Table 3: Per-scene and average performance on the Replica dataset
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