
Appendix175

A Reproducibility Statement176

We used the FFCV-SSL package by Bordes et al. built on Leclerc et al.’s FFCV package to ensure177

full reproducibility in terms of the SGD noise, see subsection A.1 for more details.178

A.1 Data Loader Reproducibility179

The data ordering affects stochastic gradient based methods and hence connectivity. To ensure our180

runs can be reproduced we pick a trainer seed for initialization, data loader seed that determines181

ordering and an augmentation seed used for random augmentations. We include two sample CIFAR-182

10 data loaders in Figure 4.183

Figure 4: Each data loader is initialized three times with loader seed (used for data ordering) and data
augmentation seed (used for random augmentations) set to 43 (top) and 118 (bottom). Augmentations
used: random translate and horizontal flip

B Related Work184

This appendix provides a brief overview of the relevant literature.185

Mode-Connectivity: Garipov et al.; Draxler et al. demonstrated that optima trained from different186

initializations can be connected with simple parametric curves, e.g., polygonal chains or Bezier187

curves, without incurring a significant increase in the loss along this path. Benton et al. showed that188

these paths can be extended to probabilistic volumes of low loss. Simsek et al. formalized these189

volumes for over-parameterized networks as the Global Minima Manifold and provided explicit190

descriptions of its dimensions.191

Linear Mode-Connectivity: A parallel line of work, explore linear mode-connectivity (LMC),192

where a linear path of near-constant error exists between the two optima. Frankle et al. show that two193

fully-connected networks trained from the same initialization but with different SGD noise, i.e. data194

order and augmentations, are stable to the noise and converge to linearly connected minima. Their195

results extend to more complex vision algorithms as well if the two networks are trained with the196
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same SGD noise for a while and then More recently Zhou et al. coined Layerwise Linear Feature197

Connectivity (LLFC), a stronger setting where the feature maps of every layer also exhibit LMC.198

Permutation Invariance: The permutation symmetry of the hidden neurons and how the learned199

parameters interact with each other after accounting for the permutation has also emerged as a notable200

avenue of inquiry. Entezari et al.’s initial conjecture argued that in most cases SGD converges201

to the same basin up-to permutation and showed the emergence of LMC for wide and shallow202

architectures after accounting for the permutation invariance. Ainsworth et al. proposed a general203

weight matching algorithm to align models trained from different initializations that supported204

Entezari et al.’s conjecture on ResNets as well. Benzing et al. show that two models exhibit linear205

mode-connectivity at initialization when merged with the permutation found later in training.206

C Further Training Strategies207

This appendix presents some ablation studies regarding the training techniques and optimization.208

Although we examined the effect of other regularization techniques, our preliminary experiments209

proved these three dimensions to be the most important for LMC across different architectures.210

For example, varying the batch size, turning off momentum, adding a weight decay term or cosine211

learning rate scheduler doesn’t have a significant impact on the behavior of the previous settings. We212

found that gradient clipping can also be used to preserve LMC.213

C.1 ADAM on MLPs214

Since ADAM already breaks LMC in deeper linear models, we find it trivial that it also doesn’t215

preserve LMC in MLPs. Still, for completeness we provide the performance-aware barrier for MNIST216

and CiFAR-10 in Figure 5.217

Figure 5: Task barrier for MLPs trained with ADAM on MNIST (left) and CiFAR-10 (right)

D Architectural Correspondence218

Similar to Neyshabur, we study shallow convolutions and establish their MLP counterpart based on219

the Toeplitz representation of the underlying convolutional layer. For simplicity, we set stride equal to220

the kernel size and do not use 0-padding. A convolutional layer operating on a Ci⇥H⇥W input with221

kernel size (k1, k2) and Co filters has Co⇥Ci⇥k1⇥k2 parameters. Its locally connected counterpart222

uses different kernels to compute each target pixel, hence it has Co⇥H
0 ⇥W

0 ⇥ Ci ⇥ k1 ⇥ k2223

parameters, where H
0
,W

0 is the output spatial dimension of the resulting feature map. Both of them224

can be embedded in a Co ·H 0 ·W 0 ⇥ Ci ·H ·W linear layer. Table 3 shows the total number of225

parameters for a 2-Layer network, where the first layer is either a convolution, locally connected or226

linear layer whose weights can be represented with the same Toeplitz matrix. Note that ViTs could227

also be considered in this framework thanks to Cordonnier et al., however we leave it to future work228

to study the exact correspondence.229

ViT-like MLP To study the effect of attention on LMC, we consider the simplest setting of a230

ViT. We don’t modify the patch embeddings, normalizations and the classifier layer but simplify the231

encoder. We remove skip connections and the MLP part (last two linear layers) from the transformer232
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Table 3: Parameter Count (M) for a 2-Layer Network where the first layer is either a CNN/LC-
CNN/Linear equivalent to kernel size=4, padding=0

CNN 0.09
LC-CNN 0.48
MLP 25.26

encoder block and only use one block. We use patch size of 4 to establish similarity to the (LC)-CNN233

case. 8 heads each of dimension 48. The resulting architecture has ⇠ 1.08M parameters.234

E Data235

In Figure 3, we gradually increase the complexity of the task by changing the dataset:236

1. MNIST ! CiFAR-10 input dimensions (both spatial and number of channels) increase from237

(28, 28, 1) to (32, 32, 3) while keeping the number of target labels the same. These two238

datasets also have similar number of samples (60,000 and 50,000).239

2. CiFAR-10 ! CiFAR-100 number of samples and image resolution stay constant while the240

number of labels increase by a factor of 10, from 10 to 100.241

3. CiFAR-100 ! Tiny-ImageNet image resolution, number of labels and number of samples242

double.243

We limit this analysis to 2-4-8-Layer MLPs trained using SGD with high (0.1) or medium (0.01)244

learning rate. Since we are interested in the most simple settings, we don’t use any data augmentation,245

which hurts generalization. Moreover, MLPs are known for their subpar performance on large scale246

image classification tasks. See Table 4 for a comparison of the test accuracies across these four247

datasets. We propose Equation 2 to account for this performance gap. This modification allows us to248

view error barrier as a ratio of the lost performance.249

Table 4: Test accuracies (%) reached on varying datasets by L-Layer MLPs trained using SGD with
high (0.1) or medium (0.01)

2-Layer 4-Layer 8-Layer

High Med High Med High Med
MNIST 98.32 98.34 98.41 98.19 98.41 97.14
CiFAR-10 * 54.24 58.75 55.51 57.44 54.45
CiFAR-100 * 26.01 14.26 27.16 25.33 20.30
TinyImageNet * 7.62 1.68 8.27 5.80 5.79
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