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A ADDITIONAL IMPLEMENTATIONAL
DETAILS

Our work is based on pretrained vanilla Gaussian scenes. Sub-
sequent to this fundamental step, we embark on a procedure of
semantic field optimization, comprising 1500 iterations. Through-
out this period, our principal focus is on the optimization of the
semantic field, while maintaining the stasis of other parameters. In
this stage, we resort to the default values of the unrelated hyper-
parameters in 3D Gaussian Splatting [2] for anything outside of
semantic field optimization.

A.1 Trainable Feature Clustering Codebook

We incorporate a low-dimensional semantic feature with 10 di-
mensions f within each 3D Gaussian. By default, the Trainable
Feature Clustering Codebook (TFCC) is configured with N = 300
entries. As a result, the input dimension of MLP decoder D is set
to 10, while the output logits e from D are a 300-dimensional vec-
tor. Importantly, the decoder D is simplified to contain solely a
lone fully-connected layer, deemed sufficient for efficacious feature
decoding.

In order to augment the efficiency of reconstruction, k-means
clustering is employed for initializing the TFCC. Between 30 to
50 feature maps are sampled from densely observed viewpoints.
Subsequently, for each pixel-wise feature, we adopt the k-means
clustering based on the cosine similarity amid features.

The resultant loss in the course of the TFCC and low-dimensional
feature f optimization is

L= LT + Ajoint-ﬁjaint + AeZeLeZe
= Aent Lent + Amax Lmax + Ajoint Ljoint + Aeze Lezes

1)

We allocate a weightage of Aep; = 0.3 for Ly, whilst the remainder
are set as 1. The annealing temperature 7 derived from L¢n; begins
at 1, escalating to 2 post 1000 iterations.

A.2 Optimizable Semantic-space Hyperplane

We use the Grounded-SAM [4] model as our Referring Expression
Segmentation (RES) model. The text query t and the RGB image
are processed by the RES model to generate a binary mask m of
the target area as the pseudo-label. This mask is subsequently used
with m in logistic regression to optimize W and b. We fine-tune the
OSH with the objective:

P
Losi =3 Y [werislog(o(mi)) + (1= 1) log(1-(m))]. (2)
i=1

where P denotes all samples, o(+) denotes Sigmoid function, w is
a hyperparameter. Considering that regions of interest tend to be
significantly smaller than non-interest regions, we set w = % to
increase the penalty weight for misclassifying target areas, thereby
accelerating convergence.

B EXPERIMENTAL DETAILS
B.1 Expanding the Mip-NeRF360 Dataset

Within each of the four selected scenes (Room, Bonsai, Garden,
and Kitchen) from the Mip-NeRF360 dataset [1], we’ve identified
four notably distinctive objects. For every individual object, we’ve
established ten distinct viewpoints in the scenario, and employed
the SAM [3] ViT-H model to generate object masks for these pre-
selected perspectives. Moreover, we present textual descriptions
founded on either the appearance of the chosen objects (e.g., “sofa
in dark green”), or their spatial relationship with other objects (e.g.,
“table under the bowl”). Consequently, our expanded evaluation
set for Mip-NeRF360 includes tuples encapsulating the viewpoint
image, ground truth mask, and a concise text description.

We have listed the textual descriptions of each individual object
selected within the scenes in Table 1. Additionally, in Figure 2, we
exhibit the ground truth segmentation masks pertinent to select
objects in our expanded Mip-NeRF360 evaluation dataset.

Scene Text Description
Room bowl on the table, brown slipper,
o0 sofa in dark green, table under the bowl
. black chair, flowerpot on the table,
Bonsai
orange bottle, purple table
brown table, flowerpot on the table,
Garden
green football, green grass
Kitchen chair, red gloves, table mat, wooden table

Table 1: Text description for select objects of each scene in
our extended version of the Mip-NeRF360 evaluation dataset.

B.2 More Results

B.2.1 Qualitative Results. Figure 1 serves as a visual representation
of our comprehensive query results derived from the Mip-NeRF360
dataset. The effect of executing queries on an identical object, but
from varying viewpoints, is lucidly demonstrated. The takeaway is
that our outcomes have effectively demarcated the object bound-
aries and simultaneously exhibited consistency when observed
from multiple viewpoints.

B.2.2  Quantitative Results. We base our evaluation on metrics
such as mean Intersection over Union (mloU), mean Pixel Accuracy
(mPA), and mean Precision (mP), akin to the LEGaussian [5] method.
The efficiency and efficacy of our approach have previously been
demonstrated. Furthermore, Tables 2 and 3 provide a detailed ex-
position of our scene-level metrics derived from the Mip-NeRF360
[1] and Replica [6] datasets. Notably, our proposed methodology
consistently outperforms, irrespective of the scene encompassing
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“flowerpot on the table” “the tablemat next to the red gloves

Scene: Room Scene: Bonsai Scene: Garden Scene: Kitchen

Figure 1: Extensive query visualization on the Mip-NeRF360 dataset. In each column, the images delineated on the top row and
the descriptions in the bottom line typify the scene under examination. Within each depicted scene, we have identified three
distinct objects to constitute our query. Three distinctive viewpoints from the same scene are exhibited for every given prompt.

the datasets. Additionally, we provide a video that juxtapose our equivalent. We can also retrieve the high-dimensional semantic
methodology with others, facilitating a more effective elucidation feature o for the feature f, as depicted in the following equation.
of our superior performance.

B.3 3D Manipulations

As addressed in Sec. 3.5, the low-dimensional feature f in 3D Gaus- _ _
- ) ) R v =7 | argmax (e;) |, where e = D(f) 3)
sians and the rendered 2D pixel-wise feature f are fundamentally j=1,2,...N
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“bowl on the table”
Scene: Room

“black chair”

“purple table”

“orange bottle”

Scene: Bonsai

: “green grass” wooden table”
Scene: Garden Scene: Kitchen

Figure 2: Ground truth segmentation masks for select objects in our extended version of the Mip-NeRF360 evaluation dataset.

Scene | Metric Works
LERF Feat. 3DGS GS Grouping LangSplat Ours
mloU 0.0806 0.1748 0.4909 0.6263 0.8504
Room mPA 0.8458 0.8246 0.8190 0.9104 0.9718
mP 0.5400 0.5919 0.7663 0.8442 0.9485
mloU 0.3214 0.4623 0.4305 0.5914 0.9147
Bonsai | mPA 0.8852 0.8027 0.8244 0.8083 0.9630
mP 0.6603 0.7793 0.7926 0.9338 0.9129
mloU 0.2986 0.4507 0.4203 0.5006 0.8499
Garden mPA 0.8586 0.8863 0.6825 0.7579 0.9577
mP 0.6504 0.7774 0.7302 0.8227 0.9312
mloU 0.3788 0.4678 0.4222 0.4995 0.8434
Kitchen | mPA 0.6837 0.7981 0.7085 0.7517 0.9351
mP 0.7708 0.6853 0.7152 0.8392 0.9520
mloU 0.2698 0.3889 0.4410 0.5545 0.8646
Average | mPA 0.8183 0.8279 0.7586 0.8071 0.9569
mP 0.6553 0.7085 0.7511 0.8600 0.9362

Table 2: Per-scene and average performance on the Mip-NeRF360 dataset

wherein 7 and D are the TFCC and the MLP decoder, and the
subscript j iterates over the elements of the logits e, ascending from

1 up to its length N.

Through this process, we are able to comprehend the 3D Gaussian-
level semantic feature. Subsequently, via the Optimizable Semantic-
space Hyperplane, we can effectively extract the Gaussians of inter-
est. Consequently, our GOI approach can be harnessed for down-
stream tasks, enabling efficient 3D manipulations such as deletion,

localization, and inpainting.
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Scene | Metric Works

LERF Feat. 3DGS GS Grouping LangSplat Ours
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Table 3: Per-scene and average performance on the Replica dataset
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