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A TABLE OF NOTATIONS

Table 2: Table of Notations
Notation Meaning

J(⇡) Policy value E⇡[
P

H

h=1 �
h�1Rh]

b⇡
h

, q⇡
h

value bridge function, weight bridge function of ⇡ at step h

b
⇡ , q⇡ value bridge function vector, weight bridge function vector of ⇡

CR⇡(⇠) confidence region of b⇡ , according to (3.12)

b an element in the confidence region CR⇡(⇠)

F (b), bF (b) a mapping for identification with J(⇡) = F (b⇡), according to (3.4)

`⇡
h

"Bellman residual" for bridge functions, according to (3.5)

L⇡

h
residual mean square loss for `⇡

h
, according to (3.6)

��

⇡,h
, b��

⇡,h
a mapping for minimax estimation, according to (3.9)

bbh(bh+1) minimax estimator of b⇡
h

given bh+1, according to (3.11)
bJpess(⇡) pessimistic estimator of J(⇡), according to (3.13)

b⇡ policy returned by P3O algorithm, according to (3.14)

In this section, we provide a comprehensive clarification on the use of notation in this paper.

We use lower case letters (i.e., s, a, o, and ⌧ ) to represent dummy variables and upper case letters
(i.e., S, A, O, and �) to represent random variables. We use the variables in the calligraphic font (i.e.,
S , A, O, and H) to represent the spaces of variables, and the blackboard bold font (i.e., P and O) to
represent probability kernels.

We use H = {Hh}H�1
h=0 to denote the space of observable history, where each element ⌧h 2 Hh

is a (partial) trajectory such that ⌧h ✓ {(o1, a1), · · · , (oh, ah)}. We use ⇡b = {⇡b

h
}H
h=1 to denote

the behavior policy, where ⇡b

h
: S 7! �(A). We use ⇡ = {⇡h}Hh=1 2 ⇧(H) to denote a history-

dependent policy with ⇡h : O ⇥Hh�1 7! �(A). Also, we use ⇡? = {⇡?

h
}H
h=1 to denote the optimal

history-dependent policy. Offline data D is collected by ⇡b, as described in Section 2.2.

We use Pb = {Pb

h
}H
h=1 and P⇡ = {P⇡

h
}H
h=1 to denote the distribution of trajectories under the policy

⇡b and ⇡, respectively, where Pb

h
and P⇡

h
denote the density of corresponding variables at step h.

Also, we use E⇡b and E⇡ to denote the expectation w.r.t. the distribution Pb and P⇡ . We use bE⇡b to
denote the empirical version of E⇡b , which is calculated on data D.
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Through out the paper, we use O(·) to hide problem-independent constants and use eO(·) to hide
problem-independent constants plus logarithm factors. The following table summaries the notations
we used in our proposed algorithm design and theory.

B FURTHER DISCUSSION

B.1 FURTHER DISCUSSION ON RELATED WORK

Reinforcement learning in POMDPs. Our work is related to the recent line of research on developing
provably efficient online RL methods for POMDPs (Guo et al., 2016; Krishnamurthy et al., 2016;
Jin et al., 2020; Xiong et al., 2021; Jafarnia-Jahromi et al., 2021; Efroni et al., 2022; Liu et al.,
2022). In the online setting, the actions are specified by history-dependent policies and thus the latent
state does not directly affect the actions. Thus, the actions and observations in the online setting
are not confounded by latent states. Consequently, although these work also conduct uncertainty
quantification to encourage exploration, the confidence regions are not based on confounded data and
are thus constructed differently.

Offline reinforcement learning and pessimism. Our work is also related to the literature on offline
RL and particularly related to the works based on the pessimism principle (Antos et al., 2007; Munos
and Szepesvári, 2008; Chen and Jiang, 2019; Buckman et al., 2020; Liu et al., 2020; Min et al.,
2021; Jin et al., 2021; Zanette, 2021; Jin et al., 2021; Xie et al., 2021; Uehara and Sun, 2021; Yin
and Wang, 2021; Rashidinejad et al., 2021; Zhan et al., 2022; Yin et al., 2022; Yan et al., 2022).
Offline RL faces the challenge of the distributional shift between the behavior policy and the family
of target policies. Without any coverage assumption on the offline data, the number of data needed
to find a near-optimal policy can be exponentially large (Buckman et al., 2020; Zanette, 2021). To
circumvent this problem, a few existing works study offline RL under a uniform coverage assumption,
which requires the concentrability coefficients between the behavior and target policies are uniformly
bounded. See, e.g., Antos et al. (2007); Munos and Szepesvári (2008); Chen and Jiang (2019) and
the references therein. Furthermore, a more recent line of work aims to weaken the uniform coverage
assumption by adopting the pessimism principle in algorithm design (Liu et al., 2020; Jin et al., 2021;
Rashidinejad et al., 2021; Uehara and Sun, 2021; Xie et al., 2021; Yin and Wang, 2021; Zanette et al.,
2021; Yin et al., 2022; Yan et al., 2022). In particular, these works proves theoretically that pessimism
is effective in tackling the distributional shift of the offline dataset. In particular, by constructing
pessimistic value function estimates, these works establish upper bounds on the suboptimality of
the proposed methods based on significantly weaker partial coverage assumption. That is, these
methods can find a near-optimal policy as long as the dataset covers the optimal policy. The efficacy
of pessimism has also been validated empirically in Kumar et al. (2020); Kidambi et al. (2020);
Yu et al. (2021); Janner et al. (2021). Compared with these works on pessimism, we focus on the
more challenging setting of POMDP with a confounded dataset. To perform pessimism in the face
of confounders, we conduct uncertainty quantification for the minimax estimation regarding the
confounding bridge functions. Our work complements this line of research by successfully applying
pessimism to confounded data.

OPE via causal inference. Our work is closely related to the line of research that employing tools
from causal inference (Pearl, 2009) for studying OPE with unobserved confounders (Oberst and
Sontag, 2019; Kallus and Zhou, 2020; Bennett et al., 2021; Kallus and Zhou, 2021; Mastouri et al.,
2021; Shi et al., 2021; Bennett and Kallus, 2021; Shi et al., 2022). Among them, Bennett and Kallus
(2021); Shi et al. (2021) are most relevant to our work. In particular, these works also leverage
proximal causal inference (Lipsitch et al., 2010; Miao et al., 2018a;b; Cui et al., 2020; Tchetgen et al.,
2020; Singh, 2020) to identify the value of the target policy in POMDPs. See Tchetgen et al. (2020)
for a detailed survey of proximal causal inference. In comparison, this line of research only focuses
on evaluating a single policy, whereas we focus on learning the optimal policy within a class of target
policies. As a result, we need to handle a more challenging distributional shift problem between the
behavior policy and an entire class of target policies, as opposed to a single target policy in OPE.
However, thanks to the pessimism, we establish theory based on a partial coverage assumption that is
similar to that in the OPE literature. To achieve such a goal, we conduct uncertainty quantification
for the bridge function estimators, which is absent in the the works on OPE. As a result, our analysis
is different from that in Bennett and Kallus (2021); Shi et al. (2021).
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Relations between minimax-typed loss and least-square-typed loss (Xie et al., 2021). During the
preparation of this paper, we find that in the MDP setting, the least-square-typed loss considered
by (Xie et al., 2021) can be reformulated to the minimax-typed loss that we consider in this paper
with a different dual function class. To see this, consider the MDP setting with a single transition
tuple (Sh, Ah, Sh+1). The goal is to estimate the Bellman target (BVh+1) : S ⇥A ! R, where B is
the Bellman operator and Vh+1 : S ! R is a fixed state-value function. For each (s, a) 2 S ⇥ A,
(B⇡fh+1)(s, a) is given by

(Bfh+1)(s, a) = Rh(s, a) +

Z

S
Ph(ds

0|s, a)Vh+1(s
0).

Here Rh is the reward function and we can assume it is known for now, and Ph : S ⇥A 7! �(S)
is the unknown transition kernel. We use function class F to approximate the bellman target. Then
based on the offline transition data D = {(s⌧

h
, a⌧

h
, s⌧

h+1)}N⌧=1, the least-square-typed loss function
given in Equation (3.1) of (Xie et al., 2021) becomes

bLls
h
(fh) = bED

h�
fh(Sh, Ah)�Rh � Vh+1(Sh+1

�2i

� min
f
0
h2F

bED
h�
f 0
h
(Sh, Ah)�Rh � Vh+1(Sh+1

�2i
, (B.1)

where Rh is an abbreviation for Rh(Sh, Ah). Using the equality x2 � y2 = (x+ y)(x� y), we can
rewrite the least-square-typed loss (B.1) as

bLls
h
(fh) = sup

f
0
h2F

bED
h⇣

(fh + f 0
h
)(Sh, Ah)� 2Rh � 2Vh+1(Sh+1)

⌘⇣
(fh � f 0

h
)(Sh, Ah)

⌘i
.

For derivation, we further rewrite first term as

(fh + f 0
h
)(Sh, Ah)� 2Rh � 2Vh+1(Sh+1)

=
⇣
2fh(Sh, Ah)� 2Rh � 2Vh+1(Sh+1)

⌘
�
⇣
(fh � f 0

h
)(Sh, Ah)

⌘
.

With this, we can then rewrite the least-square-typed loss (B.1) as

bLls
h
(fh) = sup

f
0
h2F

bED
h⇣

2fh(Sh, Ah)� 2Rh � 2Vh+1(Sh+1)
⌘⇣

(fh � f 0
h
)(Sh, Ah)

⌘

�
⇣
(fh � f 0

h
)(Sh, Ah)

⌘2i
.

Now by defining a new function class Gf depending on f as Gf = {f � f 0 : f 0 2 F}, we arrive that

1

2
bLls
h
(fh) = sup

gh2Gfh

bED
h⇣

fh(Sh, Ah)�Rh � Vh+1(Sh+1)
⌘
gh(Sh, Ah)�

1

2
gh(Sh, Ah)

2
i
. (B.2)

This shares the same form as the minimax-typed loss sup
gh2G b�1/2

⇡,h
(bh, bh+1; gh) we consider in our

work, see (3.10) in the main text. But still there are differences. In (B.2), the dual function gh lies in
a dual function class Gfh which depends on the primal function fh. While in our minimax-typed loss,
the dual function class does not depends on the primal function.

Finally, we need to point out that even the two losses share the same form, the form of the confidence
region considered by our work is different from that considered by Xie et al. (2021). To see this, still
using the previous notations, the confidence region in Xie et al. (2021) (Equation (3.2)) becomes

CRh(⇠) =
n
fh 2 F : bLls

h
(fh)  ⇠

o
.

Meanwhile, if we reduce our confidence region to the above MDP setting, our confidence region
should be in the form of

CRh(⇠) =

⇢
fh 2 F : bLmm

h
(fh)� min

fh2F
bLmm
h

(fh)  ⇠

�
,

where Lmm
h

(fh) denotes the minimax-typed-loss. Our algorithm and theoretical analysis are based
on the second form of confidence region, which is key to the derivation of fast statistical rates for
elements in the confidence region based on minimax estimation.
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B.2 DISCUSSION ABOUT THE PARTIAL COVERAGE

More about the partial coverage (Assumption 4.1). Our work assumes the partial coverage of D
according to Assumption 4.1, where we implicitly requires that P⇡

h
(Sh,�h�1) /Pb

h
(Sh,�h�1) <

+1 for all ⇡ 2 ⇧(H) (we call it the finite-ratio condition from here). We note that this finite-ratio
condition can NOT be regarded as the full coverage assumption. Instead, this is a regularity condition
that arises from causal inference.

First of all, the finite-ratio condition is different from the full coverage assumption in standard MDPs.
The Full coverage assumption in standard MDPs usually takes the form that

max
⇡2⇧

P⇡

h
(s, a)

Pb

h
(s, a)

< C,

for some fixed C > 0. This condition means the density ratio of the marginal distributions of (s, a)
between any target policy ⇡ and the behavior policy ⇡b is uniformly bounded by a constant. This
condition (or some similar form) is a common and widely accepted form of full coverage in the MDP
literature, e.g. (Chen and Jiang, 2019; Xie and Jiang, 2020). Note that this constant C is a uniform
upper bound over the candidate policy class. Very importantly, this constant u0 appears in the final
error bound. The partial coverage assmuption in MDP, on the other hand, is commonly formulated as

P⇡
?

h
(s, a)

Pb

h
(s, a)

< C,

This condition means the density ratio of the marginal distributions of (s, a) between only the optimal
policy ⇡? and the behavior policy ⇡b, is bounded by a constant. The form of this assumption is very
close to Assumption 4.1 (Partial coverage) in our paper. In other words, our Assumption 4.1 is a
version of the partial coverage assumption that is tailored to the POMDP case. Notably, this constant
C in the partial coverage assumption also appears in the final error bound.

As a sharp comparison to both the full coverage and partial coverage assumptions, the finite-ratio
condition that the quantity P⇡

h
(Sh,�h�1) /Pb

h
(Sh,�h�1) < +1 for all ⇡ 2 ⇧(H) does not result

in any constant factor that appears in the final error bound. In the case of infinite policy class ⇧(H),
we can allow the ratio to be arbitrarily large and that won’t hurt our final error bound. Therefore,
this is not a coverage assumption. Our finite-ratio condition is a regularity condition that arises from
causal inference. This condition is needed to deal with the extra challenge of the confounding issue
in our POMP setting. In related works studying OPE under confounded POMDP (Shi et al., 2021),
this finite-ratio condition is also needed. Overall, our paper is indeed under partial coverage and the
finite ration condition is not a kind of coverage assumption.

B.3 POTENTIAL APPLICATION: REAL-WORLD EXAMPLE OF PROXIMAL CAUSAL INFERENCE
IN RL.

Let us consider the real-world example of applying the POMDP model to sepsis treatment studied by
Tsoukalas et al. (2015). In such an example, the state, action, observation, and reward of the POMDP
are given by the following:

• State variable Sh refers to the clinical state of the patient, e.g., sepsis, SIRS, Bacteremia, etc.
• Observable variable Oh refers to all the information one can read from a medical device,

such as the heart rate, the respiratory rate, blood pressure, blood test result of infection, etc.
• Action Ah refers to certain treatment given to the patient. For example, each antibiotic

combination can be considered as an action. As mentioned in Tsoukalas et al. (2015), a total
of 48 antibiotics have been included in the patient’s remedy.

• Reward/cost values need to be provided empirically by physicians, based on the severity
of each state. In the example of Tsoukalas et al. (2015), the states and their corresponding
rewards/costs include: Healthy (100,000), No SIRS (50,000), Probable Sepsis (PS, 5000),
SIRS (-50), Bacteremia (-10,000), etc.

• Finally, a history trajectory is the record of antibiotic treatment received by the patient. The
behavior policy is some treatment plans that have been applied to some patients to generate
the dataset.
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When using reactive policies (Example 2.1), the negative control action variable (Zh) is just the
observation variable Oh�1 which reflects the patient’s clinical state at the last treatment time step,
and the negative control outcome variable (Wh) is just the observation variable Oh at the current time
step. Furthermore, when the observation O contains enough information to reflect the underlying
state S, which basically implies a certain full rank assumption, we can then use Example C.1 to
guarantee the existence of the bridge functions (See Appendix C).

C PROXIMAL CAUSAL INFERENCE

In this Section, we complement the discussion of proximal causal inference in Section 3.1.

C.1 ILLUSTRATION OF EXAMPLES

In this subsection, we give detailed discussions for the three examples of history-dependent policies
mentioned in Section 2.3. In particular, we give causal graphs of the POMDP when adopting these
policies. Also, we explain the choice of negative control variables for these policies in Section 3.1.

C.1.1 REACTIVE POLICY (EXAMPLE 2.1 REVISITED)

When the target policy is a reactive policy, it only depends on the current observation Oh. That is,
Hh�1 = {?} and �h�1 = ? for each h 2 [H]. The causal graph for such a target policy is shown
in Figure 2. In this case, we choose the negative control action as Zh = Oh�1 (node in green)
and the negative control outcome as Wh = Oh (node in yellow). By this choice, we can check the
independence condition in Assumption 3.1 via Figure 2, i.e., under Pb,

Oh�1 ? Oh, Rh, Oh+1 |Sh, Ah Oh ? Ah, Sh�1 |Sh.

Rh�1 Rh

Sh�1 Sh Sh+1

Oh�1 Oh Oh+1

Ah�1 Ah

Figure 2: Causal graph for reactive policy. The dotted nodes indicate that the variables are not stored
in the offline dataset. Solid arrows indicate the dependency among the variables. Specifically, The
red arrows depict the dependence of the target policy on the observable variables. The blue arrows
depict the dependence of the behavior policy on the latent state. The negative control action and
outcome variables at the h-th step are filled in green and yellow, respectively.

C.1.2 FINITE-HISTORY POLICY (EXAMPLE 2.2 REVISITED)

When the target policy a is finite-length history policy, it depends on the current observation and
history of length at most k. That is, Hh�1 = (O ⇥ A)⌦min{k,h�1} for some k 2 N, �h�1 =
((Ol, Al), · · · , (Oh�1, Ah�1)) where the index l = max{1, h � k}. The causal graph for such a
target policy is shown in Figure 3. In this case, we choose the negative control action as Zh = Ol�1

(node in green) and the negative control outcome as Wh = Oh (node in yellow). By this choice, we
can check the independence condition in Assumption 3.1 via Figure 3, i.e., under Pb,

Ol�1 ? Oh, Rh, Oh+1 |Sh, Ah, Oh�1, Ah�1, · · · , Ol, Al,

Oh ? Ah, Sh�1, Oh�1, Ah�1, · · · , Ol, Al |Sh.
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Rl�1 Rl Rh

Sl�1 Sl Sh Sh+1

Ol�1 Ol Oh Oh+1

Al�1 Al Ah

. . .

. . .

Figure 3: Causal graph for finite-length history policy. Index l = max{1, h� k}. The dotted nodes
indicate that the variables are not stored in the offline dataset. Solid arrows indicate the dependency
among the variables. Specifically, The red arrows depict the dependence of the target policy on the
observable variables. The blue arrows depict the dependence of the behavior policy on the latent
state. The negative control action and outcome variables at step h are filled in green and yellow.

C.1.3 FULL-HISTORY POLICY (EXAMPLE 2.3 REVISITED)

When the target policy is a full-history policy, it depends on the current observation and the full
history. That is, Hh�1 = (O ⇥A)⌦(h�1) and �h�1 = ((O1, A1), · · · , (Oh�1, Ah�1)). The causal
graph for such a target policy is shown in Figure 4. In this case, we choose the negative control action
as Zh = O0 (node in green) and the negative control outcome as Wh = Oh (node in yellow). By
this choice, we can check the independence condition in Assumption 3.1 via Figure 4, i.e., under Pb,

O0 ? Oh, Rh, Oh+1 |Sh, Ah, Oh�1, Ah�1, · · · , O1, A1,

Oh ? Ah, Sh�1, Oh�1, Ah�1, · · · , O1, A1 |Sh.

R1 Rh

O0 S1 Sh Sh+1

O1 Oh Oh+1

A1 Ah

. . .

. . .

Figure 4: Causal graph for full-length history policy. The dotted nodes indicate that the variables
are not stored in the offline dataset. Solid arrows indicate the dependency among the variables.
Specifically, The red arrows depict the dependence of the target policy on the observable variables.
The blue arrows depict the dependence of the behavior policy on the latent state. The negative control
action and outcome variables at step h are filled in green and yellow, respectively.

C.2 EXAMINATION OF ASSUMPTION 3.2

In this subsection, we give concrete examples when the Assumption 3.2 holds, i.e., the confounding
bridge functions exist.
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Example C.1 (Example 2.1 revisited). For the tabular setting (i.e., S, A, and O are finite spaces)
and reactive policies (i.e., ⇡h : O 7! �(A)), the sufficient condition under which Assumption 3.2
holds is that

rank(Pb

h
(Oh|Sh)) = |S|, rank(Pb

h
(Oh�1|Sh)) = |S|, (C.1)

where Ph(Oh|Sh) denote an |S|⇥ |O| matrix whose (s, o)-th element is Pb

h
(Oh = o|Sh = s), and

Pb

h
(Oh�1|Sh) is defined similarly.

Proof of Example C.1. Recall that for reactive policies, the history information �h�1 = ?. We
first show that under condition (C.1), there exist functions {b⇡

h
}H
h=1 and {q⇡

h
}H
h=1 which solve the

following equations
E⇡b [b⇡

h
(Ah, Oh)|Ah, Sh]

= E⇡b

h
Rh⇡h(Ah|Oh) + �

X

a0

b⇡
h+1(a

0, Oh+1)⇡h(Ah|Oh)
���Ah, Sh

i
, (C.2)

E⇡b [q⇡
h
(Ah, Oh�1)|Ah, Sh] =

µh(Sh)

⇡b

h
(Ah|Sh)

, (C.3)

Then we show that the solutions to (C.2) and (C.3) also solve (3.2) and (3.3). The difference between
(C.2) and (3.2) is that in (C.2) we condition on the latent state Sh rather than the observable negative
control variable Zh. In related literature (Bennett and Kallus, 2021; Shi et al., 2021), the solutions to
(C.2) and (C.3) are referred to as unlearnable bridge functions.

We first show the existence of {b⇡
h
}H
h=1 in a backward manner. Denote by b⇡

h+1 a zero function.
Suppose that b⇡

h+1 exists, we show that b⇡
h

also exists. Since now spaces S, A, and O are discrete,
we adopt the notation of matrix. In particular, we denote by

B 2 R
|A|⇥|O|, B(a, o) = bh(a, o),

O 2 R
|S|⇥|O|, O(s, o) = Pb

h
(Oh = o|Sh = s),

R 2 R
|A|⇥|S|, R(s, a) = E⇡b

h
Rh⇡h(Ah|Oh) + �

X

a0

b⇡
h+1(a

0, Oh+1)⇡h(Ah|Oh)
���Ah = a, Sh = s

i
.

The existence of b⇡
h

satisfying (C.2) is equivalent to the existence of B solving the matrix equation
BO

> = R. (C.4)
By condition (C.1), we known that the matrix O

> is of full column rank, which indicates that (C.4)
admits a solution B. This proves the existence of b⇡

h
. For {q⇡

h
}H
h=1, we use a similar method by

considering
Q 2 R

|A|⇥|O|, Q(a, o) = qh(a, o),

O� 2 R
|S|⇥|O|, O�(s, o) = Pb

h
(Oh�1 = o|Sh = s),

C 2 R
|A|⇥|S|, C(s, a) =

µh(Sh = s)

⇡b

h
(Ah = a|Sh = s)

.

The existence of q⇡
h

satisfying (C.3) is equivalent to the existence of Q solving the matrix equation
QO

>
� = C (C.5)

By condition (C.1), we known that the matrix O
>
� is of full column rank, which indicates that (C.5)

admits a solution Q. This proves the existence of q⇡
h

. Thus we have shown that there exists {b⇡
h
}H
h=1

and {q⇡
h
}H
h=1 which solve equation (C.2) and (C.3). Finally, it holds that any solution to (C.2) and

(C.3) also forms a solution to (3.2) and (3.3), which has been shown in Theorem 11 in Shi et al.
(2021). This finishes the proof of Example C.1.

Example C.2 (Example 2.2 revisited). For the tabular setting and finite length policies (i.e., ⇡h :
O ⇥ (O ⇥ A)min{k,h�1} 7! �(A)), the sufficient condition under which Assumption 3.2 holds is
that, for any action a 2 A,

rank(Pb

h
(Oh|Ah = a,Oh�k�1)) = |O|, rank(Pb

h
(Oh�k�1|Ah = a, Sh,�h�1)) = |O|,

(C.6)
where Pb

h
(Oh|Ah = a,Oh�k�1) is a |O|⇥ |O| matrix with (o, o0)-th element is Pb

h
(Oh = o|Ah =

a,Oh�k�1 = o0) and Pb

h
(Oh�k�1|Ah = a, Sh,�h�1) is a |S||Hh�1|⇥ |O| matrix defined similarly.

22



Published as a conference paper at ICLR 2023

Proof of Example C.2. To see this, we first prove the existence of {b⇡
n
}. For simplicity, we denote by

Pa =
�
Pb

h
(Oh |Ah = a,Oh�k�1)

�
2 R

|O|⇥|O|

for each a 2 A. Also, we denote that

Ba = (bh (a,Oh)) 2 R
|O|⇥1,

Ra =

✓
E⇡b


Rh⇡h (Ah |Oh) + �

X

a0

b⇡
h+1 (a

0, Oh+1)⇡h (Ah |Oh) |Ah = a,Oh�k�1

�◆
2 R

|O|⇥1.

Then for each a 2 A, the existence of b⇡
n
(a, ·) is equivalent to the existence of the solution to

P
a
B

a = R
a.

Such a linear equation admits a solution due to our assumption on the matrix Pa. This shows the
existence of {b⇡

h
}. For {q⇡

h
}, the deduction is similar by considering for each a 2 A,

Ta =
�
Pb

h
(Oh�k�1 |Ah = a, Sh,�h�1)

�
2 R

|S||Hh�1|⇥|O|,

Qa = (qh (a,Oh�k�1)) 2 R
|O|⇥1,

Ca =

✓
µh (Sh,�h�1)

⇡b (a |Sh)

◆
2 R

|S||Hh�1|⇥1.

By considering the equation that

TaQa = Ca

and using the full rank assumption on matrix Ta, we can obtain the existence of {q⇡
h
}. This finishes

the proof of Example C.2.

D PROOF SKETCHES OF MAIN THEORETICAL RESULT

In this section, we sketch the proof of the main theoretical result Theorem 4.4, and we refer to
Appendix G for a detailed proof. For simplicity, we denote that for any ⇡ 2 ⇧(H) and b 2 B

⌦H ,

F (b) := E⇡b

"
X

a2A
b1(a,W1)

#
, bF (b) := bE⇡b

"
X

a2A
b1(a,W1)

#
. (D.1)

By the definition (D.1) and Theorem 3.3, for any policy ⇡ 2 ⇧(H), it holds that J(⇡) = F (b⇡),
where we have denoted by b

⇡ = (b⇡1 , · · · , b⇡H) the vector of true value bridge functions of ⇡ which
are given in (3.2).

Our proof to Theorem 4.4 relies on the following three key lemmas. The first lemma relates the
different values of mapping F (·) induced by a true value bridge function b

⇡ and any other functions
b 2 B

⌦H to the RMSE loss which we aim to minimize by algorithm design. This indeed decomposes
the suboptimality (2.2).
Lemma D.1 (Suboptimality decomposition). Under Assumption 3.1, 3.2, for any policy ⇡ 2 ⇧(H)
and b 2 B

⌦H , it holds that

F (b⇡)� F (b) 
HX

h=1

�h�1
p
C⇡ ·

q
L⇡

h
(bh, bh+1),

where the concentrability coefficient C⇡ is defined as C⇡ := sup
h2[H] E⇡b

⇥
(q⇡

h
(Ah, Zh))2

⇤
.

Proof of Lemma D.1. See Appendix F.1 for a detailed proof.

The following two lemmas characterize the theoretical properties of the confidence region CR⇡(⇠).
Specifically, Lemma D.2 shows that with high probability the confidence region of ⇡ contains the true
value bridge function b

⇡. Besides, Lemma D.3 shows that each bridge function vector b 2 CR⇡(⇠)
enjoys a fast statistical rate (Uehara et al., 2021) for its RMSE loss L⇡

h
defined in (3.6). To obtain

such a fast rate, we develop novel proof techniques in Appendix F.3.
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Lemma D.2 (Validity of confidence regions). Under Assumption 3.2 and 4.2, for any 0 < � < 1, by
setting

⇠ = C1(�+ 1/�) ·M2
B ·M2

G · log(|B||⇧(H)|H/⇣)/n,

for some problem-independent universal constant C1 > 0 and ⇣ = min{�, 4c1 exp(�c2n↵2
G,n

)}, it
holds with probability at least 1� � that b⇡ 2 CR⇡(⇠) for any policy ⇡ 2 ⇧(H).

Proof of Lemma D.2. See Appendix F.2 for a detailed proof.

Lemma D.3 (Accuracy of confidence regions). Under Assumption 3.2, 4.2, and 4.3, by setting the
same ⇠ as in Lemma D.2, with probability at least 1� �/2, for any policy ⇡ 2 ⇧(H), b 2 CR⇡(⇠),
and step h,

q
L⇡

h
(bh, bh+1)  eC1MBMG

p
(�+ 1/�) · log(|B||⇧(H)|H/⇣)/n+ eC1✏

1/4
B M1/2

G ,

for some problem-independent universal constant eC1 > 0, and ⇣ = min{�, 4c1 exp(�c2n↵2
G,n

)}.

Proof of Lemma D.3. See Appendix F.3 for a detailed proof.

When ↵G,n 2 O(n�1/2) and ✏B = 0, Lemma D.3 implies that L⇡

h
(bh, bh+1)  eO(n�1). Now with

Lemma D.1, Lemma D.2, and Lemma D.3, by the choice of b⇡ in P3O, we can show that

J(⇡?)� J(b⇡)  eO(n�1/2) + max
b2CR⇡?

(⇠)
F (b)� min

b2CRb⇡(⇠)
F (b)

 eO(n�1/2) + max
b2CR⇡?

(⇠)
F (b)� min

b2CR⇡?
(⇠)

F (b)

 eO(n�1/2) + 2 max
b2CR⇡?

(⇠)

���F (b)� F (b⇡
?

)
���

 eO(n�1/2) + 2 max
b2CR⇡?

(⇠)

HX

h=1

�h�1
p
C⇡? ·

q
L⇡?

h
(bh, bh+1), (D.2)

where the first inequality holds by Lemma D.2, the second inequality holds from the optimality of b⇡ in
Algorithm 1, the third inequality holds directly, and the last inequality holds by Lemma D.1. Finally,
by applying Lemma D.3 to the right hand side of (D.2), we conclude the proof of Theorem 4.4.

E PROOF OF THEOREM 3.3

Proof of Theorem 3.3. For any step h, we denote Jh(⇡) := E⇡[Rh(Sh, Ah)]. We have that

Jh(⇡) = E⇡[Rh(Sh, Ah)]

= E⇡

⇥
E⇡[Rh(Sh, Ah)|Oh, Sh,�h�1]

⇤

= E⇡

"
X

a2A
Rh(Sh, a)⇡h(a|Oh,�h�1)

#

= E⇡

"
E⇡

"
X

a2A
Rh(Sh, a)⇡h(a|Oh,�h�1)

�����Sh,�h�1

##
,

where the second and the last equality follows from the tower property of conditional expectation.
Using the definition of density ratio µh(Sh,�h�1) in Assumption 3.2, we can change the outer
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expectation to E⇡b by

Jh(⇡) = E⇡b

"
µh(Sh,�h�1) · E⇡

"
X

a2A
Rh(Sh, a)⇡h(a|Oh,�h�1)

�����Sh,�h�1

##
,

= E⇡b

"
X

a2A
Rh(Sh, a) · ⇡h(a|Oh,�h�1) · µh(Sh,�h�1)

#

= E⇡b

"
X

a2A
⇡b

h
(a|Sh) ·Rh(Sh, a) ·

⇡h(a|Oh,�h�1)

⇡b

h
(a|Sh)

· µh(Sh,�h�1)

#

(a)
= E⇡b


E⇡b


Rh(Sh, Ah) ·

⇡h(Ah|Oh,�h�1)

⇡b

h
(Ah|Sh)

· µh(Sh,�h�1)

����Sh, Oh,�h�1

��

= E⇡b


Rh(Sh, Ah) · ⇡h(Ah|Oh,�h�1) ·

µh(Sh,�h�1)

⇡b

h
(Ah|Sh)

�
,

where step (a) follows from the fact that Ah ⇠ ⇡b

h
(·|Sh) and satisfies Ah ? Oh,�h�1|Sh under ⇡b.

Now using the definition (3.3) of weight bridge function q⇡
h

in Assumption 3.2, we have that

Jh(⇡) = E⇡b

⇥
Rh(Sh, Ah) · ⇡h(Ah|Oh,�h�1) · E⇡b [q⇡

h
(Ah, Zh)|Sh, Ah,�h�1]

⇤

(a)
= E⇡b [Rh(Sh, Ah) · ⇡h(Ah|Oh,�h�1) · q⇡h(Ah, Zh)]

= E⇡b [E⇡b [Rh(Sh, Ah) · ⇡h(Ah|Oh,�h�1) · q⇡h(Ah, Zh)|Ah, Zh]]

= E⇡b [E⇡b [Rh(Sh, Ah) · ⇡h(Ah|Oh,�h�1)·|Ah, Zh] q
⇡

h
(Ah, Zh)] ,

where step (a) follows from the assumption that Zh ? Oh, Rh|Sh, Ah,�h�1 by Assumption 3.1.
Now using the definition (3.2) of value bridge function b⇡

h
in Assumption 3.2, we have that

Jh(⇡) = E⇡b

"
E⇡b

"
b⇡
h
(Ah,Wh)� �

X

a02A
b⇡
h+1(a

0,Wh+1)⇡h(Ah|Oh,�h�1)

�����Ah, Zh

#
q⇡
h
(Ah, Zh)

#

= E⇡b [f(Sh, Ah, Oh,Wh,Wh+1,�h�1) · q⇡h(Ah, Zh)]

= E⇡b [E⇡b [f(Sh, Ah, Oh,Wh,Wh+1,�h�1) · q⇡h(Ah, Zh)|Sh, Ah, Oh,Wh,Wh+1,�h�1]] ,

= E⇡b [f(Sh, Ah, Oh,Wh,Wh+1,�h�1) · E⇡b [q⇡
h
(Ah, Zh)|Sh, Ah, Oh,Wh,Wh+1,�h�1]] ,

(a)
= E⇡b [f(Sh, Ah, Oh,Wh,Wh+1,�h�1) · E⇡b [q⇡

h
(Ah, Zh)|Sh, Ah,�h�1]] ,

where for simplicity we have denoted that

f(Sh, Ah, Oh,Wh,Wh+1,�h�1) = b⇡
h
(Ah,Wh)� �

X

a02A
b⇡
h+1(a

0,Wh+1)⇡h(Ah|Oh,�h�1),

and step (a) follows from the assumption that Zh ? Oh,Wh,Wh+1|Sh, Ah,�h�1 by Assumption
3.1. By the definition (3.3) of weight bridge function q⇡

h
in Assumption 3.2 again, we have that

Jh(⇡) = E⇡b


f(Sh, Ah, Oh,Wh,Wh+1,�h�1) ·

µh(Sh,�h�1)

⇡b

h
(Ah|Sh)

�

(a)
= E⇡b

" 
b⇡
h
(Ah,Wh)� �

X

a02A
b⇡
h+1(a

0,Wh+1)⇡h(Ah|Oh,�h�1)

!
· µh(Sh,�h�1)

⇡b

h
(Ah|Sh)

#
,

where step (a) just applies the definition of f . Now sum Jh(⇡) over h 2 [H], we have that

J(⇡) =
HX

h=1

�h�1Jh(⇡) = E⇡b


µ1(S1,�0)

⇡b

1(A1|S1)
b⇡1 (A1,W1)

�

| {z }
(A)

+
HX

h=2

�h�1�h

| {z }
(B)

, (E.1)

where for simplicity we define �h for h = 2, · · · , H as

�h = E⇡b

"
µh(Sh,�h�1)

⇡b

h
(Ah|Sh)

b⇡
h
(Ah,Wh)�

µh�1(Sh�1,�h�2)

⇡b

h�1(Ah�1|Sh�1)
·
X

a02A
b⇡
h
(a0,Wh)⇡h�1(Ah�1|Oh�1,�h�1)

#
.
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In the sequel, we deal with term (A) and (B) respectively. On the one hand, we have that

(A) (a)
= E⇡b


P⇡

1 (S1,�0)

Pb

1(S1,�0)⇡b

1(A1|S1)
b⇡1 (A1,W1)

�

(b)
= E⇡b


1

⇡b

1(A1|S1)
b⇡1 (A1,W1)

�

= E⇡b


E⇡b


1

⇡b

1(A1|S1)
b⇡1 (A1,W1)

����S1,W1

��

(c)
= E⇡b

"
X

a2A

⇡b

1(a|S1)

⇡b

1(a|S1)
b⇡1 (a,W1)

#

= E⇡b

"
X

a2A
b⇡1 (a,W1)

#
,

where step (a) follows from the definition of µ1(S1,�0) in Assumption 3.2, step (b) follows from
the fact that at h = 1, Pb

1(S1,�0) = P⇡

1 (S1,�0), and step (c) follows from the assumption that
A1 ? W1|S1 by Assumption 3.1. On the other hand, term (b) in (E.1) is actually 0, which we show
by proving that �h = 0 for any h � 2. We denote by �h = �1

h
��2

h
and we consider �1

h
and �2

h

respectively, where

�1
h
= E⇡b


µh(Sh,�h�1)

⇡b

h
(Ah|Sh)

· b⇡
h
(Ah,Wh)

�
,

�2
h
= E⇡b

"
µh�1(Sh�1,�h�2)

⇡b

h�1(Ah�1|Sh�1)
·
X

a02A
b⇡
h
(a0,Wh)⇡h�1(Ah�1|Oh�1,�h�1)

#
.

In the sequel, we prove that �1
h
= �2

h
for the three cases of Th in Example 2.1, 2.2, and 2.3,

respectively.

Case 1: Reactive policy (Example 2.1). We first focus on the simple case when policy ⇡ is
reactive. Since for reactive policies Th = ?, we can equivalently write µh(Sh,�h�1) as µh(Sh) =
P⇡

h
(Sh)/Pb

h
(Sh). Now for �1

h
, we can rewrite it as

�1
h
= E⇡b


P⇡

h
(Sh)

Pb

h
(Sh)⇡b

h
(Ah|Sh)

· b⇡
h
(Ah,Wh)

�

(a)
=

Z

S
⇠⇠⇠⇠Pb

h
(sh)dsh

X

ah2A
⇠⇠⇠⇠⇠⇡b

h
(ah|sh)

Z

W
Pb

h
(wh|sh, ah)dwh · P⇡

h
(sh)

⇠⇠⇠⇠Pb

h
(sh)⇠⇠⇠⇠⇠⇡b

h
(ah|sh)

b⇡
h
(ah, wh)

(b)
=

X

ah2A

Z

S
P⇡

h
(sh)dsh

Z

W
Pb

h
(wh|sh)dwh · b⇡

h
(ah, wh).

Here step (a) expands the expectation by using integral against corresponding density functions, and
step (b) follows from cancelling the same terms and the fact that Wh ? Ah|Sh under Assumption
3.1. For �2

h
, we can also rewrite it as

�2
h
= E⇡b

"
P⇡

h�1(Sh�1)⇡h�1(Ah�1|Oh�1)

Pb

h�1(Sh�1)⇡b

h�1(Ah�1|Sh�1)
·
X

a02A
b⇡
h
(a0,Wh)

#

(a)
=

Z

S
⇠⇠⇠⇠⇠⇠Pb

h�1(sh�1)dsh�1

Z

O
Oh�1(oh�1|sh�1)doh�1

X

ah�12A
((((((((
⇡b

h�1(ah�1|sh�1)

Z

S
Ph(sh|sh�1, ah�1)dsh

Z

W
Pb

h
(wh|sh, sh�1, ah�1, oh�1) ·

P⇡

h�1(sh�1)⇡h�1(ah�1|oh�1)

⇠⇠⇠⇠⇠⇠Pb

h�1(sh�1)((((((((
⇡b

h�1(ah�1|sh�1)

X

ah2A
b⇡
h
(ah, wh)dwh.
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Here step (a) follows from expanding the expectation. It follows that

�2
h

(b)
=

X

ah2A

Z

S
P⇡

h�1(sh�1)dsh�1

Z

O
Oh�1(oh�1|sh�1)doh�1

X

a2A
⇡h�1(ah�1|oh�1)

Z

S
Ph(sh|sh�1, ah�1)ds

0
Z

W
Pb

h
(wh|sh) · b⇡h(ah, wh)

(c)
=

X

ah2A

Z

S
P⇡

h
(sh)dsh

Z

W
Pb

h
(wh|sh) · b⇡h(ah, wh)dwh.

Here step (b) follows from cancelling the same terms and using the fact that Wh ?
Sh�1, Ah�1, Oh�1|Sh by Assumption 3.1, and step (d) follows by marginalizing over
Sh�1, Ah�1, Oj�1. Thus we have proved that �1

h
= �2

h
for reactive policies and consequently

�h = �1
h
��2

h
= 0.

Case 2: Finite-history policy (Example 2.2). Now we have that �h�1[{Ah, Oh} = {Al�1, Ol�1}[
Th, where the index l = max{0, h� k}. Similarly, we can first rewrite �1

h
as

�1
h
= E⇡b


P⇡

h
(Sh,�h�1)

Pb

h
(Sh,�h�1)⇡b

h
(Ah|Sh)

b⇡
h
(Ah,Wh)

�

(a)
=

Z

S⇥Hh�1

Pb

h
(sh, ⌧h�1)dshd⌧h�1

X

ah2A
⇡b

h
(ah|sh)

Z

W
Pb

h
(wh|sh, ah, ⌧h�1)dwh

· P⇡

h
(sh, ⌧h�1)

Pb

h
(sh, ⌧h�1)⇡b

h
(ah|sh, ⌧h�1)

b⇡
h
(ah, wh)

(b)
=

X

ah2A

Z

S⇥Hh�1

P⇡

h
(sh, ⌧h�1)dshd⌧h�1

Z

W
Pb

h
(wh|sh)dwh · b⇡

h
(ah, wh).

Here step (a) follows from expanding the expectation, and step (b) follows from cancelling the same
terms and using the fact that Wh ? Ah,�h�1|Sh under Assumption 3.1. For �2

h
, we can also rewrite

it as

�2
h
= E⇡b

"
P⇡

h�1(Sh�1,�h�2)⇡h�1(Ah�1|Oh�1)

Pb

h�1(Sh�1,�h�2)⇡b

h�1(Ah�1|Sh�1,�h�2)

X

a02A
b⇡
h
(a0,Wh)

#

(a)
=

Z

S⇥Hh�2
(((((((((((
Pb

h�1(sh�1, ⌧h�2)dsh�1d⌧h�2

Z

O
Oh�1(oh�1|sh�1)doh�1

X

ah�12A
((((((((
⇡b

h�1(ah�1|sh�1)

Z

S
Ph(sh|sh�1, ah�1)dsh

Z

W
Pb

h
(wh|sh, sh�1, ah�1, oh�1, ⌧h�2)

·
P⇡

h�1(sh�1, ⌧h�2)⇡h�1(ah�1|oh�1, ⌧h�2)

((((((((Pb

h�1(sh�1, ⌧h�2)((((((((
⇡b

h�1(ah�1|sh�1)

X

ah2A
b⇡
h
(ah, wh)

(b)
=

X

ah2A

Z

S⇥Hh�2

P⇡

h�1(sh�1, e⌧h�2, al, ol)dsh�1de⌧h�2daldol

Z

O
Oh�1(oh�1|sh�1)doh�1

X

ah�12A
⇡h�1(ah�1|oh�1, ⌧h�2)

Z

S
Ph(sh|sh�1, ah�1)dsh

Z

W
Pb

h
(wh|sh) · b⇡h(ah, wh)

(E.2)
(c)
=

X

ah2A

Z

S⇥Hh�1

P⇡

h
(sh, ⌧h�1)dshd⌧h�1

Z

W
Pb

h
(wh|sh) · b⇡h(ah, wh),

where the index l = max{1, h� 1� k}. In step (b), we have denoted by e⌧h�2 = ⌧h�2 \ {al, ol} and
it holds that ⌧h�1 = e⌧h�2 [ {oh�1, ah�1}. Here step (a) follows from expanding the expectation,
step (b) follows from cancelling the same terms and using the fact that Wh ? Sh�1, Ah�1,�h�1|Sh

under Assumption 3.1, and step (c) follows by marginalizing Sh�1, Al, Ol. Thus we have proved
that �1

h
= �2

h
for finite-length history policies and consequently �h = �1

h
��2

h
= 0.
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Case 3: Full-history policy (Example 2.3). For full history information Th, we have that �h�1 [
{Ah, Oh} = Th. Following the same argument as in Case 2 (Example 2.2), we can first show that

�1
h
=

X

ah2A

Z

S⇥Hh�1

P⇡

h
(sh, ⌧h�1)dshd⌧h�1

Z

W
Pb

h
(wh|sh)dwh · b⇡

h
(ah, wh).

Besides, for �2, by a similar argument as in Case 2 except that we don’t need marginalize over
Al, Ol in (E.2), we can show that

�2
h
=

X

ah2A

Z

S⇥Hh�2

P⇡

h�1(sh�1, ⌧h�2)dsh�1d⌧h�2

Z

O
Oh�1(oh�1|sh�1)doh�1

X

ah�12A
⇡h�1(ah�1|oh�1, ⌧h�2)

Z

S
Ph(sh|sh�1, ah�1)dsh

Z

W
Pb

h
(wh|sh, sh�1, ah�1, oh�1, ⌧h�2) · b⇡h(ah, wh)

=
X

ah2A

Z

S⇥Hh�1

P⇡

h
(sh, ⌧h�1)dshd⌧h�1

Z

W
Pb

h
(wh|sh)dwh · b⇡

h
(ah, wh).

Therefore, we show that �1
h
= �2

h
for full history policies and consequently �h = �1

h
��2

h
= 0.

Now we have shown that term (B) in (E.1) is actually 0 for Example 2.1, Example 2.2, and Example
2.3, respectively, which allows us to conclude that

J(⇡) = (A) = E⇡b

"
X

a2A
b⇡1 (a,W1)

#
.

This finishes the proof of Theorem 3.3.

F PROOF OF LEMMAS IN SECTION D

We first review and define several notations and quantities that are useful in the proof of the lemmas
in Section D. Firstly, we define mapping `⇡

h
: B⇥ B 7! {A⇥ Z 7! R} as

`⇡
h
(bh, bh+1)(Ah, Zh) := E⇡b

h
bh(Ah,Wh)�Rh⇡h(Ah|Oh,�h�1)

� �
X

a02A
bh+1(a

0,Wh+1)⇡h(Ah|Oh,�h�1)
���Ah, Zh

i
. (F.1)

Furthermore, for each step h 2 [H], we define a joint space Ih = A⇥W ⇥O ⇥Hh�1 ⇥W and
define mapping &⇡

h
: B⇥ B 7! {Ih 7! R} as

&⇡
h
(bh, bh+1)(Ah,Wh, Oh,�h�1,Wh+1) := bh(Ah,Wh)�Rh⇡h(Ah|Oh,�h�1)

� �
X

a02A
bh+1(a

0,Wh+1)⇡h(Ah|Oh,�h�1). (F.2)

When appropriate, we abbreviate Ih = (Ah,Wh, Oh,�h�1,Wh+1) 2 Ih in the sequel. Using
definition (F.1) and (F.2), we further introduce two mappings ��

⇡,h
,�⇡,h : B⇥B⇥G 7! R as defined

by (3.9),

��

⇡,h
(bh, bh+1; g) := E⇡b

⇥
`⇡
h
(bh, bh+1)(Ah, Zh) · g(Ah, Zh)� �g(Ah, Zh)

2
⇤
,

�⇡,h(bh, bh+1; g) := �0
⇡,h

(bh, bh+1; g) = E⇡b

⇥
`⇡
h
(bh, bh+1)(Ah, Zh) · g(Ah, Zh)

⇤
,

where we define that �⇡,h = �0
⇡,h

. Also, recall from (3.10) that the empirical version of ��

⇡,h
,�⇡,h

are defined by b��

⇡,h
, b�⇡,h as

b��

⇡,h
(bh, bh+1; g) := bE⇡b

⇥
&⇡
h
(bh, bh+1)(Ih) · g(Ah, Zh)� �g(Ah, Zh)

2
⇤
,

b�⇡,h(bh, bh+1; g) := b�0
⇡,h

(bh, bh+1; g) = bE⇡b

⇥
&⇡
h
(bh, bh+1)(Ih) · g(Ah, Zh)

⇤
.
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Recall from (3.11) that given function bh+1 2 B, the minimax estimator bbh(bh+1) is defined as

bbh(bh+1) := arg min
b2B

max
g2G

b��

⇡,h
(b, bh+1; g).

Meanwhile, we define the following quantity for ease of theoretical analysis as

b?
h
(bh+1) := arg min

b2B
max
g2G

��

⇡,h
(b, bh+1; g). (F.3)

By the boundedness assumption on B in Assumption 4.2, we have that |`⇡
h
|, |&⇡

h
|  2MB. By the

completeness assumption on G in Assumption 4.3, we also know that `⇡
h
(bh, bh+1)/2� 2 G for any

bh, bh+1 2 B. Finally, for notational simplicity, we define for each g 2 G that,

kgk22 := E⇡b [g(Ah, Zh)
2],

and we denote by kgk22,n its empirical version, i.e.,

kgk22,n := bE⇡b [g(Ah, Zh)
2].

We remark that we have dropped the dependence of kgk22 on step h since it is clear from the context
when used in the proofs and does not make any confusion.

F.1 PROOF OF LEMMA D.1

Proof of Lemma D.1. By definition (D.1) of F (b), for any policy ⇡ 2 ⇧(H) and vector of functions
b 2 B

⌦H , it holds that

F (b⇡)� F (b)
(a)
= E⇡b

"
X

a2A
b⇡1 (a,W1)� b1(a,W1)

#

= E⇡b

"
X

a2A

⇡b

1(a|S1)

⇡b

1(a|S1)
(b⇡1 (a,W1)� b1(a,W1))

#

(b)
= E⇡b


E⇡b


1

⇡b

1(A1|S1)
(b⇡1 (a,W1)� b1(a,W1))

����S1,W1

��

= E⇡b


1

⇡b

1(A1|S1)
(b⇡1 (A1,W1)� b1(A1,W1))

�

where step (a) follows from Theorem 3.3 and (D.1), and step (b) holds since A1 ? W1 |S1 by
Assumption 3.1. Notice that by definition (3.3), at step h = 1, the weight bridge function q⇡

h
satisfies

equation

E⇡b [q⇡1 (A1, Z1)|A1, S1,�0] =
P⇡

h
(S1,�0)

P⇡

h
(S1,�0)⇡b

1(A1|S1)
=

1

⇡b

1(A1|S1)
,

which further gives that

F (b⇡)� F (b) = E⇡b

⇥
E⇡b [q⇡1 (A1, Z1)|A1, S1,�0] (b

⇡

1 (A1,W1)� b1(A1,W1))
⇤

(a)
= E⇡b

⇥
E⇡b [q⇡1 (A1, Z1)|A1, S1,W1,�0] ·

�
b⇡1 (A1,W1)� b1(A1,W1)

�⇤

= E⇡b

⇥
q⇡1 (A1, Z1)

�
b⇡1 (A1,W1)� b1(A1,W1)

�⇤
,

where step (a)holds since Z1 ? W1 |A1, S1,H0 by Assumption 3.1. Now we can further obtain that,

F (b⇡)� F (b) = E⇡b

⇥
q⇡1 (A1, Z1)E⇡b [b⇡1 (A1,W1)� b1(A1,W1)|A1, Z1]

⇤

(a)
= E⇡b


q⇡1 (A1, Z1)

⇢
E⇡b


R1⇡1(A1|O1,�0) + �

X

a0

b⇡2 (a
0,W2)⇡1(A1|O1,�0)

����A1, Z1

�

� E⇡b [b1(A1,W1)|A1, Z1]

��
,
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where step (a) follows from the definition in (3.2) of value bridge function b⇡1 in Assumption 3.2.
Now to relate the difference between F (b⇡) and F (b) with the RMSE loss L⇡

1 defined in (3.6), we
rewrite the above equation as the following,

F (b⇡)� F (b)

= E⇡b


q⇡1 (A1, Z1)

⇢
E⇡b


R1⇡h(A1|O1,�0) + �

X

a0

b⇡2 (a
0,W2)⇡1(A1|O1,�0)

����A1, Z1

�

� E⇡b


Rh⇡1(A1|O1,�0) + �

X

a0

b2(a
0,Wh+1)⇡1(A1|O1,�0)

����A1, Z1

�

+ E⇡b


R1⇡1(A1|O1,�0) + �

X

a0

b2(a
0,W2)⇡1(A1|O1,�0)

����A1, Z1

�

� E⇡b


b1(A1,W1)

����A1, Z1

���

= E⇡b


q⇡1 (A1, Z1)

⇢
�E⇡b

X

a0

⇣
b⇡2 (a

0,W2)� b2(a,W2)
⌘
⇡1(A1|O1,�0)

����A1, Z1

�

+ E⇡b


R1⇡h(A1|O1,�0) + �

X

a0

b2(a
0,W2)⇡h(A1|O1,�0)� b1(A1,W1)

����A1, Z1

���
.

(F.4)

We deal with the two terms in the right-hand side of (F.4) respectively. On the one hand, the first term
equals to

�E⇡b


q⇡1 (A1, Z1)E⇡b

X

a0

⇣
b⇡2 (a

0,W2)� b2(a,W2)
⌘
⇡1(A1|O1,�0)

����A1, Z1

��

= �E⇡b


q⇡1 (A1, Z1)

X

a0

⇣
b⇡2 (a

0,W2)� b2(a,W2)
⌘
⇡1(A1|O1,�0)

�

= �E⇡b


E⇡b


q⇡1 (A1, Z1)

����S1, A1,�0, O1,W2

�X

a0

⇣
b⇡2 (a

0,W2)� b2(a,W2)
⌘
⇡1(A1|O1,�0)

�

(a)
= �E⇡b


E⇡b


q⇡1 (A1, Z1)

����S1, A1,�0

�X

a0

⇣
b⇡2 (a

0,W2)� b2(a,W2)
⌘
⇡1(A1|O1,�0)

�

(b)
= �E⇡b

"
µ1(S1,�0)

⇡b

1(A1|S1)

X

a0

⇣
b⇡2 (a

0,W2)� b2(a,W2)
⌘
⇡1(A1|O1,�0)

#
,

where step (a) follows from the fact that Z1 ? O1,W2|S1, A1,�0 according to Assumption 3.1,
and step (b) follows from the definition (3.3) of weight bridge function q⇡1 in Assumption 3.2. Now
following the same argument as in showing �h = 0 in the proof of Theorem 3.3, we can show that

E⇡b

"
µ1(S1,�0)

⇡b

1(A1|S1)

X

a0

⇣
b⇡2 (a

0,W2)� b2(a,W2)
⌘
⇡1(A1|O1,�0)

#

= E⇡b

"
q⇡2 (A2, Z2)

⇣
b⇡2 (A2,W2)� b2(A2,W2)

⌘#
. (F.5)

On the other hand, the second term in the R.H.S. of (F.4) can be rewritten and bounded by

E⇡b


q⇡1 (A1, Z1)E⇡b


R1⇡1(A1|O1,�0) + �

X

a0

b2(a
0,W2)⇡1(A1|O1,�0)� b1(A1,W1)

����A1, Z1

��


p
C⇡E⇡b

⇢
E⇡b


R1⇡1(A1|O1,�0) + �

X

a0

b2(a
0,W2)⇡1(A1|O1,�0)� b1(A1,W1)

����A1, Z1

��1/2�

=
p
C⇡ ·

q
L⇡

1 (b1, b2), (F.6)
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where C⇡ is defined as C⇡ := sup
h2[H] E⇡b

⇥
(q⇡

h
(Ah, Zh))2

⇤
, the inequality follows from Cauchy-

Schwarz inequality, and the equality follows from the definition of L⇡

1 in (3.6). Combining (F.4),
(F.5) with (F.6), we can obtain that

F (b⇡)� F (b)


p
C⇡ ·

q
L⇡

1 (b1, b2) + �E⇡b

"
q⇡2 (A2, Z2)

⇣
b⇡2 (A2,W2)� b2(A2,W2)

⌘#
. (F.7)

Now applying the above argument on the second term in the R.H.S. of (F.7) recursively, we can
obtain that

F (b⇡)� F (b) 
HX

h=1

�h�1
p
C⇡ ·

q
L⇡

h
(bh, bh+1).

This finishes the proof of Lemma D.1.

F.2 PROOF OF LEMMA D.2

Proof of Lemma D.2. By the definition of the confidence region CR⇡(↵) in (3.12), we need to show
for any policy ⇡ 2 ⇧(H) and step h 2 [H], it holds that,

max
g2G

b��

⇡,h
(b⇡

h
, b⇡

h+1; g)�max
g2G

b��

⇡,h
(bbh(b⇡h+1), b

⇡

h+1; g)  ⇠. (F.8)

Notice that by Assumption 4.2, the function class G is symmetric and star-shaped, which indicates
that

max
g2G

b��

⇡,h
(bbh(b⇡h+1), b

⇡

h+1; g) � b��

⇡,h
(bbh(b⇡h+1), b

⇡

h+1; 0) = 0.

Therefore, in order to prove (F.8), it suffices to show that

max
g2G

b��

⇡,h
(b⇡

h
, b⇡

h+1; g)  ⇠. (F.9)

To relate the empirical expectation b��

⇡,h
(b⇡

h
, b⇡

h+1; g) =
b�⇡,h(b⇡h, b

⇡

h+1; g)��kgk22,n to its population
version, we need two localized uniform concentration inequalities. On the one hand, to relate kgk22
and kgk22,n, by Lemma I.1 (Theorem 14.1 of Wainwright (2019)), for some absolute constants
c1, c2 > 0, it holds with probability at least 1� �/2 that,

��kgk22,n � kgk22
��  1

2
kgk22 +

M2
G log(2c1/⇣)

2c2n
, 8g 2 G, (F.10)

where ⇣ = min{�, 2c1 exp(�c2n↵2
G,n

/M2
G)} and ↵G,n is the critical radius of function class G

defined in Assumption 4.2. On the other hand, to relate b�⇡,h(bh, bh+1; g) and �⇡,h(bh, bh+1; g)
we invoke Lemma I.2 (Lemma 11 of (Foster and Syrgkanis, 2019)). Specifically, for any given
bh, bh+1 2 B, ⇡ 2 ⇧(H), and h 2 [H], in Lemma I.2 we choose F = G, X = A ⇥ Z , Y = Ih,
and loss function `(g(Ah, Zh), Ih) := &⇡

h
(bh, bh+1)(Ih) · g(Ah, Zh) where &⇡

h
is defined in (F.1),

Ih 2 Ih is defined in the beginning of Appendix F. It holds that ` is L-Lipschitz continuous in the
first argument since for any g, g0 2 G, (Ah, Zh) 2 A⇥ Z , it holds that

��`(g(Ah, Zh), Ih)� `(g0(Ah, Zh), Ih)
�� = |&⇡

h
(bh, bh+1)(Ih)| · |g(Ah, Zh)� g0(Ah, Zh)|

 2MB · |g(Ah, Zh)� g0(Ah, Zh)|,
which indicates that L = 2MB. Now setting f? = 0 in Lemma I.2, we have that �n in Lemma I.2
coincides with ↵G,n in Assumption 4.2. Then we can conclude that for some absolute constants
c1, c2 > 0, it holds with probability at least 1� �/(2|B|2|⇧(H)|H) that
���b�⇡,h(bh, bh+1; g)� �⇡,h(bh, bh+1; g)

���

=
���bE⇡b [`(g(Ah, Zh), Ih)]� E⇡b [`(g(Ah, Zh), Ih)]

���

 18Lkgk2

s
M2

G log
�
2c1|B|2|⇧(H)|H/⇣ 0

�

c2n
+

18LM2
G log

�
2c1|B|2|⇧(H)|H/⇣ 0

�

c2n
, 8g 2 G,

(F.11)
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where ⇣ 0 = min{�, 2c1|B|2|⇧(H)|H exp(�c2n↵2
G,n

/M2
G)}. Applying a union bound argument over

bh, bh+1 2 B, ⇡ 2 ⇧(H), and h 2 [H], we then have that (F.11) holds for any bh, bh+1 2 B, g 2 G,
⇡ 2 ⇧(H), and h 2 [H] with probability at least 1 � �/2. Now using these two concentration
inequalities (F.10) and (F.11), we can further deduce that, for some absolute constants c1, c2 > 0,
with probability at least 1� �,

max
g2G

b��

⇡,h
(b⇡

h
, b⇡

h+1; g)

= max
g2G

n
b�⇡,h(b

⇡

h
, b⇡

h+1; g)� �kgk22,n
o

 max
g2G

(
�⇡,h(b

⇡

h
, b⇡

h+1; g)� �kgk22 +
�

2
kgk22 +

�M2
G log(2c1/⇣)

2c2n
,

+ 18Lkgk2

s
M2

G log(2c1|B|2|⇧(H)|H/⇣ 0)

c2n
+

18LM2
G log(2c1|B|2|⇧(H)|H/⇣ 0)

c2n

)
,

where ⇣ is given as ⇣ = min{�, 2c1 exp(�c2n↵2
G,n

/M2
G)} and ⇣ 0 is given as ⇣ 0 =

min{�, 2c1|B|2|⇧(H)|H exp(�c2n↵2
G,n

/M2
G)} for any policy ⇡ 2 ⇧(H) and step h. Then we

can further bound the right-hand side of the above inequality as

max
g2G

b��

⇡,h
(b⇡

h
, b⇡

h+1; g)

 max
g2G

�⇡,h(b
⇡

h
, b⇡

h+1; g) + max
g2G

(
� �

2
kgk22 + 18Lkgk2

s
M2

G · log(2c1|B|2|⇧(H)|H/⇣ 0)

c2n

)

+
�M2

G · log(2c1/⇣)
2c2n

+
18LM2

G · log(2c1|B|2|⇧(H)|H/⇣ 0)

c2n

 728L2 ·M2
G · log(2c1|B|2|⇧(H)|H/⇣ 0)

�n
+
�M2

G · log(2c1/⇣)
2c2n

+
18LM2

G · log(2c1|B|2|⇧(H)|H/⇣ 0)

c2n
.

Here the last inequality holds from the fact that �⇡,h(b⇡h, b
⇡

h+1; g) = 0 since b⇡
h

and b⇡
h+1 are true

bridge functions, and the fact that supkgk2
{akgk2 � bkgk22}  a2/4b for any b > 0. Now according

to the choice of ⇠ in Lemma D.2, using the fact that ⇣ < ⇣ 0 and L = 2MB, we can conclude that,
with probability at least 1� �,

max
g2G

b��

⇡,h
(b⇡

h
, b⇡

h+1; g)

 728L2M2
G · log(2c1|B|2|⇧(H)|H/⇣ 0)

�n
+
�M2

G · log(2c1/⇣)
2c2n

+
18LM2

G · log(2c1|B|2|⇧(H)|H/⇣ 0)

c2n

. O
✓
(�+ 1/�) ·M2

BM
2
G · log(|B||⇧(H)|H/⇣)

n

◆
. ⇠.

This proves (F.9), and thus further indicates (F.8). Therefore, we finish the proof of Lemma D.2.

F.3 PROOF OF LEMMA D.3

We first give the high-level idea for proving Lemma D.3 as following. In order to achieve the fast rate
for the whole confidence region, we took a series of novel proof steps.

We first introduce the following lemma, which claims that for any bh+1 2 B, the b?(bh+1) defined in
(F.3) satisfies that maxg2G b��

⇡,h
(b?(bh+1), bh+1; g) is well-bounded. The proof of lemma follows

the same argument as in the proof of Lemma D.2, which we defer to Appendix F.4.

Then given any bridge function in the confidence region, we identify a key term (term (?) in (F.12))
which is related to the RMSE of this bridge function. By carefully upper & lower bound this term,
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where Lemma F.1 is applied, we eventually obtain a quadratic inequality that the RMSE of this bridge
function satisfies. By solving this inequality, we can derive an upper bound on the RMSE loss which
is uniform over the bridge functions in the confidence region, which is exactly the fast rate of the
whole confidence region.
Lemma F.1. For any function bh+1 2 B, policy ⇡ 2 ⇧(H), and step h 2 [H], it holds with
probability at least 1� �/2 that

max
g2G

b��

⇡,h
(b?

h
(bh+1), bh+1; g)  ⇠ + ✏1/2B MG,

where b?(bh+1) is defined in (F.3) and ⇠ is defined in Lemma D.3.

Proof of Lemma F.1. See Appendix F.4 for a detailed proof.

With Lemma F.1, we are now ready to give the proof of Lemma D.3.

Proof of Lemma D.3. Let’s consider that for any bh, bh+1 2 CR⇡(⇠), we have that

max
g2G

b��

⇡,h
(bh, bh+1; g) = max

g2G

n
b�⇡,h(bh, bh+1; g)� b�⇡,h(b

?

h
(bh+1), bh+1; g)� 2�kgk22,n

+ b�⇡,h(b
?

h
(bh+1), bh+1; g) + �kgk22,n

o
.

We further write the above as

max
g2G

b��

⇡,h
(bh, bh+1; g) � max

g2G

n
b�⇡,h(bh, bh+1; g)� b�⇡,h(b

?

h
(bh+1), bh+1; g)� 2�kgk22,n

o

+min
g2G

n
b�⇡,h(b

?

h
(bh+1), bh+1; g) + �kgk22,n

o

(a)
= max

g2G

n
b�⇡,h(bh, bh+1; g)� b�⇡,h(b

?

h
(bh+1), bh+1; g)� 2�kgk22,n

o

| {z }
(?)

�max
g2G

b��

⇡,h
(b?

h
(bh+1), bh+1; g). (F.12)

Here step (a) follows from that G is symmetric, b�⇡,h(bh, hh+1;�g) = �b�⇡,h(bh, hh+1; g), and that

min
g2G

n
b�⇡,h(b

?

h
(bh+1), bh+1; g) + �kgk22,n

o
= min

g2G

n
� b�⇡,h(b

?

h
(bh+1), bh+1;�g) + �kgk22,n

o

= min
g2G

n
� b�⇡,h(b

?

h
(bh+1), bh+1; g) + �kgk22,n

o

= �max
g2G

n
b�⇡,h(b

?

h
(bh+1), bh+1; g)� �kgk22,n

o

= �max
g2G

b��

⇡,h
(b?

h
(bh+1), bh+1; g).

In the sequel, we upper and lower bound term (?) respectively.

Upper bound of term (?). By inequality (F.12), after rearranging terms, we can arrive that

(?)  max
g2G

b��

⇡,h
(b?

h
(bh+1), bh+1; g) + max

g2G
b��

⇡,h
(bh, bh+1; g)

 max
g2G

b��

⇡,h
(b?

h
(bh+1), bh+1; g)

+ max
g2G

b��

⇡,h
(bh, bh+1; g)�max

g2G
b��

⇡,h
(bbh(bh+1), bh+1; g)

+ max
g2G

b��

⇡,h
(bbh(bh+1), bh+1; g)

On the one hand, by Lemma F.1, we have that with probability at least 1� �/2,

max
g2G

b��

⇡,h
(b?

h
(bh+1), bh+1; g)  ⇠ + ✏1/2B MG, (F.13)
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and by the definition of bbh(bh+1) in (3.11), it holds simultaneously that

max
g2G

b��

⇡,h
(bbh(bh+1), bh+1; g)  max

g2G
b��

⇡,h
(b?

h
(bh+1), bh+1; g)  ⇠ + ✏1/2B MG. (F.14)

On the other hand, by the choice of CR⇡(⇠), it holds that

max
g2G

b��

⇡,h
(bh, bh+1; g)�max

g2G
b��

⇡,h
(bbh(bh+1), bh+1; g)  ⇠. (F.15)

Consequently, by combining (F.13), (F.14), and (F.15), we conclude that with probability at least
1� �/2,

(?)  3⇠ + 2✏1/2B MG. (F.16)

Lower bound of term (?). For lower bound, we need two localized uniform concentration inequalities
similar to (F.10) and (F.11) in the proof of Lemma D.2. On the one hand, by Lemma I.1, for some
absolute constants c1, c2 > 0, it holds with probability at least 1� �/4 that,

��kgk22,n � kgk22
��  1

2
kgk22 +

M2
G log(4c1/⇣)

2c2n
, 8g 2 G, (F.17)

where ⇣ = min{�, 4c1 exp(�c2n↵2
G,n

/M2
G)} and ↵G,n is the critical radius of G defined in As-

sumption 4.2. On the other hand, following the same argument as in deriving (F.11), for any given
bh, b0h, bh+1 2 B, ⇡ 2 ⇧(H), and h 2 [H], in Lemma I.2 we choose F = G, X = A⇥ Z , Y = I,
and loss function

`(g(Ah, Zh), Ih) := &⇡
h
(bh, bh+1)(Ih)g(Ah, Zh)� &⇡

h
(b0

h
, bh+1)(Ih)g(Ah, Zh),

where &⇡
h

is defined in (F.1) and Ih 2 Ih is defined in the beginning of Appendix F. It holds that `
is L-Lipschitz continuous in its first argument with L = 2MB. Now setting f? = 0 in Lemma I.2,
we have that �n in Lemma I.2 coincides with ↵G,n in Assumption 4.2. Then we have that for some
absolute constants c1, c2 > 0, it holds with probability at least 1� �/(4|B|3|⇧(H)|H) that
���
⇣
b�⇡,h(bh, bh+1; g)� b�⇡,h(b

0
h
, bh+1; g)

⌘
�
⇣
�⇡,h(bh, bh+1; g)� �⇡,h(b

0
h
, bh+1; g)

⌘���

=
���bE⇡b [`(g(Ah, Zh), Ih)]� E⇡b [`(g(Ah, Zh), Ih)]

���

 18Lkgk2

s
M2

G · log(4c1|B|3|⇧(H)|H/⇣ 0)

c2n
+

18L ·M2
G · log

�
4c1|B|3|⇧(H)|H/⇣ 0

�

c2n
, 8g 2 G,

(F.18)

where ⇣ 0 = min{�, 4c1|B|3|⇧(H)|H exp(�c2n↵2
G,n

/M2
G)}. Applying a union bound argument over

bh, b0h, bh+1 2 B, ⇡ 2 ⇧(H), and h 2 [H], we have that (F.18) holds for any bh, b0h, bh+1 2 B,
g 2 G, ⇡ 2 ⇧(H), and h 2 [H] with probability at least 1� �/4. Finally, for simplicity, we denote
that

◆n :=

s
M2

G · log(4c1|B|3|⇧(H)|H/⇣ 0)

c2n
, ◆0

n
:=

s
M2

G · log(4c1/⇣)
2c2n

(F.19)

Now we are ready to prove the lower bound on term (?). For simplicity, given fixed bh, bh+1 2 B,
we denote

g⇡
h
:=

1

2�
`⇡
h
(bh, bh+1) 2 G,

where `⇡
h

is defined in (F.1) and g⇡
h
2 G due to Assumption 4.3. Now consider that

(?) = max
g2G

n
b�⇡,h(bh, bh+1; g)� b�⇡,h(b

?

h
(bh+1), bh+1; g)� 2�kgk22,n

o

� b�⇡,h(bh, bh+1; g
⇡

h
/2)� b�⇡,h(b

?

h
(bh+1), bh+1; g

⇡

h
/2)� �

2
kg⇡

h
k22,n,
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where the inequality follows from the fact that G is star-shaped and consequently g⇡
h
/2 2 G. Then

by applying concentration inequality (F.17) and (F.18), we have that
(?) � �⇡,h(bh, bh+1; g

⇡

h
/2)� �⇡,h(b

?

h
(bh+1), bh+1; g

⇡

h
/2)� 18L◆nkg⇡hk2 � 18L◆2

n

� �

2

✓
3

2
kg⇡

h
k22 + ◆02

n

◆

� �kg⇡
h
k22 � 18L◆nkg⇡hk2 � ✏1/2B MG � 18L◆2

n
� �

2

✓
3

2
kg⇡

h
k22 + ◆02

n

◆

=
�

4
kg⇡

h
k22 � 18L◆nkg⇡hk2 � 18L◆2

n
� �

2
◆02
n
� ✏1/2B MG, (F.20)

where the second inequality follows from that �⇡,h(b?(bh+1), bh+1; g⇡h/2)  ✏1/2B MG (we prove this
inequality by (F.25) in the proof of Lemma F.1) and the fact that

�⇡,h(bh, bh+1; g
⇡

h
/2) =

1

4�
E⇡b [`⇡

h
(bh, bh+1)(Ah, Zh)

2] = �kg⇡
h
k22.

Combining upper bound and lower bound of term (?). Now we are ready to combine the upper
bound and lower bound of (?) to derive the bound on L⇡

h
(bh, bh+1). By combining upper bound

(F.16) and lower bound (F.20), we have that with probability at least 1 � �, for any bh, bh+1 2 B,
⇡ 2 ⇧(H), and h 2 [H],

�

4
kg⇡

h
k22 � 18L◆nkg⇡hk2 � 18L◆2

n
� �

2
◆02
n
� ✏1/2B MG  3⇠ + 2✏1/2B MG, (F.21)

This gives a quadratic inequality on kg⇡
h
k2, i.e.,

�kg⇡
h
k22 � 72L◆n| {z }

(A)

kg⇡
h
k2 � 4

✓
18L◆2

n
+
�

2
◆02
n
+ 3⇠ + 3✏1/2B MG

◆

| {z }
(B)

 0.

By solving this quadratic equation, we have that

kg⇡
h
k2  1

2�
A+

1

2�

p
A2 + 4B  A

�
+

p
B

�
.

Applying the definition of A and B, we conclude that, with probability at least 1� �,

kg⇡
h
k2  72

�
L◆n +

2

�

✓
18L◆2

n
+
�

2
◆02
n
+ 3⇠ + 3✏1/2B MG

◆1/2

 72

�
L◆n +

6
p
2

�
L1/2◆n +

p
2p
�
◆0
n
+

2
p
3

�
⇠1/2 +

2
p
3

�
✏1/4B M1/2

G

Therefore, we can bound the RMSE loss L⇡

h
(bh, bh+1) by

q
L⇡

h
(bh, bh+1) = 2�kg⇡

h
k2  (144L+ 12

p
2L1/2)◆n + 2

p
2�◆0

n
+ 4

p
3⇠1/2 + 4

p
3✏1/4B M1/2

G .

(F.22)

Plugging in the definition of ◆n, ◆0n in (F.19), ⇠ in Lemma D.3, and that L = 2MB, we have that
q
L⇡

h
(bh, bh+1)

 (144L+ 12
p
2L) ·

s
M2

G · log(4c1|B|3|⇧(H)|H/⇣ 0)

c2n
+ 2

p
2� ·

s
M2

G · log(4c1/⇣)
2c2n

+ 4
p
3 ·

r
C1(�+ 1/�) ·M2

BM
2
G · log(|B||⇧(H)|H/⇣ 0)

n
+ 4

p
3 · ✏1/4B M1/2

G

 eC1MBMG

r
(�+ 1/�) · log(|B||⇧(H)|H/⇣)

n
+ eC1✏

1/4
B M1/2

G .

for some problem-independent constant eC1 > 0 and ⇣ = min{�, 4c1 exp(�c2n↵2
G,n

/M2
G)}. Here in

the second inequality we have used the fact that ⇣ < ⇣ 0. This finishes the proof of Lemma D.3.
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F.4 PROOF OF LEMMA F.1

Proof of Lemma F.1. Following the proof of Lemma D.2, we first relate b��

⇡,h
(bh, bh+1; g) =

b�⇡,h(bh, bh+1; g) � �kgk22,n and its population version ��

⇡,h
(bh, bh+1; g) via two localized uni-

form concentration inequalities. On the one hand, to relate kgk22 and kgk22,n, by Lemma I.1 (Theorem
14.1 of Wainwright (2019)), for some absolute constants c1, c2 > 0, it holds with probability at least
1� �/4 that

��kgk22,n � kgk22
��  1

2
kgk22 +

M2
G · log(4c1/⇣)

2c2n
, 8g 2 G, (F.23)

where ⇣ = min{�, 4c1 exp(�c2n↵2
G,n

/M2
G)} and ↵G,n is the critical radius of function class G

defined in Assumption 4.2. On the other hand, to relate b�⇡,h(bh, bh+1; g) and �⇡,h(bh, bh+1; g),
we invoke Lemma I.2 (Lemma 11 of (Foster and Syrgkanis, 2019)). Specifically, for any given
bh, bh+1 2 B, ⇡ 2 ⇧(H), and step h, in Lemma I.2 we choose F = G, X = A ⇥ Z , Y = Ih,
and loss function `(g(Ah, Zh), Ih) := &⇡

h
(bh, bh+1)(Ih)g(Ah, Zh) where `⇡

h
is defined in (F.1) and

Ih 2 Ih is defined in the beginning of Appendix F. We can see that ` is L-Lipschitz continuous in
the first argument since for any g, g0 2 G, (Ah, Zh) 2 A⇥ Z , it holds that

��`(g(Ah, Zh), Ih)� `(g0(Ah, Zh), Ih)
�� = |&⇡

h
(bh, bh+1)(Ih)| · |g(Ah, Zh)� g0(Ah, Zh)|

 2MB · |g(Ah, Zh)� g0(Ah, Zh)|,
which indicates that L = 2MB. Now setting f? = 0 in Lemma I.2, we have that �n in Lemma I.2
coincides with ↵G,n in Assumption 4.2. Then we can conclude that for some absolute constants
c1, c2 > 0, it holds with probability at least 1� �/(4|B|2|⇧(H)|H) that, for all g 2 G,

���b�⇡,h(bh, bh+1; g)� �⇡,h(bh, bh+1; g)
���

=
���bE⇡b [`(g(Ah, Zh), Ah, Zh)]� E⇡b [`(g(Ah, Zh), Ah, Zh)]

���
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s
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G · log
�
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�

c2n
+

18L ·M2
G · log

�
4c1|B|2|⇧(H)|H/⇣

�

c2n
,

(F.24)

where ⇣ = min{�, 4c1|B|2|⇧(H)|H exp(�c2n↵2
G,n

/M2
G)}. Applying a union bound argument over

bh, bh+1 2 B, ⇡ 2 ⇧(H), and h 2 [H], we then have that (F.11) holds for any bh, bh+1 2 B, g 2 G,
⇡ 2 ⇧(H), and h 2 [H] with probability at least 1 � �/4. Now using these two concentration
inequalities (F.23) and (F.24), we can further deduce that, for some absolute constants c1, c2 > 0,
with probability at least 1� �/2,

max
g2G
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where ⇣ is given as ⇣ = min{�, 4c1 exp(�c2n↵2
G,n

/M2
G)} and ⇣ 0 is given as ⇣ 0 =

min{�, 4c1|B|2|⇧(H)|H exp(�c2n↵2
G,n

/M2
G)} for any policy ⇡ 2 ⇧(H) and step h 2 [H]. Here

the last inequality holds from the fact that

max
g2G

�⇡,h(b
?

h
(bh+1), bh+1; g)  ✏1/2B MG, (F.25)

and that supkgk2
{akgk2 � bkgk22}  a2/4b. Note that inequality (F.25) holds according to Assump-

tion 4.3 and 4.3. In fact, by Assumption 4.3, we can first obtain by quadratic optimization that for
� > 0,

max
g2G

��

⇡,h
(bh, bh+1) =

1

4�
L⇡

h
(bh, bh+1),

for any functions bh, bh+1 2 B. Thus we can equivalently express b?
h
(bh+1) as

b?
h
(bh+1) = arg min

b2B

1

4�
L⇡

h
(b, bh+1) = arg min

b2B
L⇡

h
(b, bh+1).

This further indicates the following bound on maxg2G �⇡,h(b?h(bh+1), bh+1; g) that

max
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?
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g2G

q
Lh(b?h(bh+1), bh+1) · E⇡b [g(Ah, Zh)2]  ✏1/2B MG,

by Cauchy-Schwarz inequality and Assumption 4.3. Now according to the choice of ⇠ in Lemma D.2,
using the fact that ⇣ < ⇣ 0 and L = 2MB, we can conclude that, with probability at least 1� �/2,

max
g2G

b��

⇡,h
(b?

h
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⇡

h+1; g)

 728L2 ·M2
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�n
+
�M2

G · log(4c1/⇣)
2c2n

+
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+ ✏1/2B MG

. O
✓
(�+ 1/�) ·M2

BM
2
G · log(|B||⇧(H)|H/⇣)

n

◆
+ ✏1/2B MG . ⇠ + ✏1/2B MG.

Therefore, we conclude the proof of Lemma F.1.

G PROOF OF THEOREM 4.4

Proof of Theorem 4.4. By the definition of F (b) and bF (b) in (D.1) and the fact that J(⇡) = F (b⇡)
according to Theorem 3.3, we first have that

J(⇡?)� J(b⇡)
= F (b⇡

?

)� F (bb⇡)

=
�
F (b⇡

?

)� bF (b⇡
?

)
�

| {z }
(i)

+
�
F (b⇡

?

)� bF (bb⇡)
�

| {z }
(ii)

+
� bF (bb⇡)� F (bb⇡)

�
| {z }

(iii)

.

We can bound term (i) and term (iii) via uniform concentration inequalities, which we present latter.
For term (ii), via Lemma D.2, with probability at least 1 � �, b⇡

? 2 CR⇡
?

(⇠) and b
b⇡ 2 CRb⇡(⇠),

which indicates that
(ii) = bF (b⇡

?

)� bF (bb⇡)  max
b2CR⇡?

(⇠)

bF (b)� min
b2CRb⇡(⇠)

bF (b). (G.1)

From (G.1), we can further bound term (ii) as

(ii)  max
b2CR⇡?

(⇠)

bF (b)� max
⇡2⇧(H)

min
b2CR⇡(⇠)

bF (b)
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bF (b)� min
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(⇠)

bF (b)
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)
��� . (G.2)
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Here the first inequality holds because max⇡2⇧(H) minb2CR⇡(⇠)
bF (b) = minb2CRb⇡(⇠)

bF (b) by the
definition of b⇡ from (3.14). The second inequality holds because by definition ⇡? is the optimal
policy in ⇧(H). The third inequality is trivial. Now to further bound (G.2) by the RMSE loss defined
in (3.6), we consider

2 max
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(⇠)

��� bF (b)� bF (b⇡
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���
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?

)
���

| {z }
(vi)

,

where we can bound term (iv) and term (vi) via uniform concentration inequalities, which we present
latter. For term (v), we invoke Lemma D.1 and obtain that

(v)  2 max
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Now invoking Lemma D.3, with probability at least 1��, maxb2CR⇡?
(⇠)

p
L⇡?

h
(bh, bh+1) is bounded

by

max
b2CR⇡?

(⇠)

q
L⇡

h
(bh, bh+1)  eC1MBMG

r
(�+ 1/�) log(|B||⇧(H)|H/⇣)

n
+ eC1✏

1/4
B M1/2

G , (G.3)

for each step h 2 [H], where ⇣ = min{�, c1 exp(�c2n↵2
G,n

)}. In the sequel, we turn to deal with
term (i), (iii), (iv), and (vi), respectively. To this end, it suffices to apply uniform concentration
inequalities to bound F (b) and bF (b) uniformly over b 2 B

⌦H . By Hoeffding inequality, we have
that, with probability at least 1� �,

���J(⇡,b)� bJ(⇡,b)
��� 

r
2M2

B log(|B|/�)
n

, 8⇡ 2 ⇧(H), 8b 2 B
⌦H . (G.4)

Consequently, all of (i), (iii), (iv), and (vi) are bounded by the right hand side of (G.4). Finally, by
combining (G.3) and (G.4), with probability at least 1� 3�, it holds that

J(⇡?)� J(b⇡)  (i) + (iii) + (iv) + (vi) + (v)

 2
p
C⇡?

HX

h=1

�h�1

 
eC1MBMG

r
(�+ 1/�) log(|B||⇧(H)|H/⇣)

n
+ eC1✏

1/4
B M1/2

G

!

+ 4

r
2M2

B log(|B|/�)
n

 C 0
1

p
C⇡? (�+ 1/�)1/2 HMBMG

r
log(|B||⇧(H)|H/⇣)

n
+ C 0

1

p
C⇡?H✏1/4B M1/2

G ,

for some problem-independent constant C 0
1 > 0. We finish the proof of Theorem 4.4 by taking

� = 1.

H DETAILS FOR LINEAR FUNCTION APPROXIMATION

H.1 MAIN RESULT FOR LINEAR FUNCTION APPROXIMATION

In this subsection, we extend Theorem 4.4 to primal function class B, dual function class G, and
policy class ⇧(H) with linear structures. The linear structure assumption is commonly considered
in the RL literature (Jin et al., 2021; Xie et al., 2021; Zanette et al., 2021; Duan et al., 2021; Min
et al., 2022a;b; Fei and Xu, 2022; Huang et al., 2023), to mention a few. And it can be viewed as
an extension of linear bandits (Auer, 2002; Dani et al., 2008; Li et al., 2010; Abbasi-Yadkori et al.,
2011; He et al., 2022) to multiple-horizon setting. Note that the exact detail of the linear structure
assumption might change across different works. In our case, we consider linear function classes Blin,
Glin and ⇧lin, which is characterized by the following definition.
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Definition H.1 (Linear function approximation). Let � : A ⇥W ! R
d be a feature mapping for

some integer d 2 N. We let the primal function class be B = Blin where

Blin :=

(
b

����� b(·, ·) = h�(·, ·), ✓i, ✓ 2 R
d, k✓k2  Lb, sup

w2W
|
X

a2A
b(a,w)|  MB

)
.

Let  = { h : A⇥O ⇥Hh�1 ! R
d}H

h=1 be H feature mappings. We let the policy function class
be ⇧(H) = ⇧lin where ⇧lin = {⇧lin,h}Hh=1 and each ⇧lin,h is defined as

⇧lin,h :=

⇢
⇡h

���� ⇡h(a|o, ⌧) =
exp (h h(a, o, ⌧),�i)P

a02A exp(h h(a0, o, ⌧),�i)
, � 2 R

d, k�k2  L⇡

�
.

Finally, let ⌫ : A⇥ Z ! R
d be another feature mapping. We let the dual function class be G = Glin

where

Glin :=
�
g
�� g(·, ·) = h⌫(·, ·),!i,! 2 R

d, k!k2  Lg

 
.

Assume without loss of generality that these feature mappings are normalized, i.e.,
k�k2, k k2, k⌫k2  1.

We note that Definition H.1 is consistent with Assumption 4.2. One can see that Blin and Glin is
uniformly bounded, Glin is symmetric and star-shaped. And for other more detailed theoretical
properties of Blin, Glin, and ⇧lin, we refer the readers to Appendix H.2 for corresponding results.

Under linear function approximation, we can extend Theorem 4.4 to the following corollary, which
characterizes the suboptimality (2.2) of b⇡ found by P3O when using Blin, Glin, and ⇧lin as function
classes.
Corollary H.2 (Suboptimality analysis: linear function approximation). With linear function ap-
proximation (Definition H.1), under Assumption 3.1, 3.2, 4.1, and 4.3, by setting the regularization
parameter � and the confidence parameter ⇠ as � = 1 and

⇠ = C2M
2
B ·M2

G · dH · log (1 + LbL⇡Hn/�) /n,

then with probability at least 1� �, it holds that

SubOpt(b⇡)  C 0
2

p
C⇡?HMBLg

p
dH log (1 + LbL⇡Hn/�) /n+ C 0

2

p
C⇡?LgH✏

1/4
B .

Here C2 and C 0
2 are problem-independent universal constants.

Proof of Corollary H.2. See Appendix H.3 for a detailed proof.

The guarantee of Corollary H.2 is structurally similar to that of Theorem 4.4, except that we can
explicitly compute the complexity of the linear function classes and policy class. When ✏B = 0,
P3O algorithm enjoys a eO(

p
C⇡?H3d/n) suboptimality under the linear function approximation.

Compared to Theorem 4.4, Corollary H.2 does not explicitly assume Assumption 4.2 since it is
implicitly satisfied by Definition H.1.

H.2 AUXILIARY RESULTS FOR LINEAR FUNCTION APPROXIMATION

Here we present results that bound the complexity of certain functions classes in the case of linear
function approximation (Definition H.1).

Recall the definition of the bridge function class B⌦H where B = Blin is defined as

Blin :=

(
b

����� b(·, ·) = h�(·, ·), ✓i, ✓ 2 R
d, k✓k2  Lb, sup

w2W

��
X

a2A
b(a,w)

��  MB

)
.

Denote by N1
✏
(B) the ✏-covering number of B with respect to the `1 norm. That is, there exists

a collection of functions {bi}Ni=1 with N  N1
✏
(B) such that for any b 2 B, we can find some

b0 2 {bi}Ni=1 satisfying

kb� b0k1 := sup
a2A,w2W

|b(a,w)� b0(a,w)|  ✏.
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Recall the policy function class ⇧(H) = ⇧⌦H

lin where ⇧lin is defined as

⇧lin :=

⇢
⇡

���� ⇡(a|o, ⌧) =
eh (a,o,⌧),�i

P
a02A eh (a0,o,⌧),�i , � 2 R

d, k�k2  L⇡

�
.

Denote by N1,1
✏

(⇧lin) the ✏-covering number of ⇧lin with respect to the `1,1 norm, i.e.,

k⇡ � ⇡0k1,1 := sup
o2O,⌧2H

X

a2A
|⇡(a|o, ⌧)� ⇡0(a|o, ⌧)|.

The upper bounds for these covering numbers are given by the following lemma.
Lemma H.3 (Lemma 6 in Zanette et al. 2021). For any ✏ 2 (0, 1), we have

logN1
✏
(B)  d log

✓
1 +

2Lb

✏

◆
,

logN1,1
✏

(⇧lin)  d log

✓
1 +

16L⇡

✏

◆
.

The ✏-nets for the product function classes In the rest of Appendix H, due to the proof, we need
to consider ✏-nets defined for the product function classes B⌦H and ⇧(H) = ⇧⌦H

lin . Specifically, for
B
⌦H , we consider an ✏-net of B⌦H defined in the following way: for any b = {bh}Hh=1 2 B

⌦H ,
there exists an b

0 = {b0
h
}H
h=1 in the ✏-net, such that

kbh � b0
h
k1  ✏.

By Lemma H.3, the cardinality of this ✏-net is upper bounded by

logN1
✏
(B⌦H)  dH log

✓
1 +

2Lb

✏

◆
.

Similarly, we consider an ✏-net defined for ⇧(H) defined as the following: for any ⇡ = {⇡h}Hh=1 2
⇧(H), there exists an ⇡0 = {⇡0

h
}H
h=1 in the ✏-net such that

k⇡h � ⇡0
h
k1,1  ✏.

Then by Lemma H.3, the cardinality of this ✏-net is upper bounded by

logN1,1
✏

(⇧(H))  dH log

✓
1 +

16L⇡

✏

◆

For the dual function class Glin, recall the definition of the critical radius ↵G,n in Assumption 4.2.
The next lemma bound the critical radius of the linear dual function class G = Glin.
Lemma H.4 (Lemma D.3 in Duan et al. 2021). For the function class Glin defined in Definition H.1,
its critical radius ↵G,n satisfies

↵G,n = MG

r
2d

n
,

where MG := sup
g2Glin

kgk1.

H.3 PROOF OF COROLLARY H.2

We first introduce some lemmas needed for proving Corollary H.2. Their proof is deferred to
Appendix H.4.1 and H.4.2.
Lemma H.5 (Alternative of Lemma D.2 in the linear case). Let the function, policy and dual function
class B = Blin, ⇧(H) = ⇧lin and G = Glin be defined as in Definition H.1. Then under Assumption
3.2, 4.2, and 4.3, by setting ⇠ such that

⇠ = C2 ·
✓
�+

1

�

◆
· M

2
BM

2
GdH log (1 + LbL⇡Hn/�)

n
,

for some problem-independent universal constant C2 > 0, it holds with probability at least 1 � �
that b⇡ 2 CR⇡(⇠) for any policy ⇡ 2 ⇧(H).
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Lemma H.6 (Alternative of Lemma D.3 in the linear case). Under Assumption 3.2, 4.2, 4.3, and
4.3, by setting the same ⇠ as in Lemma H.5, with probability at least 1� �, for any policy ⇡ 2 ⇧(H),
b 2 CR⇡(⇠), and step h,

q
L⇡

h
(bh, bh+1)  eC2 · (1 + �)MBMG ·

p
dH log (1 + LbL⇡Hn/�) /n+ eC2 ·M1/2

G ✏1/4B ,

for some problem-independent universal constant eC2 > 0.

We are now ready to prove Corollary H.2.

Proof of Corollary H.2. We follow the proof of Theorem 4.4 and write
J(⇡?)� J(b⇡)

=
�
J(⇡?,b⇡

?

)� bJ(⇡?,b⇡
?

)
�

| {z }
(i)

+
� bJ(⇡?,b⇡

?

)� bJ(b⇡,bb⇡)
�

| {z }
(ii)

+
� bJ(b⇡,bb⇡)� J(b⇡,bb⇡)

�
| {z }

(iii)

.

(H.1)

We deal with term (ii) first. By Lemma H.5, with probability at least 1� �/2, b⇡
? 2 CR⇡

?

(⇠) and
b
b⇡ 2 CRb⇡(⇠), which indicates that

(ii) = bJ(⇡?,b⇡
?

)� bJ(b⇡,bb⇡)  max
b2CR⇡?

(⇠)

bJ(⇡?,b)� min
b2CRb⇡(⇠)

bJ(b⇡,b).

Then following (G.2), we can upper bound term (ii) by

(ii)  2 max
b2CR⇡?

(⇠)

��� bJ(⇡?,b)� bJ(⇡?,b⇡
?

)
���

 2 max
b2CR⇡?

(⇠)

��� bJ(⇡?,b)� J(⇡?,b)
���

| {z }
(iv)

+2 max
b2CR⇡?

(⇠)

���J(⇡?,b)� J(⇡?,b⇡
?

)
���

| {z }
(v)

+ 2
���J(⇡?,b⇡

?

)� bJ(⇡?,b⇡
?

)
���

| {z }
(vi)

. (H.2)

To bound term (v), we invoke Lemma D.1 which holds regardless of the underlying function classes
and obtain that

(v) = 2 max
b2CR⇡?

(⇠)

HX

h=1

�h�1
p
C⇡ ·

q
L⇡

h
(bh, bh+1)  2

p
C⇡?

HX

h=1

�h�1 max
b2CR⇡?

(⇠)

q
L⇡

h
(bh, bh+1).

Now by Lemma H.6, with probability at least 1� �, maxb2CR⇡?
(⇠)

p
L⇡

h
(bh, bh+1) is bounded by

max
b2CR⇡?

(⇠)

q
L⇡

h
(bh, bh+1)

 eC2 · (1 + �)MBMG ·
r

dH log (1 + LbL⇡Hn/�)

n
+ eC2 ·M1/2

G ✏1/4B , 8h 2 [H]. (H.3)

Now we deal with the term (i), (iii), (iv), and (vi), respectively. To this end, we apply uniform
concentration inequalities to bound J(⇡,b) and bJ(⇡,b) uniformly over the ✏-net of ⇡ and b as
described in the proof of Lemma H.5. By Hoeffding’s inequality, we have that, with probability at
least 1� �, for all ⇡ and b in their ✏-nets,

���J(⇡,b)� bJ(⇡,b)
��� 

r
2M2

B log(N✏,bN✏,⇡/�)

n
,

where N✏,⇡ and N✏,b are the covering numbers defined in Appendix H.2. Here we use the regularity
assumption that |

P
a2A b⇡1 (a,w)|  MB for all w 2 W and the definition of J(⇡,b) from (D.1).

Consequently, for all ⇡ 2 ⇧(H) and b 2 B
⌦H , we have

���J(⇡,b)� bJ(⇡,b)
��� 

r
2M2

B log(N✏,bN✏,⇡/�)

n
+ 2MB✏. (H.4)
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Next, all of (i), (iii), (iv), and (vi) are bounded by the R.H.S. of (H.4). Finally, by (H.1), (H.2), (H.3)
and (H.4), we have that

J(⇡?)� J(b⇡)
 (i) + (iii) + (iv) + (vi) + (v)

 2
p
C⇡?

HX

h=1

�h�1

"
eC2 · (1 + �)MBMG ·

r
dH log (1 + LbL⇡Hn/�)

n
+ eC2 ·M1/2

G ✏1/4B

#

+ 4

"r
2M2

B log(N✏,bN✏,⇡/�)

n
+ 2MB✏

#
.

Finally, by taking ✏ = 1/n2, and plugging in the values of N✏,b and N✏,⇡ from Lemma H.3, we get

J(⇡?)� J(b⇡)

 2
p
C⇡?

HX

h=1

�h�1

"
eC2 · (1 + �)MBMG ·

r
dH log (1 + LbL⇡Hn/�)

n
+ eC2 ·M1/2

G ✏1/4B

#

+ C3MB

r
dH log(1 + LbL⇡n/�)

n
,

where C3 is some problem-independent universal constant. We then simplify the expression and use
the fact that

MG = sup
a,z

|g(a, z)| = sup
a,z

|h⌫(a, z),!i|  sup
a,z

k⌫(a, z)k2 · k!k2  Lg.

This gives the result of Corollary H.2.

H.4 PROOF OF LEMMAS IN APPENDIX H

H.4.1 PROOF OF LEMMA H.5

Proof of Lemma H.5. First, for any ✏ 2 (0, 1), consider arbitrary ⇡ = {⇡h}Hh=1 and ⇡0 = {⇡0
h
}H
h=1

in ⇧lin such that k⇡h � ⇡0
h
k1,1  ✏ for all h 2 [H]. And consider arbitrary b = {bh}Hh=1

and b
0 = {b0

h
}H
h=1 in B

⌦H such that kbh � b0
h
k1  ✏ for all h 2 [H]. Then by definition of

��

⇡,h
(bh, bh+1; g) in (3.9) and b��

⇡,h
(bh, bh+1; g) in (3.10), and that ��

⇡,h
= �0

⇡,h
and b��

⇡,h
= b�0

⇡,h
,

one can easily get that
���⇡,h(bh, bh+1; g)� �⇡0,h(b

0
h
, b0

h+1; g)
��  [2✏+ � · (✏+ ✏MB)] ·MG  4MBMG✏,���b�⇡,h(bh, bh+1; g)� b�⇡0,h(b

0
h
, b0

h+1; g)
���  [2✏+ � · (✏+ ✏MB)] ·MG  4MBMG✏, (H.5)

for all g 2 G.

Now, same as in the proof of Lemma D.2, we want to show: for any ⇡ 2 ⇧(H),

max
g2G

b��

⇡,h
(b⇡

h
, b⇡

h+1; g)  ⇠.

The rest of the proof would be very similar to that of Lemma D.2 with an additional covering
argument. To begin with, we again write b��

⇡,h
(b⇡

h
, b⇡

h+1; g) =
b�⇡,h(b⇡h, b

⇡

h+1; g)� �kgk22,n.

Same as (F.10), we have that with probability at least 1� �/2,

��kgk22,n � kgk22
��  1

2
kgk22 +

M2
G log(2c1/⇣)

2c2n
, 8g 2 G, (H.6)

where ⇣ = min{�, 2c1 exp(�c2n↵2
G,n

/M2
G)} and c1, c2 are some universal constants.

Next, we upper bound |b�⇡0,h(bh, bh+1; g)� �⇡0,h(bh, bh+1; g)| for any ⇡ 2 ⇧(H), and b 2 B
⌦H .

We first prove this for a fixed ✏-net of ⇧(H) and B
⌦H . Specifically, choose an ✏-net of ⇧(H) such

that for any ⇡ = {⇡h}Hh=1 and ⇡0 = {⇡0
h
}H
h=1 in this ✏-net, it holds that k⇡h � ⇡0

h
k1,1  ✏ for all
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h. Also choose an ✏-net of B⌦H such that for any b = {bh}Hh=1 and b
0 = {b0

h
}H
h=1 in the ✏-net, it

holds that kbh � b0
h
k1  ✏ for all h. Denote the cardinality of these two ✏-net by N✏,⇡ and N✏,b,

respectively. Then by the same argument behind (F.11), we get that, with probability at least 1� �/2,
for any ⇡ and b in their ✏-nets, and for any g 2 G,

���b�⇡,h(bh, bh+1; g)� �⇡,h(bh, bh+1; g)
���

 18Lkgk2

s
M2

G log
�
2c1N 2

✏,bN✏,⇡H/⇣
�

c2n
+

18LM2
G log

�
2c1N 2

✏,bN✏,⇡H/⇣
�

c2n
, (H.7)

where ⇣ 0 = min{�, 2c1N 2
✏,bN✏,⇡H exp(�c2n↵2

G,n
/M2

G)}.

Now for any ⇡ 2 ⇧(H) and b 2 B
⌦H , by our construction of the ✏-nets, we can find a ⇡0 and b

0

in the ✏-nets such that k⇡h � ⇡0
h
k1,1  ✏ and kbh � b0

h
k1  ✏ for all h. Then we have that with

probability at least 1� �/2, for any ⇡ 2 ⇧(H) and b 2 B
⌦H , and for any g 2 G,

���b�⇡,h(bh, bh+1; g)� �⇡,h(bh, bh+1; g)
���

 |b�⇡,h(bh, bh+1; g)� b�⇡0,h(b
0
h
, b0

h+1; g)|+ |b�⇡0,h(b
0
h
, b0

h+1; g)� �⇡0,h(b
0
h
, b0

h+1; g)|
+ |�⇡0,h(b

0
h
, b0

h+1; g)� �⇡,h(bh, bh+1; g)|

 8MBMG · ✏+ 18Lkgk2

s
M2

G log
�
2c1N 2

✏,bN✏,⇡H/⇣
�

c2n
+

18LM2
G log

�
2c1N 2

✏,bN✏,⇡H/⇣
�

c2n
,

(H.8)

where the first step is by the triangle inequality and the second steps is by (H.5) and (H.7).

Now combine (H.6) and (H.8) with a union bound, we conclude that, with probability at least 1� �,
for any ⇡ 2 ⇧(H),

max
g2G

b��

⇡,h
(b⇡

h
, b⇡

h+1; g)

= max
g2G

n
b�⇡,h(b

⇡

h
, b⇡

h+1; g)� �kgk22,n
o

 max
g2G

(
�⇡,h(b

⇡

h
, b⇡

h+1; g)� �kgk22 +
�

2
kgk22 +

�M2
G log(2c1/⇣)

2c2n
,

+ 18Lkgk2

s
M2

G log
�
2c1N 2

✏,bN✏,⇡H/⇣
�

c2n
+

18LM2
G log

�
2c1N 2

✏,bN✏,⇡H/⇣
�

c2n

�
+ 8MBMG✏

 max
g2G

�⇡,h(b
⇡

h
, b⇡

h+1; g) + max
g2G

(
� �

2
kgk22 + 18Lkgk2

s
M2

G log
�
2c1N 2

✏,bN✏,⇡H/⇣
�

c2n

)

+
�M2

G log(2c1/⇣)

2c2n
+

18LM2
G log

�
2c1N 2

✏,bN✏,⇡H/⇣
�

c2n
+ 8MBMG✏


728L2M2

G log(2c1N 2
✏,bN✏,⇡H/⇣ 0)

�n
+
�M2

G log(2c1/⇣)

2c2n

+
18LM2

G log(2c1N 2
✏,bN✏,⇡H/⇣ 0)

c2n
+ 8MBMG✏, (H.9)

with ⇣ = min{�, 2c1 exp(�c2n↵2
G,n

/M2
G)} and ⇣ 0 = min{�, 2c1N 2

✏,bN✏,⇡H exp(�c2n↵2
G,n

/M2
G)}

for any policy ⇡ 2 ⇧(H) and step h. Here the first inequality is by (H.6) and (H.8), the second
inequality is trivial, and the last inequality holds from the fact that �⇡,h(b⇡h, b

⇡

h+1; g) = 0 and the fact
that supkgk2

{akgk2 � bkgk22}  a2/4b.
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Now by Definition H.1, we apply Lemma H.3 with k✓hk2  Lb and k�hk  L⇡ and get that

logN✏,⇡  dH log

✓
1 +

16L⇡

✏

◆
,

logN✏,b  dH log

✓
1 +

2Lb

✏

◆
. (H.10)

Now we pick ✏ = 1/n2, and together with (H.9) and (H.10), we get that

max
g2G

b��

⇡,h
(b⇡

h
, b⇡

h+1; g)  C ·
(�+ 1/�)M2

BM
2
G
⇥
dH log (1 + LbL⇡Hn/�) + n↵2

G,n
/M2

G
⇤

n
+ C · MBMG

n2
,

where C is some universal constant. Here we have plugged in the value of ⇣, ⇣ 0 and L = 2MB.
Finally, by plugging in the value of ↵G,n from Lemma H.4, we conclude that

max
g2G

b��

⇡,h
(b⇡

h
, b⇡

h+1; g)  C1 ·
✓
�+

1

�

◆
· M

2
BM

2
GdH log (1 + LbL⇡Hn/�)

n
+ C1 ·

MBMG
n2

,

where C1 is some problem-independent constant. Note that second term on the right hand side is
smaller than the first term. Then the result follows from our choice of ⇠ in Lemma H.5.

H.4.2 PROOF OF LEMMA H.6

Proof of Lemma H.6. Consider any ⇡ 2 ⇧(H) and b = {bh}Hh=1 2 CR⇡(⇠). Same as (F.12), we
have

max
g2G

b��

⇡,h
(bh, bh+1; g)

� max
g2G

n
b�⇡,h(bh, bh+1; g)� b�⇡,h(b

?

h
(bh+1), bh+1; g)� 2�kgk22,n

o

| {z }
(?)

�max
g2G

b��

⇡,h
(b?

h
(bh+1), bh+1; g).

We again upper and lower bound term (?) respectively.

Upper bound of term (?). By the same argument as in the proof of Lemma F.1, we have that: for
any b 2 B

⌦H , ⇡ 2 ⇧(H), and h 2 [H], it holds with probability at least 1� �/2 that

max
g2G

b�⇡,h(b
?

h
(bh+1), bh+1; g)  ⇠ + ✏1/2B MG,

where b?
h
(bh+1) is defined in (F.3) and ⇠ is defined in Lemma H.5. We then get

max
g2G

b��

⇡,h
(bbh(bh+1), bh+1; g)  max

g2G
b��

⇡,h
(b?

h
(bh+1), bh+1; g)  ⇠ + ✏1/2B MG, (H.11)

where the first inequality follows from the definition of bbh(bh+1) in (3.11). Also note that, by the
construction of the confidence region CR⇡(⇠), we have

max
g2G

b��

⇡,h
(bh, bh+1; g)�max

g2G
b��

⇡,h
(bbh(bh+1), bh+1; g)  ⇠. (H.12)

Furthermore, we can write

(?)  max
g2G

b��

⇡,h
(b?

h
(bh+1), bh+1; g) + max

g2G
b��

⇡,h
(bh, bh+1; g)

 max
g2G

b��

⇡,h
(b?

h
(bh+1), bh+1; g)

+ max
g2G

b��

⇡,h
(bh, bh+1; g)�max

g2G
b��

⇡,h
(bbh(bh+1), bh+1; g)

+ max
g2G

b��

⇡,h
(bbh(bh+1), bh+1; g).
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Combining with (H.11) and (H.12), we get that, with probability at least 1� �/2,

(?)  3⇠ + 2✏1/2B MG. (H.13)

Lower bound of term (?). First of all, same as (F.17), it holds with probability at least 1� �/4 that,
��kgk22,n � kgk22

��  1

2
kgk22 +

M2
G log(4c1/⇣)

2c2n
, 8g 2 G, (H.14)

where ⇣ = min{�, 4c1 exp(�c2n↵2
G,n

/M2
G)} for some absolute constants c1 and c2, and ↵G,n is the

critical radius of G defined in Assumption 4.2.

Second, we fix an ✏-net of ⇧(H) and an ✏-net of B⌦H , as described in Appendix H.2. Denote by
N✏,⇡ and N✏,b their respective covering numbers. Then by the same argument behind (F.18) and a
union bound, we get that, with probability at least 1� �/4, for all ⇡ = {⇡h}Hh=1, b = {bh}Hh=1 and
b
0 = {b0

h
}H
h=1 in their ✏-nets, and for all g 2 G,

���
⇣
b�⇡,h(bh, bh+1; g)� b�⇡,h(b

0
h
, bh+1; g)

⌘
�
⇣
�⇡,h(bh, bh+1; g)� �⇡,h(b

0
h
, bh+1; g)

⌘���

 18Lkgk2

s
M2

G log(4c1N 3
✏,bN✏,⇡H/⇣ 0)

c2n
+

18LM2
G log

�
4c1N 3

✏,bN✏,⇡H/⇣ 0
�

c2n
, (H.15)

where ⇣ 0 = min{�, 4c1N 3
✏,bN✏,⇡H exp(�c2n↵2

G,n
/M2

G)}.

We then use (H.5), and conclude that, with probability at least 1 � �/4, for all ⇡ 2 ⇧(H), and b,
b
0 2 B

⌦H , and g 2 G,
���
⇣
b�⇡,h(bh, bh+1; g)� b�⇡,h(b

0
h
, bh+1; g)

⌘
�
⇣
�⇡,h(bh, bh+1; g)� �⇡,h(b

0
h
, bh+1; g)

⌘���

 18Lkgk2

s
M2

G log(4c1N 3
✏,bN✏,⇡H/⇣ 0)

c2n
+

18LM2
G log

�
4c1N 3

✏,bN✏,⇡H/⇣ 0
�

c2n
+ 8MBMG✏.

(H.16)

In the sequel, for simplicity, we denote that

◆n :=

s
M2

G log(4c1N 3
✏,bN✏,⇡H/⇣ 0)

c2n
, ◆0

n
:=

s
M2

G log(4c1/⇣)

2c2n
, (H.17)

where ⇣ and ⇣ 0 are same as in (H.14) and (H.15). Furthermore, given fixed bh, bh+1 2 B, we denote

g⇡
h
:=

1

2�
`⇡
h
(bh, bh+1) 2 G, (H.18)

where `⇡
h

is defined by (F.1) and g⇡
h
2 G follows from Assumption 4.3. We then have

(?) = max
g2G

n
b�⇡,h(bh, bh+1; g)� b�⇡,h(b

?

h
(bh+1), bh+1; g)� 2�kgk22,n

o

� b�⇡,h(bh, bh+1; g
⇡

h
/2)� b�⇡,h(b

?

h
(bh+1), bh+1; g

⇡

h
/2)� �

2
kg⇡

h
k22,n,

where the inequality holds because g⇡
h
/2 2 G.

Together with (H.14) and (H.16), we have

(?) � �⇡,h(bh, bh+1; g
⇡

h
/2)� �⇡,h(b

?

h
(bh+1), bh+1; g

⇡

h
/2)� 18L◆nkg⇡hk2 � 18L◆2

n

� 8MBMG✏�
�

2

✓
3

2
kg⇡

h
k22 + ◆02

n

◆

� �kg⇡
h
k22 � 18L◆nkg⇡hk2 � ✏1/2B MG � 18L◆2

n
� 8MBMG✏�

�

2

✓
3

2
kg⇡

h
k22 + ◆02

n

◆

=
�

4
kg⇡

h
k22 � 18L◆nkg⇡hk2 � ✏1/2B MG � 18L◆2

n
� 8MBMG✏�

�

2
◆02
n
, (H.19)
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where the second inequality follows from the same reason as in (F.20).

Finally, combine (H.19) and (H.13) and we get
�

4
kg⇡

h
k22 � 18L◆nkg⇡hk2 � ✏1/2B MG � 18L◆2

n
� 8MBMG✏�

�

2
◆02
n
 3⇠ + 2✏1/2B MG.

This gives the following quadratic inequality w.r.t. kg⇡
h
k2

�kg⇡
h
k22 � 72L◆n| {z }

A

kg⇡
h
k2 � 4


18L◆2

n
+
�

2
◆0
n

2
+ 3⇠ + 8MBMG✏+ 3✏1/2B MG

�

| {z }
B

 0.

By the fact that x2 �Ax� B  0 implies x  (A +
p
A2 + 4B)/2  A+

p
B, we have

kg⇡
h
k2  72L◆n

�
+

s
4

�


18L◆2

n
+
�

2
◆0
n

2 + 3⇠ + 8MBMG✏+ 3✏1/2B MG

�
.

We then plug in the values of ◆n and ◆0
n

from (H.17), ⇠ from Lemma H.5, ⇣ and ⇣ 0 from below (H.14)
and (H.15), N✏,b and N✏,⇡ from Lemma H.3, ↵G,n from Lemma H.4, and set ✏ = 1/n2. Simplify
the expression and we get

kg⇡
h
k2  C ·

✓
1 +

1

�

◆
MBMG ·

r
dH log (1 + LbL⇡Hn/�)

n
+ C · M

1/2
G ✏1/4B
�

,

where C is some problem-independent universal constant. By (H.18) and (3.6), we have
L⇡

h
(bh, bh+1) = k2�g⇡

h
k22. It follows that

q
L⇡

h
(bh, bh+1) = 2�kg⇡

h
k2  eC2 · (1 + �)MBMG ·

r
dH log (1 + LbL⇡Hn/�)

n
+ eC2 ·M1/2

G ✏1/4B ,

for some constant eC2. This finishes the proof.

I AUXILIARY LEMMAS

We introduce some useful lemmas for the uniform concentration over function classes. Before we
present the lemmas, we first introduce several notations. For a function class F on a probability
space (X , P ), we denote by kfk22 the expectation of f(X)2, that is kfk22 = EX⇠P [f(X)2]. Also,
we denote by

Rn(F , �) := E

"
sup

f2F :kfk2�

�����
1

n

nX

i=1

✏if(Xi)

�����

#
(I.1)

the localized Rademacher complexity of F with scale � > 0 and size n 2 N. Here {✏i}bi=1 and
{Xi}ni=1 are i.i.d. and independent. Each ✏i is uniformly distributed on {+1,�1} and each Xi is
distributed according to P . Finally, we denote by star(F) the star-shaped set induced by set F as

star(F) = {↵f : ↵ 2 [0, 1], f 2 F} . (I.2)
Now we are ready to present the lemmas for uniform concentration inequalities.
Lemma I.1 (Localized Uniform Concentration 1 (Wainwright, 2019)). Given a star-shaped and
b-uniformly bounded function class F , let �n be any positive solution of the inequality

Rn(F ; �)  �2

b
.

Then for any t � �n, we have that
��kfk2

n
� kfk22

��  1

2
kfk22 +

1

2
t2, 8f 2 F

with probability at least 1� c1 exp(�c2nt2/b2). If in addition n�2
n
� 2 log (4 log (1/�n)) /c2, then

we have that ��kfkn � kfk2
��  c0�n, 8f 2 F

with probability at least 1� c01 exp(�c02n�
2
n
/b2).
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Proof of Lemma I.1. See Theorem 14.1 of Wainwright (2019) for a detailed proof.

Lemma I.2 (Localized Uniform Concentration 2 (Foster and Syrgkanis, 2019)). Consider a star-
shaped function class F : X 7! R with sup

f2F kfk1  b, and pick any f? 2 F . Also, consider a
loss function ` : R⇥Y 7! R which is L-Lipschitz in its first argument with respect to the k · k2-norm.
Now let �2

n
� 4 log (41 log (2c2n)) /(c2n) be any solution to the inequality:

Rn(star(F � f?); �)  �2

b
.

Then for any t � �n and some absolute constants c1, c2 > 0, with probability 1� c1 exp(�c2nt2/b2)
it holds that

���
⇣
bEn[`(f(x), y)]� bEn [` (f

?(x), y)]
⌘
�
⇣
E[`(f(x), y)]� E [` (f?(x), y)]

⌘���

 18Lt (kf � f?k2 + t) , (I.3)

for any f 2 F . If furthermore, the loss function ` is linear in f , i.e., `((f + f 0)(x), y) = `(f(x), y)+
`(f 0(x), y) and `(↵f(x), y) = ↵`(f(x), z), then the lower bound on �2

n
is not required.

Proof of Lemma I.2. See Lemma 11 of Foster and Syrgkanis (2019) for a detailed proof.

Remark I.3. We remark that in the original Lemma 11 of Foster and Syrgkanis (2019), inequality
(I.3) only holds for �n, and we extend it to any t � �n since according to Lemma 13.6 of Wainwright
(2019) we know that Rn(F ; �)/� is a non-increasing function of � on (0,+1), which indicates that
t � �n also solves the inequality.
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