HAPPI: Hyperbolic Hierarchical Part Prototypes for Image Recognition

Supplementary Material

A. Scaling Euclidean Features for Stable Hy-
perbolic Projection

In the MERU model [4], the extracted Euclidean features
had an expected norm of v/D due to their CLIP-style layer
initialization. This meant that when projected into hyper-
bolic space using the exponential map, their norm grew to
approximately e‘/ﬁ, which could cause numerical instabil-
ity. To mitigate this, MERU applied a scaling strategy, in-
troducing a learnable scalar «v, which was initialized as \/15.
This ensured that feature norms remained controlled after
projection, preventing overflow issues in hyperbolic space.

However, this initialization does not generalize across
architectures. The norm of extracted features is not inher-
ently v/D; instead, it depends on various factors such as
the backbone network, layer configurations, and activation
functions. In our case, the Euclidean feature norms do not
follow the same distribution as in MERU, making the fixed
% initialization unsuitable. Rather than assuming a pre-
defined norm, we empirically estimate it by computing the
mean norm of features extracted from the first batch of train-
ing data. Specifically, let E[|| Veyc||] denote the average norm
of Euclidean feature vectors in this initial batch. We then
initialize the learnable scalar « as:

1
o=
E[l[Veuell]

(10)

This ensures that feature norms remain controlled when
mapped to hyperbolic space, mitigating numerical instabil-
ity.

Furthermore, this same scaling approach cannot be di-
rectly applied to prototype vectors. Since prototype vectors
are learnable parameters independent of the feature extrac-
tion process, their norms do not necessarily align with those
of extracted features. To maintain consistency, we explicitly
scale the prototype vectors in Euclidean space so that their
mean norm matches the estimated mean norm E[||Vey|]-
That is, before projecting prototypes into hyperbolic space,
we rescale them such that:

E[Hpeucm :]E[H%ucll] (11)

where P, represents the prototype vectors in Euclidean
space.

By aligning the norm distributions of features and proto-
types before projection, we ensure numerical stability while
preserving a well-structured representation in hyperbolic
space. This approach enables effective prototype-based
classification without suffering from the norm explosion is-
sues observed in prior work.

Histogram of Distances to the Root of Hyperboloid

Generic
35 4 Specific

304
251
209

15+

Number of Prototypes

10 4

T T T T T T
0.25 0.50 0.75 1.00 1.25 1.50 1.75
Distance to Root

Figure 4. Distribution of distances from prototypes to the origin of
the hyperboloid for generic and specific prototypes.

B. Placement of Prototypes in the Hyperbolic
Space

To analyze the distribution of prototypes in hyperbolic
space, we measured their distances from the origin of the
hyperboloid. Figure 4 shows the distance distributions for
generic and specific prototypes in HAPPI, using the XPro-
toNet [17] backbone, trained end-to-end (E2E) on the PETS
dataset [27]. As illustrated, generic prototypes predomi-
nantly cluster closer to the origin, reflecting their role in
capturing localized, distinctive features. This proximity
aligns with our hierarchical organization where generic fea-
tures are positioned near the origin of the hyperboloid. In
contrast, specific prototypes are distributed farther from the
root, indicating their role in aggregating broader patterns
across larger regions.

C. Implementation Details

All models were trained using the original configurations
presented in their respective papers unless stated otherwise.
Below, we detail the specific training setup and modifica-
tions made for this study.

C.1. General Training Setup

For all models, PyTorch [28] was used for training, and
Weights and Biases [2] was employed to log and monitor
the training process. The experiments were conducted on
NVIDIA Tesla V100 GPUs with 32GB of memory. Train-

ing was carried out for 100 epochs with the StepLR learning
scheduler, which decays the learning rate by a factor of 0.8
every 5 epochs. Each model used 10 specific prototypes,
and HAPPI-based models used 1 generic prototype, with
one generic feature being extracted per input for HAPPL
The embedding depth D was set to 512 for all models,
matching the depth of the extracted features and prototype
vectors.

The optimizer used was Adam for most models, except
for ProtoPFormer, where AdamW was used. The learning
rate for all models was adjusted according to their original
configurations, and all models used a batch size of 64. The
training process also involved scaling methods to prevent
numerical overflow during the exponential mapping of fea-
tures to the hyperbolic space, which is further discussed in
Section A of the supplementary material.

C.2. ProtoPNet

For ProtoPNet [3], the loss coefficients were set as follows:
Adsg = 0.1, Agepg = 0.01, Aggrs = 0.8, and Ayeps =
0.08. The batch size was set to 64. The learning rates were
configured as follows: for the backbone ResNet-50 [11] and
the last layer fully connected classifier h(.), a learning rate
of 1 x 10~* was used, while for the rest of the model, a
learning rate of 3 x 10~2 was applied. When using HAPPI,
the learning rate for the curvature of the hyperbolic space
and the scaling factor a was set to 5 x 10™%. To train the
end-to-end (E2E) version, for both Euclidean and HAPPI
versions, we used a uniform learning rate of 1 x 10~ for
all parameters.

C.3. XProtoNet

For XProtoNet, the loss coefficients were the same as Pro-
toPNet: Mgy = 0.1, Agepg = 0.01, Agsrs = 0.8, and
Aseps = 0.08. The batch size was 36 with gradient accumu-
lation steps of 2. The learning rates for the original version
were set as follows: for the ResNet-50 backbone and the
last layer fully connected classifier h(.), a learning rate of
1 x 10~* was used, and for the rest of the model, the learn-
ing rate was 3 x 1073, In the HAPPI version, the learning
rate for the curvature of the hyperbolic space and the scaling
factor v was set to 5 x 10~%. The end-to-end (E2E) version
used a uniform learning rate of 1 x 10~ for all parameters.

C.4. MCPNet

For MCPNet [37], we used their published code repositories
and reproduced their method without using the center-crop
functionality for the images, as used in their original repos-
itory.

C.5. PipNet

For PipNet [25], we used the same configurations as those
presented in their original paper.

C.6. ST-ProtoPNet

For ST-ProtoPNet [38], the batch size was set to 64, in line
with the original paper’s configuration.

C.7. ProtoPFormer

For ProtoPFormer [41], the batch size was set to 64, and
we used the AdamW optimizer as specified in the origi-
nal paper. Instead of the Prototypical Part Concentration
(PPC) loss, we implemented our clustering and separation
loss functions to better align prototypes in hyperbolic space.
The CLS token was used as the generic prototype, while the
image tokens were treated as specific prototypes.

C.8. Black-Box Baselines

For the black-box baseline, the batch size was set to 64, in
line with the configurations used for other models.

	Scaling Euclidean Features for Stable Hyperbolic Projection
	Placement of Prototypes in the Hyperbolic Space
	Implementation Details
	General Training Setup
	ProtoPNet
	XProtoNet
	MCPNet
	PipNet
	ST-ProtoPNet
	ProtoPFormer
	Black-Box Baselines

