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HAPPI: Hyperbolic Hierarchical Prototypes for Image Recognition

Supplementary Material

1. Scaling Euclidean Features for Stable Hy-001

perbolic Projection002

In the MERU model [3], the extracted Euclidean features003
had an expected norm of

√
D due to their CLIP-style layer004

initialization. This meant that when projected into hyper-005
bolic space using the exponential map, their norm grew to006

approximately e
√
D, which could cause numerical instabil-007

ity. To mitigate this, MERU applied a scaling strategy, in-008
troducing a learnable scalar α, which was initialized as 1√

D
.009

This ensured that feature norms remained controlled after010
projection, preventing overflow issues in hyperbolic space.011

However, this initialization does not generalize across012
architectures. The norm of extracted features is not inher-013
ently

√
D; instead, it depends on various factors such as014

the backbone network, layer configurations, and activation015
functions. In our case, the Euclidean feature norms do not016
follow the same distribution as in MERU, making the fixed017
1√
D

initialization unsuitable. Rather than assuming a pre-018

defined norm, we empirically estimate it by computing the019
mean norm of features extracted from the first batch of train-020
ing data. Specifically, let E[∥Veuc∥] denote the average norm021
of Euclidean feature vectors in this initial batch. We then022
initialize the learnable scalar α as:023

α =
1

E[∥Veuc∥]
(1)024

This ensures that feature norms remain controlled when025
mapped to hyperbolic space, mitigating numerical instabil-026
ity.027

Furthermore, this same scaling approach cannot be di-028
rectly applied to prototype vectors. Since prototype vectors029
are learnable parameters independent of the feature extrac-030
tion process, their norms do not necessarily align with those031
of extracted features. To maintain consistency, we explicitly032
scale the prototype vectors in Euclidean space so that their033
mean norm matches the estimated mean norm E[∥Veuc∥].034
That is, before projecting prototypes into hyperbolic space,035
we rescale them such that:036

E[∥Peuc∥] = E[∥Veuc∥] (2)037

where Peuc represents the prototype vectors in Euclidean038
space.039

By aligning the norm distributions of features and proto-040
types before projection, we ensure numerical stability while041
preserving a well-structured representation in hyperbolic042
space. This approach enables effective prototype-based043
classification without suffering from the norm explosion is-044
sues observed in prior work.045

Figure 1. Distribution of distances from prototypes to the origin of
the hyperboloid for generic and specific prototypes.

2. Placement of Prototypes in the Hyperbolic 046

Space 047

To analyze the distribution of prototypes in hyperbolic 048
space, we measured their distances from the origin of the 049
hyperboloid. Figure 1 shows the distance distributions for 050
generic and specific prototypes in HAPPI, using the XPro- 051
toNet [5] backbone, trained end-to-end (E2E) on the PETS 052
dataset [7]. As illustrated, generic prototypes predomi- 053
nantly cluster closer to the origin, reflecting their role in 054
capturing localized, distinctive features. This proximity 055
aligns with our hierarchical organization where generic fea- 056
tures are positioned near the origin of the hyperboloid. In 057
contrast, specific prototypes are distributed farther from the 058
root, indicating their role in aggregating broader patterns 059
across larger regions. 060

3. Implementation Details 061

All models were trained using the original configurations 062
presented in their respective papers unless stated otherwise. 063
Below, we detail the specific training setup and modifica- 064
tions made for this study. 065

3.1. General Training Setup 066

For all models, PyTorch [8] was used for training, and 067
Weights and Biases [1] was employed to log and monitor 068
the training process. The experiments were conducted on 069
NVIDIA Tesla V100 GPUs with 32GB of memory. Train- 070
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ing was carried out for 100 epochs with the StepLR learning071
scheduler, which decays the learning rate by a factor of 0.8072
every 5 epochs. Each model used 10 specific prototypes,073
and HAPPI-based models used 1 generic prototype, with074
one generic feature being extracted per input for HAPPI.075
The embedding depth D was set to 512 for all models,076
matching the depth of the extracted features and prototype077
vectors.078

The optimizer used was Adam for most models, except079
for ProtoPFormer, where AdamW was used. The learning080
rate for all models was adjusted according to their original081
configurations, and all models used a batch size of 64. The082
training process also involved scaling methods to prevent083
numerical overflow during the exponential mapping of fea-084
tures to the hyperbolic space, which is further discussed in085
Section 1 of the supplementary material.086

3.2. ProtoPNet087

For ProtoPNet [2], the loss coefficients were set as follows:088
λclstr g = 0.1, λsep g = 0.01, λclstr s = 0.8, and λsep s =089
0.08. The batch size was set to 64. The learning rates were090
configured as follows: for the backbone ResNet-50 [4] and091
the last layer fully connected classifier h(.), a learning rate092
of 1 × 10−4 was used, while for the rest of the model, a093
learning rate of 3× 10−3 was applied. When using HAPPI,094
the learning rate for the curvature of the hyperbolic space095
and the scaling factor α was set to 5 × 10−4. To train the096
end-to-end (E2E) version, for both Euclidean and HAPPI097
versions, we used a uniform learning rate of 1 × 10−4 for098
all parameters.099

3.3. XProtoNet100

For XProtoNet, the loss coefficients were the same as Pro-101
toPNet: λclstr g = 0.1, λsep g = 0.01, λclstr s = 0.8, and102
λsep s = 0.08. The batch size was 36 with gradient accumu-103
lation steps of 2. The learning rates for the original version104
were set as follows: for the ResNet-50 backbone and the105
last layer fully connected classifier h(.), a learning rate of106
1× 10−4 was used, and for the rest of the model, the learn-107
ing rate was 3 × 10−3. In the HAPPI version, the learning108
rate for the curvature of the hyperbolic space and the scaling109
factor α was set to 5× 10−4. The end-to-end (E2E) version110
used a uniform learning rate of 1× 10−4 for all parameters.111

3.4. MCPNet112

For MCPNet [9], we used their published code repositories113
and reproduced their method without using the center-crop114
functionality for the images, as used in their original repos-115
itory.116

3.5. PipNet117

For PipNet [6], we used the same configurations as those118
presented in their original paper.119

3.6. ST-ProtoPNet 120

For ST-ProtoPNet [10], the batch size was set to 64, in line 121
with the original paper’s configuration. 122

3.7. ProtoPFormer 123

For ProtoPFormer [11], the batch size was set to 64, and 124
we used the AdamW optimizer as specified in the origi- 125
nal paper. Instead of the Prototypical Part Concentration 126
(PPC) loss, we implemented our clustering and separation 127
loss functions to better align prototypes in hyperbolic space. 128
The CLS token was used as the generic prototype, while the 129
image tokens were treated as specific prototypes. 130

3.8. Black-Box Baselines 131

For the black-box baseline, the batch size was set to 64, in 132
line with the configurations used for other models. 133
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