
A Additional definitions

We provide the definitions of important terms used throughout the paper. First, recall the definition
of covering numbers:
Definition A.1 (Covering numbers). Let P := {Pθ, θ ∈ Θ} be a parametric family of distributions
and d : P × P 7→ [0,∞) be a metric. An ϵ−cover of a subset PK := {Pθ : θ ∈ K ⊂ Θ} of the
parametric family of distributions is a set K ′ ⊂ K such that, for each θ ∈ K there exists a θ′ ∈ K ′

that satisfies d(Pθ, Pθ′) ≤ ϵ. The ϵ−covering number of PK is N(ϵ,PK , d) = min{card(K ′) :
K ′ is an ϵ−cover of K}, where card(·) represents the cardinality of the set.

Next, recall the definition of a test function [26]:
Definition A.2 (Test function). Let X̃n be a sequence of random variables on measurable space
(
⊗

n X ,Sn). Then any Sn-measurable sequence of functions {ϕn}, ϕn : X̃n 7→ [0, 1] ∀n ∈ N, is a
test of a hypothesis that a probability measure on Sn belongs to a given set against the hypothesis
that it belongs to an alternative set. The test ϕn is consistent for hypothesis Pn

0 against the alternative
Pn ∈ {Pn

θ : θ ∈ Θ\{θ0}} if EPn [ϕn] → 1{θ∈Θ\{θ0}}(θ),∀θ ∈ Θ as n → ∞, where 1{·} is an
indicator function.

A classic example of a test function is ϕKS
n = 1{KSn>Kν}(θ) that is constructed using the Kolmogorov-

Smirnov statistic KSn := supt |Fn(t) − Fθ(t)|, where Fn(t) and Fθ(t) are the empirical and true
distribution respectively, and Kν is the confidence level. If the null hypothesis is true, the Glivenko-
Cantelli theorem [29, Theorem 19.1] shows that the KS statistic converges to zero as the number of
samples increases to infinity.

Furthermore, we define the Hellinger distance h(θ1, θ2) between the two probability distributions

Pθ1 and Pθ2 is defined as dH(θ1, θ2) =
(∫ (√

dPθ1 −
√
dPθ2

)2)1/2
. We define the one-sided

Hausdorff distance H(A∥B) between sets A and B in a metric space D with distance function d is
defined as:

H(A∥B) = sup
x∈A

dh(x,B), where dh(x,B) = inf
y∈B

d(x, y).

Next, we define an arbitrary loss function Ln : Θ × Θ 7→ R that measures the distance between
models (Pn

θ1
, Pn

θ2
)∀{θ1, θ2} ∈ Θ. At the outset, we assume that Ln(θ1, θ2) is always positive. We

define {ϵn} as a sequence such that ϵn → 0 as n→ ∞ and nϵ2n ≥ 1.

We also define
Definition A.3 (Γ−convergence). A sequence of functions Fn : U 7→ R, for each n ∈ N,
Γ−converges to F : U 7→ R, if

• for every u ∈ U and every {un, n ∈ N} such that un → u, F (x) ≤ lim infn→∞ Fn(un);

• for every u ∈ U , there exists some {un, n ∈ N} such that un → u, F (x) ≥
lim supn→∞ Fn(un).

In addition, we define
Definition A.4 (Primal feasibility). For any two functions f : U 7→ R and b : U 7→ R, a point
u∗ ∈ U is primal feasible to the following constraint optimization problem

inf
u∈U

f(u) subject to b(u) ≤ c,

if b(u∗) ≤ c, for a given c ∈ R.

B Applications

B.1 Single product newsvendor problem (cont.)

First, we fix the sieve set Θn(ϵ) = Θ, which clearly implies that the restricted inverse-gamma prior
Π(θ), places no mass on the complement of this set and therefore satisfies Assumption 2.2.

Second, under the condition that the true demand distribution is exponential with parameter θ0 (and
P0 ≡ Pθ0 ), we demonstrate the existence of test functions satisfying Assumption 2.1.
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Lemma B.1. Fix n ≥ 5. Then, for any ϵ > ϵn := 1√
n

with ϵn → 0, and nϵ2n ≥ 1, there exists

a test function ϕn (depending on ϵ) such that LNV
n (θ, θ0) = n (supa∈A |R(a, θ)−R(a, θ0)|)2

satisfies Assumption 2.1 with C0 = 20 and C = C1

2 (KNV
1 )−2 for a constant C1 > 0 and KNV

1 =

dH(T, θ0)
−1

[(
h
θ0

− h
T

)2
+ (b+ h)2

(
e−aT

T − e−aθ0

θ0

)2]1/2
.

The proof of the above result follows by showing that dNV
L = n−1/2

√
LNV
n (θ, θ0) can be bounded

above by the Hellinger distance between two exponential distributions on Θ (under which a test
function exists) in Lemma C.10 in the appendix.

Third, we show that there exist appropriate constants such that the inverse-gamma prior satisfies
Assumption 2.3 when the demand distribution is exponential.

Lemma B.2. Fix n2 ≥ 2 and any λ > 1. Let An :=
{
θ ∈ Θ : D1+λ (P

n
0 ∥Pn

θ ) ≤ C3nϵ
2
n

}
, where

D1+λ (P
n
0 ∥Pn

θ ) is the Rényi divergence between Pn
0 and Pn

θ . Then for ϵ2n = logn
n and any C3 > 0

such C2 = αC3 ≥ 2, the truncated inverse-gamma prior Inv − ΓΘ(A;α, β) satisfies Π(An) ≥
exp(−nC2ϵ

2
n),∀n ≥ n2.

Fourth, it is straightforward to see that the newsvendor model risk R(a, θ) is bounded below for a
given a ∈ A.

Lemma B.3. For any a ∈ A and positive constants h and b, the newsvendor model risk R(a, θ) =(
ha− h

θ + (b+ h) e
−aθ

θ

)
≥
(

ha2θ∗

(1+aθ∗)

)
, where a := min{a ∈ A} and θ∗ satisfies h − (b +

h)e−aθ∗
(1 + aθ∗) = 0.

This implies that R(a, θ) satisfies Assumption 2.5. Finally, we also show that the newsvendor model
risk satisfies Assumption 2.4.

Lemma B.4. Fix n ≥ 1 and γ > 0. For any ϵ > ϵn and any a ∈ A, R(a, θ) satis-
fies EΠ[1{R(a,θ)γ>C4(γ)nϵ2}e

γR(a,θ)] ≤ exp(−C5(γ)nϵ
2), for any C4(γ) > 2γ

(
ha+ b

T

)
and

C5(γ) = C4(γ)− 2γ
(
ha+ b

T

)
, where a := max{a ∈ A}.

Note that Lemma B.1 implies that C = C1

2(KNV
1 )2

for any constant C1 > 0. Fixing α = 1 and
using Lemma B.2 we can choose C2 = C3 = 2. Now, C1 can be chosen large enough such that
C > C4(γ) + C5(γ) for a given risk sensitivity γ > 0. Therefore, the condition on constants
in Theorem 3.1 reduces to C5(γ) > 2 + C2 + C3 = 5, and it can be satisfied easily by fixing
C5(γ) = 5.1(say).

These lemmas show that when the demand distribution is exponential and with a non-conjugate
truncated inverse-gamma prior, our result in Theorem 3.2 can be used for RSVB method to bound the
optimality gap in decisions and values for various values of the risk-sensitivity parameter γ. Recall
that the bound obtained in Theorem 3.2 depends on ϵ2n and ηRn (γ).

Lemma B.2 implies that ϵ2n = logn
n , but in order to get the complete bound we further need to

characterize ηRn (γ). Recall that, as a consequence of Assumption 3.1 in Proposition 3.1, for a given
C8 = − infQ∈Q infa∈A EQ[R(a, θ)] that C9 > 0 and ηRn (γ) ≤ γn−1C8 + C9ϵ

′2
n .

Therefore, in our next result, we show that in the newsvendor setting, we can construct a sequence
{Qn(θ)} ⊂ Q that satisfies Assumption 3.1, and thus identify ϵ′n and the constant C9. We fix Q to
be the family of shifted gamma distributions with support [T,∞).

Lemma B.5. Let {Qn(θ)} be a sequence of shifted gamma distributions with shape parameter a = n
and rate parameter b = n

θ0
, then for truncated inverse gamma prior and exponentially distributed

likelihood model

1

n

[
KL (Qn(θ)∥Π(θ)) + EQn(θ)

[
KL
(
dPn

0 (X̃n))∥dPn
θ (X̃n)

)]]
≤ C9ϵ

′2
n ,

where ϵ′2n = logn
n and C9 = 1

2 + max
(
0, 2 + 2β

θ0
− log

√
2π − log

(
βα

Γ(α)

)
+ α log θ0

)
and prior

parameters are chosen such that C9 > 0.
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B.2 Multi-product newsvendor problem

Analogous to the one-dimensional newsvendor loss function, the loss function in its multi-product
version is defined as

ℓ(a, ξ) := hT (a− ξ)+ + bT (ξ − a)+

where h and b are given vectors of underage and overage costs respectively for each product and
mapping (·)+ is defined component-wise. We assume that there are d items or products and ξ ∈ Rd

denotes the random vector of demands. Let a ∈ A ⊂ Rd
+ be the inventory or decision variable,

typically assumed to take values in a compact decision space A with a := {{min{ai : ai ∈ Ai}}di=1

and ā := {{max{ai : ai ∈ Ai}}di=1, and a > 0, where Ai is the marginal set of ith component
of A. The random demand is assumed to be multivariate Gaussian, with unknown mean parameter
θ ∈ Rd but with known covariance matrix Σ. We also assume that Σ is a symmetric positive
definite matrix and can be decomposed as QTΛQ, where Q is an orthogonal matrix and Λ is a
diagonal matrix consisting of respective eigenvalues of Σ. We also define Λ = maxi∈{1,2,...d} Λii

and Λ = mini∈{1,2,...d} Λii. The model risk

R(a, θ) = EPθ
[ℓ(a, ξ)] =

d∑
i=1

EPθi
[hi(ai − ξi)

+ + bi(ξi − ai)
+]

=

d∑
i=1

[
(hi + bi)aiΦ

(
(ai − θi)

σii

)
− biai + θi(bi − hi)

+ σii

h ϕ
(

(ai−θi)
σii

)
Φ
(

(ai−θi)
σii

) + b
ϕ
(

(ai−θi)
σii

)
1− Φ

(
(ai−θi)

σii

)
], (11)

which is convex in a. Here Pθi is the marginal distribution of ξ for ith product, ϕ(·) and Φ(·)
are probability and cumulative distribution function of the standard Normal distribution. We also
assume that the true mean parameter θ0 lies in a compact subspace Θ ⊂ Rd. We fix the prior to be
uniformly distributed on Θ with no correlation across its components, that is π(A) = m(A

⋂
Θ)

m(Θ) =∏d
i=1

m(Ai
⋂

Θi)
m(Θi)

, where m(B) is the Lebesgue measure (or volume) of B ⊂ Rd As in the previous
example, we fix the sieve set Θn(ϵ) = Θ, which clearly implies that Π(θ) places no mass on the
complement of this set and therefore satisfies Assumption 2.2.

Then under the condition that the true demand distribution has a multivariate Gaussian distribution
(with known Σ) and mean θ0 (P0 ≡ Pθ0), we demonstrate the existence of test functions satisfying
Assumption 2.1 by constructing a test function unlike the single-product newsvendor problem with
exponential demand.
Lemma B.6. Fix n ≥ 1. Then, for any ϵ > ϵn := 1√

n
with ϵn → 0, and nϵ2n ≥ 1 and

test function ϕn,ϵ := 1{
X̃n:∥θ̂n−θ0∥>

√
C̃ϵ2

}, LMNV
n (θ, θ0) = n (supa∈A |R(a, θ)−R(a, θ0)|)2

satisfies Assumption 2.1 with C0 = 1, C1 = 4K2C and C = 1/8
(

C̃
dΛ

− 1
)

for sufficiently large C̃

such that C > 1 and Λ = maxi∈{1,2,...d} Λii, where K = supA,Θ ∥∂θR(a, θ)∥.

In the following result, we show that there exist appropriate constants such that prior distribution
satisfies Assumption 2.3 when the demand distribution is a multivariate Gaussian with unknown
mean.
Lemma B.7. Fix n2 ≥ 2 and any λ > 1. Let An :=

{
θ ∈ Θ : D1+λ (P

n
0 ∥Pn

θ ) ≤ C3nϵ
2
n

}
, where

D1+λ (P
n
0 ∥Pn

θ ) is the Rényi Divergence between Pn
0 and Pn

θ . Then for ϵ2n = logn
n and any C3 > 0

such that C2 = 4d

Λ(λ+1)(
∏d

i=1 m(Θi))
2/dC3 ≥ 2 and for large enough n, the uncorrelated uniform

prior restricted to Θ satisfies Π(An) ≥ exp(−nC2ϵ
2
n).

Next, it is straightforward to see that the multi-product newsvendor model risk R(a, θ) is bounded
below for a given a ∈ A on a compact set Θ and thus it satisfies Assumption 2.5. Finally, we also
show that the newsvendor model risk satisfies Assumption 2.4.
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Lemma B.8. Fix n ≥ 1 and γ > 0. For any ϵ > ϵn and a ∈ A, R(a, θ) satisfies
EΠ[1{G(a,θ)γ>C4(γ)nϵ2}e

γG(a,θ)] ≤ exp(−C5(γ)nϵ
2
n), for any C4(γ) > 2γ sup{a,θ}∈A⊗ΘG(a, θ)

and C5(γ) = C4(γ)− 2γ sup{a,θ}∈A⊗ΘG(a, θ).

Similar to single product example, in our next result, we show that in the multi-product newsvendor
setting, we can construct a sequence {Qn(θ)} ∈ Q that satisfies Assumption 3.1, and thus identify
ϵ′n and constant C9. We fix Q to be the family of uncorrelated Gaussian distributions restricted to Θ.

Lemma B.9. Let {Qn(θ)} be a sequence of product of d univariate Gaussian distribution defined as

qin(θ) ∝ 1√
2πσ2

i,n

e
− 1

2σ2
i,n

(θ−µi,n)
2

1Θi =
N (θi|µi,n,σi,n)1Θi

N (Θi|µi,n,σi,n)
and fix σi,n = 1/

√
n and θi = θi0 for all

i ∈ {1, 2, . . . , d}. Then for uncorrelated uniform distribution restricted to Θ and multivariate normal

likelihood model 1
n

[
KL (Qn(θ)∥Π(θ)) + EQn(θ)

[
KL
(
dPn

0 (X̃n))∥dPn
θ (X̃n)

)]]
≤ C9ϵ

′2
n , where

ϵ′2n = logn
n and C9 := d

2 +max
(
0,−∑d

i=1[log(
√
2πe)− log(m(Θi))] +

d
2Λ

−1
)

.

Now, using the result established in lemmas above, we bound the optimality gap in values for the
multi-product newsvendor model risk.

Theorem B.1. Fix γ > 0. Suppose that the set A is compact. Then, for the multi-product newsvendor
model with multivariate Gaussian distributed demand with known covariance matrix Σ and unknown
mean vector θ lying in a compact subset Θ ⊂ Rd, prior Π(·) =∏d

i=1
m({·}∩Θi)

m(Θi)
, and the variational

family fixed to uncorrelated Gaussian distribution restricted to Θ, and for any τ > 0, the Pn
0 −

probability of the following event
{
X̃n : R(a∗RS, θ0)− infz∈AR(z, θ0) ≤ 2τM ′(γ)

(
logn
n

)1/2}
is

at least 1− τ−1 for sufficiently large n and for some mapping M ′ : R+ → R+, where R(·, θ) is the
multi-product newsvendor model risk.

Proof. The proof is a direct consequence of Theorem 3.2, Lemmas B.6, B.7, B.8, B.9, and Proposi-
tion 3.2.

B.3 Gaussian process classification (cont.)

We define the distance function as LGP
n (θ, θ0) = n (supa∈A |R(a, θ)−R(a, θ0)|)2. In anticipation

of demonstrating that the binary classification model with GP prior and distance function LGP
n satisfy

the desired set of assumptions, we recall the following result, from [30], which will be central in
establishing Assumptions 2.1, 2.2, and 2.3.

Lemma B.10. [Theorem 2.1 [30]] Let θ(·) be a Borel measurable, zero-mean Gaussian random
element in a separable Banach space (Θ, ∥ · ∥) with reproducing kernel Hilbert space (RKHS)
(H, ∥ · ∥H) and let θ0 be contained in the closure of H in Θ. For any ϵ > ϵn satisfying φθ0(ϵ) ≤ nϵ2 ,
where

φθ0(ϵ) = inf
h∈H:∥h−θ0∥<ϵ

∥h∥2H − log Π(∥θ∥ < ϵ) (12)

and any C10 > 1 with e−C10nϵ
2
n < 1/2, there exists a measurable set Θn(ϵ) ⊂ Θ such that

logN(3ϵ,Θn(ϵ), ∥ · ∥) ≤ 6C10nϵ
2, (13)

Π(θ /∈ Θn(ϵ)) ≤ e−C10nϵ
2

, (14)

Π(∥θ − θ0∥ < 4ϵn) ≥ e−nϵ2n . (15)

The proof of the lemma above can be easily adapted from the proof of [30, Theorem 2.1], which is
specifically for ϵ = ϵn. Notice that the result above is true for any norm ∥ · ∥ on the Banach space if
that satisfies φθ0(ϵ) ≤ nϵ2. Moreover, if φθ0(ϵn) ≤ nϵ2n is true, then it also holds for any ϵ > ϵn,
since by definition φθ0(ϵ) is a decreasing function of ϵ.

All the results in the previous lemma depend on φθ0(ϵ) being less than nϵ2. In particular, observe
that the second term in the definition of φθ0(ϵ) depends on the prior distribution on Θ. Therefore,
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[30, Theorem 4.5] show that φθ0(ϵn) ≤ nϵ2n ( with ∥ · ∥ as supremum norm and for ϵn as defined
later in (9) ) is satisfied by the Gaussian prior of type

W (·) =
J̄α∑
j=1

2jd∑
k=1

µjZj,kϑj,k(·), (16)

where {µj} is a sequence that decreases with j, {Zi,j} are i.i.d. standard Gaussian random vari-
ables and {ϑj,k} form a double-indexed orthonormal basis (with respect to measure ν), that is
Eν [ϑj,kϑl,m] = 1{j=l,k=m}). J̄α is the smallest integer satisfying 2J̄αd = nd/(2α+d) for a given
α > 0. In particular, the GP above is constructed using the function class that is supported on
[0, 1]d and has a wavelet expansion, w(·) =∑∞

j=1

∑2jd

k=1 wj,kϑj,k(·). The wavelet function space is

equipped with the L2−norm: ∥w∥2 =
∑∞

j=1

(∑2jd

k=1 |wj,k|2
)1/2

; the supremum norm: ∥w∥∞ =∑∞
j=1 2

jd max1≤k≤2jd |wj,k|; and the Besov (β,∞,∞)−norm: ∥w∥β;∞,∞ = sup1≤j<∞ 2jβ2jd

max1≤k≤2jd |wj,k|. Note thatW induces a measure over the RKHS H, defined as a collection of trun-

cated wavelet functions w(·) =∑J̄α

j=1

∑2jd

k=1 wj,kϑj,k(·), with norm induced by the inner-product on

H as ∥w∥2H =
∑J̄α

j=1

∑2jd

k=1

w2
j,k

µ2
j
. The RKHS kernel K : [0, 1]d × [0, 1]d 7→ R can be easily derived

as

K(x, y) = E[W (x)W (y)] = E

 J̄α∑
j=1

2jd∑
k=1

µjZj,kϑj,k(y)

 J̄α∑
j=1

2jd∑
k=1

µjZj,kϑj,k(x)


=

J̄α∑
j=1

2jd∑
k=1

µ2
jϑj,k(y)ϑj,k(x).

Indeed, by the definition of this kernel and inner product, observe that
⟨K(x, ·), w(·)⟩ =

∑J̄α

j=1

∑2jd

k=1 wj,kµ
2
jϑj,k(x)

1
µ2
j

= w(x). Moreover, ⟨K(x, ·),K(y, ·)⟩ =∑J̄α

j=1

∑2jd

k=1 µ
2
jϑj,k(x)µ

2
jϑj,k(y)

1
µ2
j
= K(x, y). It is clear from its definition that W is a centered

Gaussian random field on the RKHS.

Next, using the definition of the kernel, we derive the covariance operator of the Gaussian random field
W . Recall that Y ∼ ν, which enables us to define the covariance operator C, following [27, (6.19)]
as (Chν)(x) =

∫
[0,1]d

K(x, y)hν(y)dν(y). Also, observe that {µ2
j , φj,k} is the eigenvalue and eigen

function pair of the covariance operator C. Consequently, using Karhunen Loéve expansion [27,
Theorem 6.19] the prior induced by W on H is a Gaussian distribution denoted as N (0, C). We also
recall the Cameron-Martin space denoted as Im(C1/2) associated with a Gaussian measure N (0, C)
on H to be the intersection of all linear spaces of full measure under N (0, C) [27, (page 530)]. In
particular, Im(C1/2) is the Hilbert space with inner product ⟨·, ·⟩C = ⟨C−1/2·, C−1/2·⟩.
Next, we show the existence of test functions in the following result.
Lemma B.11. For any ϵ > ϵn with ϵn → 0, nϵ2n ≥ 2 log 2, and φθ0(ϵ) ≤ nϵ2, there exists a test
function ϕn (depending on ϵ) such that LGP

n (θ, θ0) = n (supa∈A |R(a, θ)−R(a, θ0)|)2 satisfies
Assumption 2.1 with C = 1/6, C0 = 2 and C1 = (max(c+, c−))

2.

Assumption 2.2 is a direct consequence of (14) in Lemma B.10. Next, we prove that prior distribution
and the likelihood model satisfy Assumption 2.3 using (15) of Lemma B.10.
Lemma B.12. For any λ > 1, let An :=

{
θ ∈ Θ : D1+λ (P

n
0 ∥Pn

θ ) ≤ C3nϵ
2
n

}
, where

D1+λ (P
n
0 ∥Pn

θ ) is the Rényi Divergence between Pn
0 and Pn

θ . Then for any ϵ > ϵn satisfying
φθ0(ϵ) ≤ nϵ2 and C3 = 16(λ+ 1) and C2 = 1, the GP prior satisfies Π(An) ≥ exp(−nC2ϵ

2
n).

Assumption 2.4 and 2.5 are straightforward to satisfy since the model risk functionR(a, θ) is bounded
from above and below.

Now, suppose the variational family QGP is a class of Gaussian distributions on Θ, defined as
N (mq, Cq), mq belongs to Θ and Cq is the covariance operator defined as Cq = C1/2(I − S)C1/2,
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for any S which is a symmetric and Hilbert-Schmidt (HS) operator on Θ (eigenvalues of HS operator
are square summable). Note that S and mq span the distributions in QGP .

The following lemma verifies Assumption 3.1, for a specific sequence of distributions in Q.

Lemma B.13. For a given J ∈ N, let {Qn} be a sequence variational distribution such

that Qn is the measure induced by a GP, WQ(·) = θJ0 (y) +
∑J

j=1

∑2jd

k=1 ζ
2
jZj,kϑj,k(·), where

θJ0 (·) =
∑J

j=1

∑2jd

k=1 θ0;j,kϑj,k(·) and ζ2j =
µ2
j

1+nϵ2nτ
2
j

. Then for GP prior induced by W =∑J
j=1

∑2jd

k=1 µjZj,kϑj,k and µj = 2−jd/2−ja for some a > 0, ∥θ0∥β;∞,∞ < ∞, and θJ0 (y) lie in
the Cameron-Martin space Im(C1/2), we have 1

nKL(N (θ̄J0 , Cq)∥N (0, C)) + 1
nEQn

KL(Pn
0 ∥Pn

θ ) ≤
C9ϵ

2
n, where ϵn is defined in 9 and C9 := max

(
∥θ0∥2β,∞,∞,

2−2a−2−2Ja−2a

1−2−2a , 2d/(2d − 1), C ′
)

,

where C ′ is a positive constant satisfying ∥θ0(y)− θJ0 (y))∥2∞ ≤ C ′2−2Jβ .

Using the result above together with Proposition 3.2 implies that the RSVB posterior converges at
the same rate as the true posterior, where the convergence rate of the true posterior is derived in [30,
Theorem 4.5] for the binary GP classification problem with truncated wavelet GP prior. Finally, we
use the results above to obtain bound on the optimality gap in values of the binary GP classification
problem.

C Proofs

C.1 Alternative derivation of LCVB

We present the alternative derivation of LCVB. Consider the logarithm of the Bayes posterior risk,

logEΠ(θ|X̃n)
[exp(R(a, θ))] = log

∫
Θ

exp(R(a, θ))dΠ(θ|X̃n)

= log

∫
Θ

dQ(θ)

dQ(θ)
exp(R(a, θ))dΠ(θ|X̃n)

≥ −
∫
Θ

dQ(θ) log
dQ(θ)

exp(R(a, θ))dΠ(θ|X̃n)
=: F(a;Q(·), X̃n) (17)

where the inequality follows from an application of Jensen’s inequality (since, without loss of
generality, exp(R(a, θ)) > 0 for all a ∈ A and θ ∈ Θ), and Q ∈ Q. Then, it follows that

min
a∈A

logEΠ(θ|X̃n)
[exp(R(a, θ))] ≥ min

a∈A
max
q∈Q

F(a;Q(θ), X̃n)

= min
a∈A

max
q∈Q

− KL
(
Q(θ)||Π(θ|X̃n)

)
+

∫
Θ

R(a, θ)dQ(θ). (18)

C.2 Proof of Theorem 3.1

We prove our main result after a series of important lemmas. For brevity we denote LRn(θ, θ0) =
p(X̃n|θ)
p(X̃n|θ0)

.

Lemma C.1. For any a′ ∈ A, γ > 0, and ζ > 0,

EPn
0

[
ζ

∫
Θ

Ln(θ, θ0) dQ
∗
a′,γ(θ|X̃n)

]
≤ logEPn

0

[∫
Θ

eζLn(θ,θ0)
eγR(a′,θ) LRn(θ, θ0)dΠ(θ)∫
Θ
eγR(a′,θ) LRn(θ, θ0)dΠ(θ)

]
+ inf

Q∈Q
EPn

0

[
KL(Q(θ)∥Π(θ|X̃n))

− γ inf
a∈A

EQ[R(a, θ)]

]
+ logEPn

0

[∫
Θ

eγR(a′,θ) LRn(θ, θ0)dΠ(θ)∫
Θ
LRn(θ, θ0)dΠ(θ)

]
. (19)

18



Proof. For any fixed a′ ∈ A, γ > 0, and ζ > 0, and using the fact that KL is non-negative, observe
that the integral in the LHS of equation (19) satisfies,

ζEQ∗
a′,γ(θ|X̃n)

[Ln(θ, θ0)] ≤ EQ∗
a′,γ(θ|X̃n)

[
log eζLn(θ,θ0)

]
+ KL

(
dQ∗

a′,γ(θ|X̃n)

∥∥∥∥ eζLn(θ,θ0)eγR(a′,θ) dΠ(θ|X̃n)∫
Θ
eζLn(θ,θ0)eγR(a′,θ) dΠ(θ|X̃n)

)
= EQ∗

a′,γ(θ|X̃n)

[
log eζLn(θ,θ0)

]
+ logEΠn

[
eζLn(θ,θ0)eγR(a′,θ)

]
+ EQ∗

a′,γ(θ|X̃n)

[
log

dQ∗
a′,γ(θ|X̃n)

eζLn(θ,θ0)eγR(a′,θ) dΠ(θ|X̃n)

]

= logEΠn

[
eζLn(θ,θ0)eγR(a′,θ)

]
+ EQ∗

a′,γ(θ|X̃n)

[
log

dQ∗
a′,γ(θ|X̃n)

eγR(a′,θ) dΠ(θ|X̃n)

]
.

Next, using the definition of Q∗
a′,γ(θ|X̃n) in the second term of last equality, for any other Q(·) ∈ Q

ζEQ∗
a′,γ(θ|X̃n)

[Ln(θ, θ0)] ≤ logEΠn

[
eζLn(θ,θ0)eγR(a′,θ)

]
+ EQ

[
log

dQ(θ)

eγR(a′,θ) dΠ(θ|X̃n)

]
.

Finally, it follows from the definition of the posterior distribution that

ζEQ∗
a′,γ(θ|X̃n)

[Ln(θ, θ0)]

≤ log

∫
Θ

eζLn(θ,θ0)eγR(a′,θ) LRn(θ, θ0)dΠ(θ)∫
Θ
LRn(θ, θ0)dΠ(θ)

+ EQ

[
log

dQ(θ)

eγR(a′,θ) dΠ(θ|X̃n)

]
,

= log

∫
Θ

eζLn(θ,θ0)
eγR(a′,θ)LRn(θ, θ0)dΠ(θ)∫
Θ
eγR(a′,θ)LRn(θ, θ0)dΠ(θ)

+ EQ

[
log

dQ(θ)

eγR(a′,θ) dΠ(θ|X̃n)

]
+ log

∫
Θ

eγR(a′,θ) LRn(θ, θ0)dΠ(θ)∫
Θ
LRn(θ, θ0)dΠ(θ)

, (20)

where the last equality follows from adding and subtracting logEΠ

[
eγR(a′,θ)LRn(θ, θ0)

]
. Now

taking expectation on either side of equation (20) and using Jensen’s inequality on the first and the
last term in the RHS yields

EPn
0

[
ζEQ∗

a′,γ(θ|X̃n)
[Ln(θ, θ0)]

]
≤ logEPn

0

[∫
Θ

eζLn(θ,θ0)
eγR(a′,θ) LRn(θ, θ0)dΠ(θ)∫
Θ
eγR(a′,θ) LRn(θ, θ0)dΠ(θ)

]
+ inf

Q∈Q
EPn

0

[
KL(Q∥Πn)

− γ inf
a∈A

EQ [R(a, θ)]

]
+ logEPn

0

[∫
Θ

eγR(a′,θ) LRn(θ, θ0)dΠ(θ)∫
Θ
LRn(θ, θ0)dΠ(θ)

]
, (21)

where in the second term in RHS of (20), we first take infimum over all a ∈ A which upper bounds
the second term in (20) and then take infimum over all Q ∈ Q, since the LHS does not depend on
Q.

Next, we state a technical result that is important in proving our next lemma.
Lemma C.2 (Lemma 6.4 of [34]). Suppose random variable X satisfies

P(X ≥ t) ≤ c1 exp(−c2t),
for all t ≥ t0 > 0. Then for any 0 < β ≤ c2/2,

E[exp(βX)] ≤ exp(βt0) + c1.

Proof. Refer Lemma 6.4 of [34].
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In the following result, we bound the first term on the RHS of equation (19). The arguments in the
proof are essentially similar to Lemma 6.3 in [34]
Lemma C.3. Under Assumptions 2.1, 2.2, 2.3, 2.4, and 2.5 and for min(C,C4(γ) + C5(γ)) >
C2 + C3 + C4(γ) + 2 and any ϵ ≥ ϵn,

EPn
0

[∫
Θ

eζLn(θ,θ0)
eγR(a′,θ) LRn(θ, θ0)dΠ(θ)∫
Θ
eγR(a′,θ) LRn(θ, θ0)dΠ(θ)

]
≤ eζC1nϵ

2

+ (1 + C0 + 3W−γ), (22)

for 0 < ζ ≤ C10/2, where C10 = min{λ,C, 1}/C1 for any λ > 0.

Proof. First define the set

Bn :=

{
X̃n :

∫
Θ

LRn(θ, θ0)dΠ(θ) ≥ e−(1+C3)nϵ
2

Π(An)

}
, (23)

where set An is defined in Assumption 2.3. We demonstrate that, under Assumption 2.3, Pn
0 (Bc

n) is
bounded above by an exponentially decreasing(in n) term. Note that for An as defined in Assump-
tion 2.3:

Pn
0

(
1

Π(An)

∫
Θ

LRn(θ, θ0)dΠ(θ) ≤ e−(1+C3)nϵ
2

)
≤ Pn

0

(
1

Π(An)

∫
Θ∩An

LRn(θ, θ0)dΠ(θ) ≤ e−(1+C3)nϵ
2

)
. (24)

Let dΠ̃(θ) :=
1{Θ∩An}(θ)

Π(An)
dΠ(θ), and use this in (24) for any λ > 0 to obtain,

Pn
0

(∫
Θ

LRn(θ, θ0)dΠ̃(θ) ≤ e−(1+C3)nϵ
2

)
= Pn

0

([∫
Θ

LRn(θ, θ0)dΠ̃(θ)

]−λ

≥ e(1+C3)λnϵ
2

)
.

Then, using the Markov’s inequality in the last equality above, we have

Pn
0

(∫
Θ

LRn(θ, θ0)dΠ̃(θ) ≤ e−(1+C3)nϵ
2

)
≤ e−(1+C3)λnϵ

2

EPn
0

([∫
Θ

LRn(θ, θ0)dΠ̃(θ)

]−λ
)

≤ e−(1+C3)λnϵ
2

[∫
Θ

EPn
0

(
[LRn(θ, θ0)]

−λ
)
dΠ̃(θ)

]
= e−(1+C3)λnϵ

2

[∫
Θ

exp(λDλ+1 (P
n
0 ∥Pn

θ ))dΠ̃(θ)

]
≤ e−(1+C3)λnϵ

2

eλC3nϵ
2
n ≤ ϵ−λnϵ2 , (25)

where the second inequality follows from first applying Jensen’s inequality (on the term inside [·])
and then using Fubini’s theorem, and the penultimate inequality follows from Assumption 2.3 and
the definition of Π̃(θ).

Next, define the set Kn := {θ ∈ Θ : Ln(θ, θ0) > C1nϵ
2}. Notice that set Kn is the set of alternate

hypothesis as defined in Assumption 2.1. We bound the calibrated posterior probability of this set
Kn to get a bound on the first term in the RHS of equation (19). Recall the sequence of test function
{ϕn,ϵ} from Assumption 2.1. Observe that

EPn
0

[∫
Kn

eγR(a′,θ) LRn(θ, θ0)dΠ(θ)∫
Θ
eγR(a′,θ) LRn(θ, θ0)dΠ(θ)

]

= EPn
0

[
(ϕn,ϵ + 1− ϕn,ϵ)

∫
Kn

eγR(a′,θ) LRn(θ, θ0)dΠ(θ)∫
Θ
eγR(a′,θ) LRn(θ, θ0)dΠ(θ)

]
≤ EPn

0
[ϕn,ϵ] + EPn

0

[
(1− ϕn,ϵ)1BC

n

]
+ EPn

0

[
(1− ϕn,ϵ)1Bn

∫
Kn

eγR(a′,θ) LRn(θ, θ0)dΠ(θ)∫
Θ
eγR(a′,θ) LRn(θ, θ0)dΠ(θ)

]

≤ EPn
0
ϕn,ϵ + EPn

0

[
1BC

n

]
+ EPn

0

[
(1− ϕn,ϵ)1Bn

∫
Kn

eγR(a′,θ) LRn(θ, θ0)dΠ(θ)∫
Θ
eγR(a′,θ) LRn(θ, θ0)dΠ(θ)

]
, (26)
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where in the second inequality, we first divide the second term over set Bn and its complement

and then use the fact that
∫
Kn

eγR(a′,θ) LRn(θ,θ0)dΠ(θ)∫
Θ

eγR(a′,θ) LRn(θ,θ0)dΠ(θ)
≤ 1. The third inequality is due the fact that

ϕn,ϵ ∈ [0, 1]. Next, using Assumption 2.3 and 2.5 observe that on set Bn∫
Θ

eγR(a′,θ) LRn(θ, θ0)dΠ(θ) ≥W γ

∫
Θ

LRn(θ, θ0)dΠ(θ)

≥W γe−(1+C2+C3)nϵ
2
n ≥W γe−(1+C2+C3)nϵ

2

.

Substituting the equation above in the third term of equation (26), we obtain

EPn
0

[
(1− ϕn,ϵ)1Bn

∫
Kn

eγR(a′,θ) LRn(θ, θ0)dΠ(θ)∫
Θ
eγR(a′,θ) LRn(θ, θ0)dΠ(θ)

]

≤W−γe(1+C2+C3)nϵ
2

EPn
0

[
(1− ϕn,ϵ)1Bn

∫
Kn

eγR(a′,θ) LRn(θ, θ0)dΠ(θ)

]
≤W−γe(1+C2+C3)nϵ

2

EPn
0

[
(1− ϕn,ϵ)

∫
Kn

eγR(a′,θ) LRn(θ, θ0)dΠ(θ)

]
. (⋆)

Now using Fubini’s theorem observe that,

(⋆) =W−γe(1+C2+C3)nϵ
2

∫
Kn

eγR(a′,θ)EPn
θ
[(1− ϕn,ϵ)] dΠ(θ)

≤W−γe(1+C2+C3+C4(γ))nϵ
2

[∫
Kn∩{eγR(a′,θ)≤eC4(γ)nϵ2}

EPn
θ
[(1− ϕn,ϵ)] dΠ(θ)

+ e−C4(γ)nϵ
2

∫
Kn∩{eγR(a′,θ)>eC4(γ)nϵ2}

eγR(a′,θ)dΠ(θ)

]
,

where in the last inequality, we first divide the integral over set {θ ∈ Θ : eγR(a′,θ) ≤ eC4(γ)nϵ
2} and

its complement and then use the upper bound on eγR(a′,θ) in the first integral. Now, it follows that

(⋆) ≤W−γe(1+C2+C3+C4(γ))nϵ
2

[∫
Kn

EPn
θ
[(1− ϕn,ϵ)] dΠ(θ)

+e−C4(γ)nϵ
2

∫
{eγR(a′,θ)>eC4(γ)nϵ2}

eγR(a′,θ)dΠ(θ)

]

=W−γe(1+C2+C3+C4(γ))nϵ
2

[∫
Kn∩Θn(ϵ)

EPn
θ
[(1− ϕn,ϵ)] dΠ(θ)

+

∫
Kn∩Θn(ϵ)c

EPn
θ
[(1− ϕn,ϵ)] dΠ(θ) + e−C4(γ)nϵ

2

∫
{eγR(a′,θ)>eC4(γ)nϵ2}

eγR(a′,θ)dΠ(θ)

]
≤W−γe(1+C2+C3+C4(γ))nϵ

2

[∫
Kn∩Θn(ϵ)

EPn
θ
[(1− ϕn,ϵ)] dΠ(θ) + Π(Θn(ϵ)

c)

+ e−C4(γ)nϵ
2

∫
{eγR(a′,θ)>eC4(γ)nϵ2}

eγR(a′,θ)dΠ(θ)

]
,

where the second equality is obtained by dividing the first integral on set Θn(ϵ) and its complement,
and the second inequality is due the fact that ϕn,ϵ ∈ [0, 1]. Now, using the equation above and
Assumption 2.1, 2.2, and 2.4 observe that

EPn
0

[
(1− ϕn,ϵ)1Bn

∫
Kn

eγR(a′,θ) LRn(θ, θ0)dΠ(θ)∫
Θ
eγR(a′,θ) LRn(θ, θ0)dΠ(θ)

]
≤W−γe(1+C2+C3+C4(γ))nϵ

2
[
2e−Cnϵ2 + e−(C5(γ)+C4(γ))nϵ

2
]
.

Hence, choosingC,C2, C3, C4(γ) andC5(γ) such that −1 > 1+C2+C3+C4(γ)−min(C, (C4(γ)+
C5(γ))) implies
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EPn
0

[
(1− ϕn,ϵ)IBn

∫
Kn

eγR(a′,θ) LRn(θ, θ0)dΠ(θ)∫
Θ
eγR(a′,θ) LRn(θ, θ0)dΠ(θ)

]
≤ 3W−γe−nϵ2 . (27)

By Assumption 2.1, we have

EPn
0
ϕn,ϵ ≤ C0e

−Cnϵ2 . (28)

Therefore, substituting equation (25), equation (27), and (28) into (26), we obtain

EPn
0

[∫
Kn

eγR(a′,θ) LRn(θ, θ0)dΠ(θ)∫
Θ
eγR(a′,θ) LRn(θ, θ0)dΠ(θ)

]
≤ (1 + C0 + 3W−γ)e−C10C1nϵ

2

, (29)

where C10 = min{λ,C, 1}/C1. Using Fubini’s theorem, observe that the LHS in the equation (29)
can be expressed as µ(Kn), where

dµ(θ) = EPn
0

[ LRn(θ, θ0)∫
Θ
eγR(a′,θ) LRn(θ, θ0)dΠ(θ)

]
Π(θ)eγR(a′,θ)dθ.

Next, recall that the set Kn = {θ ∈ Θ : Ln(θ, θ0) > C1nϵ
2}. Applying Lemma C.2 above with

X = Ln(θ, θ0), c1 = (1 + C0 + 3W−γ) , c2 = C10 , t0 = C1nϵ
2
n, and for 0 < ζ ≤ C10/2, we

obtain

EPn
0

[∫
Θ

eζLn(θ,θ0)
eγR(a′,θ) LRn(θ, θ0)Π(θ)∫

Θ
eγR(a′,θ) LRn(θ, θ0)dΠ(θ)

dθ

]
≤ eζC1nϵ

2
n + (1 + C0 + 3W−γ). (30)

Further, we have another technical lemma, that will be crucial in proving the subsequent lemma that
upper bounds the last term in the equation (19).
Lemma C.4. Suppose a positive random variable X satisfies

P(X ≥ et) ≤ c1 exp(−(c2 + 1)t),

for all t ≥ t0 > 0, c1 > 0, and c2 > 0. Then,

E[X] ≤ exp(t0) +
c1
c2
.

Proof. For any Z0 > 1,

E[X] ≤ Z0 +

∫ ∞

Z0

P(X ≥ x)dx

= Z0 +

∫ ∞

lnZ0

P(X ≥ ey)eydy ≤ Z0 + c1

∫ ∞

lnZ0

exp(−c2y)dy.

Therefore, choosing Z0 = exp(t0),

E[X] ≤ exp(t0) +
c1
c2

exp(−c2t0) ≤ exp(t0) +
c1
c2
.

Next, we establish the following bound on the last term in equation (19).
Lemma C.5. Under Assumptions 2.1, 2.2, 2.3, 2.4, 2.5, and for C5(γ) > C2 + C3 + 2,

EPn
0

[∫
Θ

eγR(a′,θ) LRn(θ, θ0)dΠ(θ)∫
Θ

LRn(θ, θ0)dΠ(θ)

]
≤ eC4(γ)nϵ

2
n + 2C4(γ). (31)

for any λ ≥ 1 + C4(γ).
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Proof. Define the set

Mn := {θ ∈ Θ : eγR(a′,θ) > eC4(γ)nϵ
2}. (32)

Using the set Bn in equation (23), observe that the measure of the set Mn, under the posterior
distribution satisfies,

EPn
0

[∫
Mn

LRn(θ, θ0)dΠ(θ)∫
Θ

LRn(θ, θ0)dΠ(θ)

]
≤ EPn

0

[
1Bc

n

]
+ EPn

0

[
1Bn

∫
Mn

LRn(θ, θ0)dΠ(θ)∫
Θ

LRn(θ, θ0)dΠ(θ)

]
. (33)

Now, the second term of equation (33) can be bounded as follows: recall Assumption 2.3 and the
definition of set Bn, both together imply that,

EPn
0

[
1Bn

∫
Mn

LRn(θ, θ0)dΠ(θ)∫
Θ

LRn(θ, θ0)dΠ(θ)

]
≤ e(1+C2+C3)nϵ

2

EPn
0

[
1Bn

∫
Mn

LRn(θ, θ0)dΠ(θ)

]
≤ e(1+C2+C3)nϵ

2

EPn
0

[∫
Mn

LRn(θ, θ0)dΠ(θ)

]
. (⋆⋆)

Then, using Fubini’s Theorem (⋆⋆) = e(1+C2+C3)nϵ
2

Π(Mn). Next, using the definition of set Mn

and then Assumption 2.4, we obtain

EPn
0

[
1Bn

∫
Mn

LRn(θ, θ0)dΠ(θ)∫
Θ

LRn(θ, θ0)dΠ(θ)

]
≤ e(1+C2+C3)nϵ

2

e−C4(γ)nϵ
2

∫
Mn

eγR(a′,θ)dΠ(θ)

≤ e(1+C2+C3)nϵ
2

e−C4(γ)nϵ
2

e−C5(γ)nϵ
2

,

Hence, choosing the constants C2, C3, C4(γ) and C5(γ) such that −1 > 1 + C2 + C3 − C5(γ)
implies

EPn
0

[
1Bn

∫
Mn

LRn(θ, θ0)dΠ(θ)∫
Θ

LRn(θ, θ0)dΠ(θ)

]
≤ e−(1+C4(γ))nϵ

2

(34)

Therefore, substituting (25) and (34) into (33)

EPn
0

[∫
Mn

LRn(θ, θ0)dΠ(θ)∫
Θ

LRn(θ, θ0)dΠ(θ)

]
≤ 2e−C4(γ)(C11(γ)+1)nϵ2 , (35)

where C11(γ) = min{λ, 1 + C4(γ)}/C4(γ) − 1. Using Fubini’s theorem, observe that the RHS
in (35) can be expressed as ν(Mn), where the measure

dν(θ) = EPn
0

[ LRn(θ, θ0)∫
Θ

LRn(θ, θ0)dΠ(θ)

]
dΠ(θ).

Applying Lemma C.4 for X = eγR(a′,θ),c1 = 2 , c2 = C11(γ) , t0 = C4(γ)nϵ
2
n and λ ≥ 1+C4(γ),

we obtain

EPn
0

[∫
Θ

eγR(a′,θ) LRn(θ, θ0)dΠ(θ)∫
Θ

LRn(θ, θ0)dΠ(θ)

]
≤ eC4(γ)nϵ

2
n +

2

C11(γ)
≤ eC4(γ)nϵ

2
n + 2C4(γ). (36)

Proof. Proof of Theorem 3.1: Finally, recall (19),

ζEPn
0

[∫
Θ

Ln(θ, θ0) dQ
∗
a′,γ(θ|X̃n)

]
≤ logEPn

0

[∫
Θ

eζLn(θ,θ0)
eγR(a′,θ) LRn(θ, θ0)dΠ(θ)∫
Θ
eγR(a′,θ) LRn(θ, θ0)dΠ(θ)

]
+ inf

Q∈Q
EPn

0

[
KL(Q∥Πn)

− γ inf
a∈A

EQ[R(a, θ)]

]
+ logEPn

0

[∫
Θ

eγR(a′,θ) LRn(θ, θ0)dΠ(θ)∫
Θ
LRn(θ, θ0)dΠ(θ)

]
. (37)
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Substituting (31) and (22) into the equation above and then using the definition of ηRn (γ), we get

EPn
0

[∫
Θ

Ln(θ, θ0) dQ
∗
a′,γ(θ|X̃n)

]
≤1

ζ

{
log(eζC1nϵ

2
n + (1 + C0 + 3W−γ)) + log

(
eC4(γ)nϵ

2
n + 2C4(γ)

)
+ nηRn (γ)

}
≤
(
C1 +

1

ζ
C4(γ)

)
nϵ2n +

1

ζ
nηRn (γ) +

(1 + C0 + 3W−γ)e(−ζC1nϵ
2
n) + 2C4(γ)e

−C4(γ)nϵ
2
n

ζ
,

where the last inequality uses the fact that log x ≤ x− 1. Choosing ζ = C10/2 = min(C,λ,1)
2C1

,

EPn
0

[∫
Θ

Ln(θ, θ0) dQ
∗
a′,γ(θ|X̃n)

]
≤M(γ)n(ϵ2n) +M ′nηRn (γ) +

2(1 + C0 + 3W−γ)e(−
C10
2 nϵ2n) + 4C4(γ)e

−C4(γ)nϵ
2
n

C10
(38)

where M(γ) = C1 +
1
ζC4(γ) and M ′ = 1

ζ depend on C,C1, C4(γ),W and λ. Since the last two
terms in (38) decrease and the first term increases as n increases, we can choose M ′ large enough,
such that for all n ≥ 1

M ′nηRn (γ) >
2(1 + C0 + 3W−γ)

C10
+

4C4(γ)

C10
,

and therefore for M = 2M ′,

EPn
0

[∫
Θ

Ln(θ, θ0) dQ
∗
a′,γ(θ|X̃n)

]
≤M(γ)n(ϵ2n) +MnηRn (γ). (39)

Also, observe that the LHS in the above equation is always positive, therefore M(γ)ϵ2n +MηRn (γ) ≥
0 ∀n ≥ 1 and γ > 0.

C.3 Proof of Theorem 3.2

Lemma C.6. Given a′ ∈ A and for a constant M, as defined in Theorem 3.1

EPn
0

[
sup
a∈A

∣∣∣EQ∗
a′,γ(θ|X̃n)

[R(a, θ)]−R(a, θ0)
∣∣∣] ≤ [M(γ)ϵ2n +MηRn (γ)

] 1
2 . (40)

Proof. First, observe that(
sup
a∈A

∣∣∣EQ∗
a′,γ(θ|X̃n)

[R(a, θ)]−R(a, θ)
∣∣∣)2

≤
(
EQ∗

a′,γ(θ|X̃n)

[
sup
a∈A

|R(a, θ)−R(a, θ0)|
])2

≤EQ∗
a′,γ(θ|X̃n)

[(
sup
a∈A

|R(a, θ)−R(a, θ0)|
)2
]
,

where the last inequality follows from Jensen’s inequality. Now, using the Jensen’s inequality again(
EPn

0

[
sup
a∈A

∣∣∣EQ∗
a′,γ(θ|X̃n)

[R(a, θ)]−R(a, θ0)
∣∣∣])2

≤ EPn
0

[(
sup
a∈A

∣∣∣EQ∗
a′,γ(θ|X̃n)

[R(a, θ)]−R(a, θ0)
∣∣∣)2
]
.

Now, using Theorem 3.1 the result follows immediately.
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Proof of Theorem 3.2. Observe that

R(a∗RS, θ0)− inf
z∈A

R(z, θ0)

= |R(a∗RS, θ0)− inf
z∈A

R(z, θ0)|

= R(a∗RS, θ0)− EQ∗
a∗RS,γ

(θ|X̃n)
[R(a∗RS, θ)] + EQ∗

a∗RS,γ
(θ|X̃n)

[R(a∗RS, θ)]− inf
z∈A

R(z, θ0)

≤
∣∣∣∣R(a∗RS, θ0)− EQ∗

a∗RS,γ
(θ|X̃n)

[R(a∗RS, θ)]

∣∣∣∣+ ∣∣∣∣EQ∗
a∗RS,γ

(θ|X̃n)
[R(a∗RS, θ)]− inf

a∈A
R(a, θ0)

∣∣∣∣
≤ 2 sup

a∈A

∣∣∣∣∫ R(a, θ)dQ∗
a∗RS,γ

(θ|X̃n)−R(a, θ0)

∣∣∣∣ . (41)

Given a∗RS ∈ A and for a constant M (defined in Theorem 3.1), we have from Lemma C.6 for a′ = a∗RS

EPn
0

[
sup
a∈A

∣∣∣∣∫ R(a, θ)dQ∗
a∗RS,γ

(θ|X̃n)−R(a, θ0)

∣∣∣∣] ≤ [M(γ)ϵ2n +MηRn (γ)
] 1

2 . (42)

It follows from above that the Pn
0 − probability of the following event is at least 1− τ−1:{

X̃n : R(a∗RS, θ0)− inf
z∈A

R(z, θ0) ≤ 2τ
[
M(γ)ϵ2n +MηRn (γ)

] 1
2

}
. (43)

C.4 Proofs in Section 3.1

Proof of Proposition 3.1. Using the definition of ηRn (γ) and the posterior distribution Π(θ|X̃n),
observe that

nηRn (γ) = inf
Q∈Q

EPn
0

[
KL(Q∥Πn)− γ inf

a∈A
EQ[R(a, θ)]

]
= inf

Q∈Q
EPn

0

[
KL(Q∥Π) +

∫
Θ

dQ(θ) log

(∫
dΠ(θ)p(X̃n|θ)
p(X̃n|θ)

)
− γ inf

a∈A
EQ[R(a, θ)]

]

= inf
Q∈Q

[
KL(Q∥Π)− γ inf

a∈A
EQ[R(a, θ)] + EPn

0

[
EQ

[
log

(∫
dΠ(θ)p(X̃n|θ)
p(X̃n|θ)

)]]]
.

Now, using Fubini’s in the last term of the equation above, we obtain

nηRn (γ) = inf
Q∈Q

[
KL(Q(θ)∥Π(θ))− γ inf

a∈A
EQ[R(a, θ)]

+ EQ

[
KL
(
dPn

0 ∥p(X̃n|θ)
)
− KL

(
dPn

0

∥∥∥∥∫ dΠ(θ)p(X̃n|θ)
)]]

. (44)

Observe that,
∫
Xn

∫
dΠ(θ)p(X̃n|θ)dX̃n = 1. Since, KL is always non-negative, it follows from the

equation above that

ηRn (γ)

≤ 1

n
inf
Q∈Q

[
KL (Q(θ)∥Π(θ))− γ inf

a∈A
EQ[R(a, θ)] + EQ

[
KL
(
dPn

0 ∥p(X̃n|θ)
)]]

≤ 1

n
inf
Q∈Q

[
KL (Q(θ)∥Π(θ)) + EQ

[
KL
(
dPn

0 ∥p(X̃n|θ)
)]]

− γ

n
inf
Q∈Q

inf
a∈A

EQ[R(a, θ)], (45)

where the last inequality follows from the following fact, for any functions f(·) and g(·),
inf(f − g) ≤ inf f − inf g.

25



Recall ϵ′n ≥ 1√
n

. Now, using Assumption 3.1, it is straightforward to observe that the first term
in (45),

1

n
inf
Q∈Q

[
KL (Q(θ)∥Π(θ)) + EQ

[
KL
(
dPn

0 ∥p(X̃n|θ)
)]]

≤ C9ϵ
′2
n . (46)

Now consider the last term in (45). Notice that the coefficient of 1
n is independent of n and is bounded

from below. Therefore, there exist a constant C8 = − infQ∈Q infa∈A EQ[R(a, θ)], such that with
equation (46) it follows that ηRn (γ) ≤ γn−1C8 + C9ϵ

′2
n and the result follows.

Proof of Proposition 3.2. First recall that

nηRn (γ) = inf
Q∈Q

EPn
0

[
KL(Q(θ)∥Π(θ|X̃n))− γ inf

a∈A
EQ[R(a, θ)]

]
= inf

Q∈Q
EPn

0

[
KL(Q(θ)∥Π(θ|X̃n))

]
− γ inf

a∈A
EQ[R(a, θ)]. (47)

Observe that the optimization problem is equivalent to solving :

min
Q∈Q

EPn
0

[
KL(Q(θ)∥Π(θ|X̃n))

]
s.t. − inf

a∈A
EQ[R(a, θ)] ≤ 0. (48)

Now for any γ > 0, Q∗
γ(θ) ∈ Q that minimizes the objective in (47) is primal feasible if

− inf
a∈A

∫
Θ

dQ∗
γ(θ)R(a, θ) ≤ 0.

Therefore, it is straightforward to observe that as γ increases nηRn (γ) decreases that is

EPn
0

[∫
Θ

dQ∗
γ(θ) log

dQ∗
γ(θ)

dΠ(θ|X̃n)
− γ inf

a∈A

∫
Θ

dQ∗
γ(θ)R(a, θ)

]
.

C.5 Sufficient conditions on R(a, θ) for existence of tests

To show the existence of test functions, as required in Assumption 2.1, we will use the following
result from [11, Theorem 7.1], that is applicable only to distance measures that are bounded above
by the Hellinger distance.
Lemma C.7 (Theorem 7.1 of [11]). Suppose that for some non-increasing function D(ϵ), some
ϵn > 0 and for every ϵ > ϵn,

N
( ϵ
2
, {Pθ : ϵ ≤ m(θ, θ0) ≤ 2ϵ} ,m

)
≤ D(ϵ),

where m(·, ·) is any distance measure bounded above by Hellinger distance. Then for every ϵ > ϵn,
there exists a test ϕn (depending on ϵ > 0) such that, for every j ≥ 1,

EPn
0
[ϕn] ≤ D(ϵ) exp

(
−1

2
nϵ2
)

1

1− exp
(
− 1

2nϵ
2
) , and

sup
{θ∈Θn(ϵ):m(θ,θ0)>jϵ}

EPn
θ
[1− ϕn] ≤ exp

(
−1

2
nϵ2j

)
.

Proof of Lemma C.7: Refer Theorem 7.1 of [11].

For the remaining part of this subsection we assume that Θ ⊆ Rd. In the subsequent paragraph, we
state further assumptions on the risk function to show Ln(·, ·) as defined in (6) satisfies Assump-
tion 2.1. For brevity we denote n−1/2

√
Ln(θ, θ0) by dL(θ, θ0), that is
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dL(θ1, θ2) := sup
a∈A

|R(a, θ1)−R(a, θ2)|, ∀{θ1, θ2} ∈ Θ (49)

and the covering number of the set T (ϵ) := {Pθ : dL(θ, θ0) < ϵ} as N(δ, T (ϵ), dL), where δ > 0 is
the radius of each ball in the cover. We assume that the risk function R(a, ·) satisfies the following
bound.
Assumption C.1. The model risk satisfies

dL(θ1, θ2)| ≤ K1dH(θ, θ0),

where dH(θ1, θ2) is the Hellinger distance between two models Pθ1 and Pθ2 .

For instance, suppose the definition of model risk is R(a, θ) =
∫
X ℓ(x, a)p(y|θ)dx, where ℓ(x, a)

is an underlying loss function. Then, observe that Assumption C.1 is trivially satisfied if ℓ(x, a) is
bounded in x for a given a ∈ A and A is compact, since dL(θ1, θ2) can be bounded by the total
variation distance dTV (θ1, θ2) =

1
2

∫
|dPθ1(x)− dPθ2(x)| and total variation distance is bounded

above by the Hellinger distance [12]. Under the assumption above it also follows that we can apply
Lemma C.7 to the metric dL(·, ·) defined in (49). Now, we will also assume an additional regularity
condition on the risk function.
Assumption C.2. For every {θ1, θ2} ∈ Θ, there exists a constant K2 > 0 such that

dL(θ1, θ2) ≤ K2∥θ1 − θ2∥,

We can now show that the covering number of the set T (ϵ) satisfies
Lemma C.8. Given ϵ > δ > 0, and under Assumption C.2,

N(δ, T (ϵ), dL) <

(
2ϵ

δ
+ 2

)d

. (50)

Proof of Lemma C.8: For any positive k and ϵ, let θ ∈ [θ0 − kϵ, θ0 + kϵ]d ⊂ Θ ⊂ Rd. Now consider
a set Hi = {θ0i , θ1i , . . . θJi , θJ+1

i } and H =
⊗

dHi with J = ⌊ 2kϵ
δ′ ⌋, where θji = θ0 − kϵ+ iδ′ for

j = {0, 1, . . . , J} and θJ+1
i = θ0 + kϵ. Observe that for any θ ∈ [θ0 − kϵ, θ0 + kϵ]d, there exists

a θj ∈ H such that ∥θ − θj∥ < δ′. Hence, union of the δ′−balls for each element in set H covers
[θ0 − kϵ, θ0 + kϵ]d, therefore N(δ′, [θ0 − kϵ, θ0 + kϵ]d, ∥ · ∥) = (J + 2)d.

Now, due to Assumption C.2, for any θ ∈ [θ0 − kϵ, θ0 + kϵ]d

dL(θ, θ0) ≤ K2∥θ − θj∥ ≤ K2δ
′,

For brevity, we denote n−1Ln(θ, θ0) by dL(θ, θ0), that is

dL(θ1, θ2) := sup
a∈A

|R(a, θ1)−R(a, θ2)|, ∀{θ1, θ2} ∈ Θ, (51)

and the covering number of the set T (ϵ) := {Pθ : dL(θ, θ0) < ϵ} as N(δ, T (ϵ), dL), where δ > 0 is
the radius of each ball in the cover.

Hence, δ′-cover of set [θ0 − kϵ, θ0 + kϵ]d is K1δ
′ cover of set T (ϵ) with k = 1/K2. Finally,

N(K2δ
′, T (ϵ), dL) ≤ (J + 2)d ≤

(
2kϵ

δ′
+ 2

)d

=

(
2ϵ

K2δ′
+ 2

)d

which implies for δ = K2δ
′,

N(δ, T (ϵ), dL) ≤
(
2ϵ

δ
+ 2

)s

.

Observe that the RHS in (50) is a decreasing function of δ, infact for δ = ϵ/2, it is a constant in ϵ.
Therefore, using Lemmas C.7 and C.8, we show in the following result that Ln(θ, θ0) in (6) satisfies
Assumption 2.1.
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Lemma C.9. Fix n ≥ 1. For a given ϵn > 0 and every ϵ > ϵn, such that nϵ2n ≥ 1. Under
Assumption C.1 and C.2, Ln(θ, θ0) = n (supa∈A |R(a, θ)−R(a, θ0)|)2 satisfies

EPn
0
[ϕn] ≤ C0 exp(−Cnϵ2), (52)

sup
{θ∈Θ:Ln(θ,θ0)≥C1nϵ2}

EPn
θ
[1− ϕn] ≤ exp(−Cnϵ2), (53)

where C0 = 2 ∗ 10s and C = C1

2K2
1

for a constant C1 > 0.

Proof of Lemma C.9: Recall dL(θ, θ0) = (supa∈A |R(a, θ)−R(a, θ0)|) and T (ϵ) = {Pθ :
dL(θ, θ0) < ϵ}. Using Lemma C.8, observe that for every ϵ > ϵn > 0,

N
( ϵ
2
, {θ : ϵ ≤ dL(θ, θ0) ≤ 2ϵ}, dL

)
≤ N

( ϵ
2
, {θ : dL(θ, θ0) ≤ 2ϵ}, dL

)
< 10d.

Next, using Assumption C.1 we have

dL(θ, θ0) ≤ K1dH(θ, θ0).

It follows from the above two observations and Lemma 2 that, for every ϵ > ϵn > 0, there exist tests
{ϕn,ϵ} such that

EPn
0
[ϕn,ϵ] ≤ 10d

exp(−C ′nϵ2)

1− exp(−C ′nϵ2)
, (54)

sup
{θ∈Θ:dL(θ,θ0)≥ϵ}

EPn
θ
[1− ϕn,ϵ] ≤ exp(−C ′nϵ2), (55)

where C ′ = 1
2K2

1
. Since the above two conditions hold for every ϵ > ϵn, we can choose a constant

K > 0 such that for every ϵ > ϵn

EPn
0
[ϕn,ϵ] ≤ 10d

exp(−C ′K2nϵ2)

1− exp(−C ′K2nϵ2)
≤ 2(10d)e−C′K2nϵ2 , (56)

sup
{θ∈Θ:Ln(θ,θ0)≥K2nϵ2}

EPn
θ
[1− ϕn,ϵ] = sup

{θ∈Θ:dL(θ,θ0)≥Kϵ}
EPn

θ
[1− ϕn,ϵ] ≤ e−C′K2nϵ2 , (57)

where the second inequality in (56) holds ∀n ≥ n0, where n0 := min{n ≥ 1 : C ′K2nϵ2 ≥ log(2)}
Hence, the result follows for C1 = K2 and C = C ′K2.

Since Ln(θ, θ0) =
1
nd

2
L satisfies Assumption 2.1, Theorem 3.1 implies the following bound.

Corollary C.1. Fix a′ ∈ A and γ > 0. Let ϵn be a sequence such that ϵn → 0 as n→ ∞, nϵ2n ≥ 1
and

Ln(θ, θ0) = n

(
sup
a∈A

|R(a, θ)−R(a, θ0)|
)2

.

Then under the Assumptions of Theorem 3.1 and Lemma C.9 ; for C = C1

2K2
1

, C0 = 2 ∗ 10s, C1 > 0

such that min(C,C4(γ)+C5(γ)) > C2+C3+C4(γ)+2 , and for ηRn (γ) as defined in Theorem 3.1,
the RSVB approximator of the true posterior Q∗

a′,γ(θ|X̃n) satisfies,

EPn
0

[∫
Θ

Ln(θ, θ0)Q
∗
a′,γ(θ|X̃n)dθ

]
≤ n(M(γ)ϵ2n +MηRn (γ)), (58)

for sufficiently large n and for a function M(γ) = 2 (C1 +MC4(γ)) , where M = 2C1

min(C,λ,1) .

Proof of Corollary C.1: Using Lemma C.9 observe that for any Θn(ϵ) ⊆ Θ, Ln(θ, θ0) satisfies
Assumption 2.1 with C0 = 2 ∗ 10s, C = C1

2K2
1

and for any C1 > 0, since

sup
{θ∈Θn(ϵ):Ln(θ,θ0)≥C1nϵ2n}

EPn
θ
[1− ϕn,ϵ] ≤ sup

{θ∈Θ:Ln(θ,θ0)≥C1nϵ2n}
EPn

θ
[1− ϕn,ϵ] ≤ e−Cnϵ2n .

Hence, applying Theorem 3.1 the proof follows.
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C.6 Newsvendor Problem

We fix n−1/2
√
LNV
n (θ, θ0) = (supa∈A |R(a, θ)−R(a, θ0)|). Next, we aim to show that the expo-

nentially distributed model Pθ satisfies Assumption 2.1, for distance function LNV
n (θ, θ0). To show

this, in the next result we first prove that dNV
L (θ, θ0) = n−1/2

√
LNV
n (θ, θ0) satisfy Assumption C.1.

Also, recall that the square of Hellinger distance between two exponential distributions with rate

parameter θ and θ0 is d2H(θ, θ0) = 1− 2
√
θθ0

θ+θ0
= 1− 2

√
θ0/θ

1+θ0/θ
.

Lemma C.10. For any θ ∈ Θ = [T,∞), and a ∈ A,

dNV
L (θ, θ0) ≤


(

h
θ0

− h
T

)2
+ (b+ h)2

(
e−aT

T − e−aθ0

θ0

)2
d2H(T, θ0)


1/2

dH(θ, θ0)

where a := min{a ∈ A} and a > 0 and θ0 lies in the interior of Θ.

Proof. Observe that for any a ∈ A,
|R(a, θ)−R(a, θ0)|2

=

∣∣∣∣ hθ0 − h

θ
+ (b+ h)

(
e−aθ

θ
− e−aθ0

θ0

)∣∣∣∣2
=

(
h

θ0
− h

θ

)2

+ (b+ h)2
(
e−aθ

θ
− e−aθ0

θ0

)2

+ 2

(
h

θ0
− h

θ

)
(b+ h)

(
e−aθ

θ
− e−aθ0

θ0

)
≤
(
h

θ0
− h

θ

)2

+ (b+ h)2
(
e−aθ

θ
− e−aθ0

θ0

)2

, (59)

where the last inequality follows since for θ ≥ θ0,
(

h
θ0

− h
θ

)
≥ 0 and

(
e−aθ

θ − e−aθ0

θ0

)
< 0 and vice

versa if θ < θ0 that together makes the last term in the penultimate equality negative for all θ ∈ Θ.
Moreover, the first derivative of the upperbound with respect to θ is

2

(
h

θ0
− h

θ

)
h

θ2
− 2(b+ h)2

(
e−aθ

θ
− e−aθ0

θ0

)
e−aθ

[
1

θ2
+
a

θ

]
,

and it is negative when θ ≤ θ0 and positive when θ > θ0 for all b > 0, h > 0, and a ∈ A. Therefore,
the upperbound in (59) above is decreasing function of θ for all θ ≤ θ0 and increasing function of θ
for all θ > θ0. The upperbound is tight at θ = θ0.

Now recall that the squared Hellinger distance between two exponential distributions with rate
parameter θ and θ0 is

d2H(θ, θ0) = 1− 2

√
θθ0

θ + θ0
= 1− 2

√
θ0/θ

1 + θ0/θ
=

(1−
√
θ0/θ)

2

1 + (
√
θ0/θ)2

.

Note that for θ ≤ θ0, d2H(θ, θ0) is a decreasing function of θ and for all θ > θ0 it is an increasing
function of θ. Also, note that as θ → ∞, the squared Hellinger distance as well as the upperbound
computed in (59) converges to a constant for a given h, b, θ0 and a. However, as θ → 0, the
d2H(θ, θ0) → 1 but the upperbound computed in (59) diverges.

Since, Θ = [T,∞) for some T > 0 and T ≤ θ0, observe that if we scale d2H(θ, θ0) by factor by
which the upperbound computed in (59) is greater than dH at θ = T , then(

h

θ0
− h

θ

)2

+ (b+ h)2
(
e−aθ

θ
− e−aθ0

θ0

)2

≤

(
h
θ0

− h
T

)2
+ (b+ h)2

(
e−aT

T − e−aθ0

θ0

)2
d2H(T, θ0)

d2H(θ, θ0)

≤

(
h
θ0

− h
T

)2
+ (b+ h)2

(
e−aT

T − e−aθ0

θ0

)2
d2H(T, θ0)

d2H(θ, θ0),
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where a = inf{a : a ∈ A} and in the last inequality we used the fact that
(

e−aT

T − e−aθ0

θ0

)2
is a

decreasing function of a for any b, h, T, and θ0 . Since, the RHS in the equation above does not
depend on a, it follows from the result in (59) and the definition of LNV

n (θ, θ0) that

dNV
L (θ, θ0) ≤


(

h
θ0

− h
T

)2
+ (b+ h)2

(
e−aT

T − e−aθ0

θ0

)2
d2H(T, θ0)


1/2

dH(θ, θ0).

Lemma C.11. For any θ ∈ Θ = [T,∞), for sufficiently small T > 0, and θ0 lying in the interior of
Θ, we have

d2H(θ, θ0) = 1− 2

√
θθ0

θ + θ0
≤
(

θ0
(T + θ0)2

(√
θ0
T

−
√
T

θ0

))
|θ − θ0|.

Proof. Observe that

∂d2H(θ, θ0)

∂θ
= −2

(θ + θ0)
√
θ0

2
√
θ
−

√
θθ0

(θ + θ0)2
=

θ0
(θ + θ0)2

(√
θ

θ0
−
√
θ0
θ

)
.

Observe that θ → 0, ∂d2
H(θ,θ0)
∂θ → ∞. Since,θ ∈ Θ = [T,∞), therefore the supθ∈Θ

∣∣∣∂d2
H(θ,θ0)
∂θ

∣∣∣ <
∞. In fact, for sufficiently small T > 0, supθ∈Θ

∣∣∣∂d2
H(θ,θ0)
∂θ

∣∣∣ =

∣∣∣∣ θ0
(T+θ0)2

(√
T
θ0

−
√

θ0
T

)∣∣∣∣ =(
θ0

(T+θ0)2

(√
θ0
T −

√
T
θ0

))
. Now the result follows immediately since the derivative of d2H(θ, θ0)

is bounded on Θ, which implies that d2H(θ, θ0) is Lipschitz on Θ.

Lemma C.12. For any θ ∈ Θ = [T,∞), and a ∈ A,

dNV
L (θ, θ0) ≤

h

T 2
|θ − θ0|.

Proof. Recall,

R(a, θ) = ha− h

θ
+ (b+ h)

e−aθ

θ
.

First, observe that for any a ∈ A,

∂R(a, θ)

∂θ
=

h

θ2
− a(b+ h)

e−aθ

θ
− (b+ h)

e−aθ

θ2
=

1

θ2
(
h− (b+ h)e−aθ(1 + aθ)

)
≤ h

θ2
. (60)

The result follows immediately, since supθ∈Θ
∂R(a,θ)

∂θ ≤ h
T 2 .

Proof. Proof of Lemma B.1

It follows from Lemma C.10 that dNV
L (θ, θ0) for any θ ∈ Θ = [T,∞) and θ0 lying the interior of Θ,

satisfies Assumption C.1 with

K1 =


(

h
θ0

− h
T

)2
+ (b+ h)2

(
e−aT

T − e−aθ0

θ0

)2
d2H(T, θ0)


1/2

:= KNV
1

. Similarly, it follows from Lemma and C.12 that for sufficiently small T > 0, dNV
L (θ, θ0) satisfies

Assumption C.2 with K2 = h/T 2 := KNV
2 . Now using similar arguments as used in Lemma C.8

and Lemma 2.1, for a given ϵn > 0 and every ϵ > ϵn, such that nϵ2n ≥ 1, it can be shown that ,
LNV
n (θ, θ0) = n (supa∈A |R(a, θ)−R(a, θ0)|)2 satisfies
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EPn
0
[ϕn] ≤ C0 exp(−Cnϵ2), (61)

sup
{θ∈Θ:LNV

n (θ,θ0)≥C1nϵ2}
EPn

θ
[1− ϕn] ≤ exp(−Cnϵ2), (62)

where C0 = 20 and C = C1

2(KNV
1 )2

for a constant C1 > 0.

Proof. Proof of Lemma B.2:

First, we write the Rényi divergence between Pn
0 and Pn

θ ,

D1+λ (P
n
0 ∥Pn

θ ) =
1

λ
log

∫ (
dPn

0

dPn
θ

)λ

dPn
0 = n

1

λ
log

∫ (
dP0

dPθ

)λ

dP0

= n

(
log

θ0
θ

+
1

λ
log

θ0
(λ+ 1)θ0 − λθ

)
,

when ((λ+ 1)θ0 − λθ) > 0 and D1+λ (P
n
0 ∥Pn

θ ) = ∞ otherwise. Also, observe that,
D1+λ (P

n
0 ∥Pn

θ ) is non-decreasing in λ (this also follows from non-decreasing property of the
Rényi divergence with respect to λ). Therefore, observe that

Π(D1+λ (P
n
0 ∥Pn

θ ) ≤ C3nϵ
2
n) ≥ Π(D∞ (Pn

0 ∥Pn
θ ) ≤ C3nϵ

2
n) = Π

(
0 ≤ log

θ0
θ

≤ C3ϵ
2
n

)
= Π

(
θ0e

−C3ϵ
2
n ≤ θ ≤ θ0

)
.

Now, recall that for a set A ⊆ Θ = [T,∞), we define Π(A) = Inv − Γ(A ∩Θ)/Inv − Γ(Θ). Now,
observe that for sufficiently small T and large enough n, we have

Π
(
θ0e

−C3ϵ
2
n ≤ θ ≤ θ0

)
≥ Inv − Γ

(
θ0e

−C3ϵ
2
n ≤ θ ≤ θ0

)
The cumulative distribution function of inverse-gamma distribution is Inv − Γ({θ ∈ Θ : θ < t}) :=
Γ(α, βt )
Γ(α) , where α(> 0) is the shape parameter, β(> 0) is the scale parameter, Γ(·) is the Gamma

function, and Γ(·, ·) is the incomplete Gamma function. Therefore, it follows for α > 1 that

Inv − Γ
(
θ0e

−C3ϵ
2
n ≤ θ ≤ θ0

)
=

Γ (α, β/θ0)− Γ
(
α, β/θ0e

C3ϵ
2
n

)
Γ(α)

=

∫ β/θ0e
C3ϵ2n

β/θ0
e−xxα−1dx

Γ(α)

≥ e−β/θ0e
C3ϵ2n+αC3ϵ

2
n

αΓ(α)

(
β

θ0

)α [
1− e−αC3ϵ

2
n

]
≥ e−β/θ0e

C3

αΓ(α)

(
β

θ0

)α [
e−αC3nϵ

2
n

]
where the penultimate inequality folows since 0 < ϵ2n < 1 and the last inequality follows from the
fact that, 1− e−αC3ϵ

2
n ≥ e−αC3nϵ

2
n , for large enough n. Also note that, 1− e−αC3ϵ

2
n ≥ e−αC3nϵ

2
n

can’t hold true for ϵ2n = 1/n. However, for ϵ2n = logn
n it holds for any n ≥ 2 when αC3 > 2.

Therefore, for inverse-Gamma prior restricted to Θ, C2 = αC3 and any λ > 1 the result follows for
sufficiently large n.

Proof. Proof of Lemma B.3: Recall,

R(a, θ) = ha− h

θ
+ (b+ h)

e−aθ

θ
.

First, observe that for any a ∈ A,

∂R(a, θ)

∂θ
=

h

θ2
− a(b+ h)

e−aθ

θ
− (b+ h)

e−aθ

θ2
=

1

θ2
(
h− (b+ h)e−aθ(1 + aθ)

)
. (63)
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Using the above equation the (finite) critical point θ∗ must satisfy, h− (b+ h)e−aθ∗
(1 + aθ∗) = 0.

Therefore,

R(a, θ) ≥ R(a, θ∗) = h

(
a− 1

θ∗
+

1

θ∗(1 + aθ∗)

)
=

ha2θ∗

(1 + aθ∗)
.

Since h, b > 0 and aθ∗ > 0, hence

R(a, θ) ≥ ha2θ∗

(1 + aθ∗)
,

where a := min{a ∈ A} and a > 0.

Proof. Proof of Lemma B.4:

First, observe that R(a, θ) is bounded above in θ for a given a ∈ A

R(a, θ) = ha− h

θ
+ (b+ h)

e−aθ

θ

≤ ha+
b

θ
.

Using the above fact and the Cauchy-Schwarz inequality, we obtain∫
{
eγR(a,θ)>eC4(γ)nϵ2n

} eγR(a,θ)π(θ)dθ

≤
(∫

e2γR(a,θ)π(θ)dθ

)1/2(∫
1
eγR(a,θ)>eC4(γ)nϵ2n

π(θ)dθ

)1/2

≤
(∫

e2γ(ha+
b
θ )π(θ)dθ

)1/2(∫
1
{eγ(ha+ b

θ )>eC4(γ)nϵ2n}
π(θ)dθ

)1/2

≤ e−C4(γ)nϵ
2
n

(∫
e2γ(ha+

b
θ )π(θ)dθ

)
, (64)

where the last inequality follows from using the Chebyshev’s inequality.

Now using the definition of the prior distribution, which is an inverse gamma prior restricted to
Θ = [T,∞), we have∫

{
eγR(a,θ)>eC4(γ)nϵ2n

} eγR(a,θ)π(θ)dθ ≤ e−C4(γ)nϵ
2
n

(∫
e2γ(ha+

b
θ )π(θ)dθ

)
≤ e−C4(γ)nϵ

2
ne2γ(ha+

b
T ),

where a := max{a ∈ A} and a > 0. Since nϵ2n ≥ 1, we must fix C4(γ) such that eC4(γ) >

e2γ(ha+
b
T ), that is C4(γ) > 2γ

(
ha+ b

T

)
and C5(γ) = C4(γ)− 2γ

(
ha+ b

T

)
.

Proof. Proof of Lemma B.5: Since family Q contains all shifted-gamma distributions, observe that

{qn(·) ∈ Q}∀n ≥ 1. By definition, qn(θ) = nn

θn
0 Γ(n) (θ − T )n−1e−n

(θ−T )
θ0 . Now consider the first

term; using the definition of the KL divergence it follows that

KL(qn(θ)∥π(θ)) =
∫ ∞

T

qn(θ) log(qn(θ))dθ −
∫ ∞

T

qn(θ) log(π(θ))dθ. (65)

Substituting qn(θ) in the first term of the equation above and expanding the logarithm term, we obtain∫ ∞

T

qn(θ) log(qn(θ))dθ

= (n− 1)

∫ ∞

T

log(θ − T )
nn

θn0Γ(n)
(θ − T )n−1e−n θ−T

θ0 dθ − n+ log

(
nn

θn0Γ(n)

)
= − log θ0 + (n− 1)

∫ ∞

T

log
θ − T

θ0

nn

θn0Γ(n)
(θ − T )n−1e−n θ−T

θ0 dθ − n+ log

(
nn

Γ(n)

)
(66)
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Now consider the second term in the equation above. Substitute θ = tθ0
n + T into the integral, we

have ∫ ∞

T

log
θ − T

θ0

nn

θn0Γ(n)
(θ − T )n−1e−n θ−T

θ0 dθ =

∫ ∞

0

log
t

n

1

Γ(n)
tn−1e−tdt

≤
∫ (

t

n
− 1

)
1

Γ(n)
tn−1e−tdt = 0. (67)

Substituting the above result into (66), we get∫ ∞

T

qn(θ) log(qn(θ))dθ ≤ − log θ0 − n+ log

(
nn

Γ(n)

)
≤ − log θ0 − n+ log

(
nn√

2πnnn−1e−n

)
= − log

√
2πθ0 +

1

2
log n, (68)

where the second inequality uses the fact that
√
2πnnne−n ≤ nΓ(n). Recall π(θ) = βα

Γ(α)θ
−α−1e−

β
θ .

Now consider the second term in (65). Using the definition of inverse-gamma prior and expanding
the logarithm function, we have

−
∫ ∞

T

qn(θ) log(π(θ))dθ

= − log

(
βα

Γ(α)

)
+ (α+ 1)

∫ ∞

T

log θ
nn

θn0Γ(n)
(θ − T )n−1e−n θ−T

θ0 dθ + β
n

(n− 1)θ0

= − log

(
βα

Γ(α)

)
+

∫ ∞

T

log
θ

θ0

nn

θn0Γ(n)
(θ − T )n−1e−n θ−T

θ0 dθ

+ β
n

(n− 1)θ0
+ (α+ 1) log θ0

≤ − log

(
βα

Γ(α)

)
+

∫ ∞

T

θ − T

θ0

nn

θn0Γ(n)
(θ − T )n−1e−n θ−T

θ0 dθ

+ β
n

(n− 1)θ0
+ (α+ 1) log θ0

= − log

(
βα

Γ(α)

)
+ β

n

(n− 1)θ0
+ (α+ 1) log θ0, (69)

where the first inequality is due to fact that Eqn [β/θ] ≤ Eqn [β/(θ − T )] for any θ > T and the
penultimate inequality follows from the observation in (67) and the fact that log θ

θ0
≤ θ

θ0
−1 ≤ θ

θ0
− T

θ0
for any θ0 > T . Substituting (69) and (68) into (65) and dividing either sides by n, we obtain

1

n
KL(qn(θ)∥π(θ))

≤ 1

n

(
− log

√
2πθ0 +

1

2
log n− log

(
βα

Γ(α)

)
+ β

n

(n− 1)θ0
+ (α+ 1) log θ0

)
=

1

2

log n

n
+ β

1

(n− 1)θ0
+

1

n

(
− log

√
2π − log

(
βα

Γ(α)

)
+ (α) log θ0

)
. (70)

Now consider the second term in the assertion of the lemma. Since ξi, i ∈ {1, 2 . . . n} are independent
and identically distributed, we obtain

1

n
Eqn(θ)

[
KL
(
dPn

0 ∥p(X̃n|θ)
)]

= Eqn(θ) [KL (dP0∥p(ξ|θ))]
Now using the expression for KL divergence between the two exponential distributions, we have

1

n
Eqn(θ)

[
KL
(
dPn

0 ∥p(X̃n|θ)
)]

=

∫ ∞

T

(
log

θ0
θ

+
θ

θ0
− 1

)
nn

θn0Γ(n)
(θ − T )n−1e−n θ−T

θ0 dθ

≤ n

n− 1
+ 1− 2 =

1

n− 1
, (71)
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where second inequality uses the fact that log x ≤ x−1 ≤ x− T
θ0

for θ0 > T . Combined together (71)
and (70) for n ≥ 2 implies that

1

n

[
KL (qn(θ)∥π(θ)) + Eqn(θ)

[
KL
(
dPn

0 )∥p(X̃n|θ)
)]]

≤ 1

2

log n

n
+

1

n

(
2 +

2β

θ0
− log

√
2π − log

(
βα

Γ(α)

)
+ α log θ0

)
≤ C9

log n

n
. (72)

where C9 := 1
2 +max

(
0, 2 + 2β

θ0
− log

√
2π − log

(
βα

Γ(α)

)
+ α log θ0

)
and the result follows.

Proof. Proof of Lemma B.5: Since family Q contains all gamma distributions, observe that {qn(·) ∈
Q}∀n ≥ 1. By definition, qn(θ) = nn

θn
0 Γ(n)θ

n−1e−n θ
θ0 . Now consider the first term; using the

definition of the KL divergence it follows that

KL(qn(θ)∥π(θ)) =
∫
qn(θ) log(qn(θ))dθ −

∫
qn(θ) log(π(θ))dθ. (73)

Substituting qn(θ) in the first term of the equation above and expanding the logarithm term, we obtain∫
qn(θ) log(qn(θ))dθ = (n− 1)

∫
log θ

nn

θn0Γ(n)
θn−1e−n θ

θ0 dθ − n+ log

(
nn

θn0Γ(n)

)
= − log θ0 + (n− 1)

∫
log

θ

θ0

nn

θn0Γ(n)
θn−1e−n θ

θ0 dθ − n+ log

(
nn

Γ(n)

)
(74)

Now consider the second term in the equation above. Substitute θ = tθ0
n into the integral, we have∫

log
θ

θ0

nn

θn0Γ(n)
θn−1e−n θ

θ0 dθ =

∫
log

t

n

1

Γ(n)
tn−1e−tdt

≤
∫ (

t

n
− 1

)
1

Γ(n)
tn−1e−tdt = 0. (75)

Substituting the above result into (74), we get∫
qn(θ) log(qn(θ))dθ ≤ − log θ0 − n+ log

(
nn

Γ(n)

)
≤ − log θ0 − n+ log

(
nn√

2πnnn−1e−n

)
= − log

√
2πθ0 +

1

2
log n, (76)

where the second inequality uses the fact that
√
2πnnne−n ≤ nΓ(n). Recall π(θ) = βα

Γ(α)θ
−α−1e−

β
θ .

Now consider the second term in (73). Using the definition of inverse-gamma prior and expanding
the logarithm function, we have

−
∫
qn(θ) log(π(θ))dθ

= − log

(
βα

Γ(α)

)
+ (α+ 1)

∫
log θ

nn

θn0Γ(n)
θn−1e−n θ

θ0 dθ + β
n

(n− 1)θ0

= − log

(
βα

Γ(α)

)
+ (α+ 1)

∫
log

θ

θ0

nn

θn0Γ(n)
θn−1e−n θ

θ0 dθ

+ β
n

(n− 1)θ0
+ (α+ 1) log θ0

≤ − log

(
βα

Γ(α)

)
+ β

n

(n− 1)θ0
+ (α+ 1) log θ0, (77)
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where the last inequality follows from the observation in (75). Substituting (77) and (76) into (73)
and dividing either sides by n, we obtain

1

n
KL(qn(θ)∥π(θ))

≤ 1

n

(
− log

√
2πθ0 +

1

2
log n− log

(
βα

Γ(α)

)
+ β

n

(n− 1)θ0
+ (α+ 1) log θ0

)
=
1

2

log n

n
+ β

1

(n− 1)θ0
+

1

n

(
− log

√
2π − log

(
βα

Γ(α)

)
+ (α) log θ0

)
. (78)

Now, consider the second term in the assertion of the lemma. Since, ξi, i ∈ {1, 2 . . . n} are indepen-
dent and identically distributed, we obtain

1

n
Eq(θ)

[
KL
(
dPn

0 ∥p(X̃n|θ)
)]

= Eqn(θ) [KL (dP0∥p(ξ|θ))]

Now using the expression for KL divergence between the two exponential distributions, we have

1

n
Eq(θ)

[
KL
(
dPn

0 ∥p(X̃n|θ)
)]

=

∫ (
log

θ0
θ

+
θ

θ0
− 1

)
nn

θn0Γ(n)
θn−1e−n θ

θ0 dθ

≤ n

n− 1
+ 1− 2 =

1

n− 1
, (79)

where second inequality uses the fact that log x ≤ x− 1. Combined together (79) and (78) for n ≥ 2
implies that

1

n

[
KL (q(θ)∥π(θ)) + Eq(θ)

[
KL
(
dPn

0 )∥p(X̃n|θ)
)]]

≤ 1

2

log n

n
+

1

n

(
2 +

2β

θ0
− log

√
2π − log

(
βα

Γ(α)

)
+ α log θ0

)
≤ C9

log n

n
. (80)

where C9 := 1
2 +max

(
0, 2 + 2β

θ0
− log

√
2π − log

(
βα

Γ(α)

)
+ α log θ0

)
and the result follows.

C.7 Multi-product Newsvendor problem

In the multi-dimensional newsvendor problem, we fix n−1/2
√
LMNV
n (θ, θ0) =

(supa∈A |R(a, θ) − R(a, θ0)|), where R(a, θ) =
∑d

i=1

[
(hi + bi)aiΦ(ai) − biai + θi(bi − hi)

+σii

[
h ϕ((ai−θi)/σii)
Φ((ai−θi)/σii)

+ b ϕ((ai−θi)/σii)
1−Φ((ai−θi)/σii)

] ]
.

For brevity, we denote dMNV
L (θ, θ0) = n−1/2

√
LMNV
n (θ, θ0). First, we show that

Lemma C.13. For any compact decision space A and compact model space Θ,

dMNV
L (θ, θ0) ≤ K∥θ − θ0∥,

for a constant K depending on compact sets A and Θ and given b, h and Σ.

Proof. Observe that

∂θiR(a, θ)

= (bi − hi) + (ai − θi)/σiiϕ((ai − θi)/σii)

[
h

Φ((ai − θi)/σii)
+

b

1− Φ((ai − θi)/σii)

]
+ σiiϕ

(
(ai − θi)

σii

)[
hϕ((ai − θi)/σii)

σiiΦ((ai − θi)/σii)2
− bϕ((ai − θi)/σii)

σii(1− Φ((ai − θi)/σii))2

]
= (bi − hi) + (ai − θi)/σiiϕ((ai − θi)/σii)

[
h

Φ((ai − θi)/σii)
+

b

1− Φ((ai − θi)/σii)

]
+ ϕ

(
(ai − θi)

σii

)[
hϕ((ai − θi)/σii)

Φ((ai − θi)/σii)2
− bϕ((ai − θi)/σii)

(1− Φ((ai − θi)/σii))2

]
. (81)
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Since, A and Θ are compact sets, therefore {(ai − θi)/σii}di=1 lie in a compact set. Consequently,
ϕ((ai−θi)/σii) and Φ((ai−θi)/σii) also lie in bounded subset of R and thus supA,Θ ∥∂θiR(a, θ)∥ ≤
K for a given b, h and Σ. Since , the norm of the derivative of R(a, θ) is bounded on Θ for any
a ∈ A, therefore, dMNV

L (θ, θ0) is uniformly Lipschitz in A with Lipschitz constant K, that is

dMNV
L (θ, θ0) ≤ K∥θ − θ0∥.

Next, we show that the Pθ satisfies Assumption 2.1, for distance function LMNV
n (θ, θ0).

Proof. Proof of Lemma B.6:

First consider the following test function, constructed using X̃n = {ξ1, ξ2, . . . , ξn}.
ϕn,ϵ := 1{X̃n:∥θ̂n−θ0∥>√

Cϵ2},

where θ̂n =
∑n

i=1 ξi
n . Note that θ̂n − θ0 ∼ N (·|0, 1

nΣ), where 1
nΣ is a symmetric positive definite

matrix. Therefore it can be decomposed as Σ = QTΛQ, where Q is an orthogonal matrix and Λ is a
daigonal matrix consisting of respective eigen values and consequently θ̂n − θ0 ∼ QN (·|0, 1

nΛ). So,
we have ∥θ̂n − θ0∥2 ∼ ∥N (·|0, 1

nΛ)∥2. Notice that ∥N (·|0, 1
nΛ)∥2 is a linear combination of d χ2

(1)

random variable weighted by elements of the diagonal matrix 1
nΛ. Using this observation, we first

verify that ϕn,ϵ satisfies condition (i) of the Lemma. Observe that

EPn
0
[ϕn] = Pn

0

(
X̃n :

∥∥∥θ̂n − θ0

∥∥∥2 > Cϵ2
)

= Pn
0

(
X̃n : ∥N (·|0,Λ)∥2 > Cnϵ2

)
.

Note that χ2
(1) is Γ distributed with shape 1/2 and scale 2, which implies χ2

(1)−1 is a sub-gamma ran-

dom variable with scale factor 2 and variance factor 2. Now observe that for Λ̂ = maxi∈{1,2,...d} Λii,

Pn
0

(
X̃n : ∥N (·|0,Λ)∥2 > Cnϵ2

)
≤ Pn

0

(
X̃n : χ2

(1) >
1

dΛ̂
Cnϵ2

)
≤ Pn

0

(
X̃n : χ2

(1) >
1

dΛ̂
Cnϵ2

)
= Pn

0

(
X̃n : χ2

(1) − 1 >
1

dΛ̂
Cnϵ2 − 1

)

≤ e
−

( 1
dΛ̂

Cnϵ2−1)
2

2(2+2( 1
dΛ̂

Cnϵ2−1))

≤ e−1/8 1
dΛ̂

Cnϵ2+1/8 ≤ e−1/8( C
dΛ̂

−1)nϵ2 , (82)
where in the third inequality we used the well known tail bound for sub-gamma random variable
(Lemma 3.12 [5]) assuming that C is sufficiently large such that

(
1
dΛ̂
Cnϵ2 − 1

)
> 1 and in the last

inequality follows from the assumption that nϵ2 > nϵ2n ≥ 1.

Now, we fix the alternate set to be {θ ∈ Rd : ∥θ− θ0∥ ≥ 2
√
Cϵ2}. Next, we verify that ϕn,ϵ satisfies

condition (ii) of the lemma. First, observe that

EPn
θ
[1− ϕn] = Pn

θ

(
X̃n :

∥∥∥θ̂n − θ0

∥∥∥2 ≤ Cϵ2
)

≤ Pn
θ

(
X̃n : ∥θ̂n − θ∥ ≥ ∥θ − θ0∥ −

√
Cϵ2

)
,

(83)

where in the last inequality, we used the fact that ∥θ − θ0∥ ≤ ∥θ̂n − θ∥ +
∥∥∥θ̂n − θ0

∥∥∥. Now on

alternate set {θ ∈ Rd : ∥θ − θ0∥ ≥ 2
√
Cϵ2},

EPn
θ
[1− ϕn] ≤ Pn

θ

(
X̃n : ∥θ̂n − θ∥ ≥ ∥θ − θ0∥ −

√
Cϵ2

)
≤ Pn

θ

(
X̃n : ∥θ̂n − θ∥ ≥ ∥θ − θ0∥ −

√
Cϵ2

)
≤ Pn

θ

(
X̃n : ∥θ̂n − θ∥ ≥

√
Cϵ2

)
. (84)
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Now, it follows from (82) and Θ ⊂ Rd that

EPn
0
[ϕn] ≤ e−1/8( C

dΛ̂
−1)nϵ2 ,

sup
{θ∈Θ:∥θ−θ0∥≥2

√
Cϵ2}

EPn
θ
[1− ϕn] ≤ sup

{θ∈Rd:∥θ−θ0∥≥2
√
Cϵ2}

EPn
θ
[1− ϕn] ≤ e−1/8( C

dΛ̂
−1)nϵ2 .

Using Lemma C.13, {θ ∈ Θ : n−1/2
√
LMNV
n (θ, θ0) ≥ 2K

√
Cϵ2} = {θ ∈ Θ : dMNV

L (θ, θ0) ≥
2K

√
Cϵ2} ⊆ {θ ∈ Θ : ∥θ − θ0∥ ≥ 2

√
Cϵ2}, which implies that

sup
{θ∈Θ:LMNV

n (θ,θ0)≥4K2Cnϵ2}
EPn

θ
[1− ϕn] ≤ sup

{θ∈Θ:∥θ−θ0∥≥2
√
Cϵ2}

EPn
θ
[1− ϕn].

Therefore, Pθ for θ ∈ Θ, satisifes Assumptions 2.1 for Ln(θ, θ0) = LMNV
n (θ, θ0) for C0 = 1,

C1 = 4K2C and C = 1/8
(

C
dΛ̂

− 1
)

.

Proof. Proof of Lemma B.7:

First, we write the Rényi divergence between two multivariate Gaussian distribution with known Σ as

D1+λ(N (·|θ0)∥N (·|θ)) = λ+ 1

2
(θ − θ0)

TΣ(θ − θ0), (85)

and D1+λ(N (·|θ)∥N (·|θ0)) <∞ if and only if Σ−1 is positive definite [13].

Since, we assumed that the sequence of models are iid, therefore, D1+λ (P
n
0 ∥Pn

θ ) =

1
λ log

∫ (dPn
0

dPn
θ

)λ
dPn

0 = n 1
λ log

∫ (
dP0

dPθ

)λ
dP0 = n

(
λ+1
2 (θ − θ0)

TΣ(θ − θ0)
)
, when Σ−1 is posi-

tive definite and D1+λ (P
n
0 ∥Pn

θ ) = ∞ otherwise. Now observe that

Π(D1+λ (P
n
0 ∥Pn

θ ) ≤ nC3ϵ
2
n) = Π

((
(θ − θ0)

TΣ(θ − θ0)
)
≤ 2

λ+ 1
C3ϵ

2
n

)
= Π

((
[(θ − θ0)Q]TΛ[Q(θ − θ0)]

)
≤ 2

λ+ 1
C3ϵ

2
n

)
≥ Π

((
[(θ − θ0)Q]T [Q(θ − θ0)]

)
≤ 2

Λ̂(λ+ 1)
C3ϵ

2
n

)
,

= Π

((
[(θ − θ0)]

T [(θ − θ0)]
)
≤ 2

Λ̂(λ+ 1)
C3ϵ

2
n

)
, (86)

where Λ̂ = maxi∈{1,2,...d} Λii and in the second equality we used eigen value decomposition of
Σ = QTΛQ. Next, observe that,

Π(D1+λ (P
n
0 ∥Pn

θ ) ≤ nC3ϵ
2
n) = Π

((
[(θ − θ0)]

T [(θ − θ0)]
)
≤ 2

Λ̂(λ+ 1)
C3ϵ

2
n

)

= Π

(
∥(θ − θ0)∥ ≤

√
2

Λ̂(λ+ 1)
C3ϵ2n

)

≥ Π

(
∥(θ − θ0)∥∞ ≤

√
2

Λ̂(λ+ 1)
C3ϵ2n

)

=

d∏
i=1

Πi

(
|(θi − θi0)| ≤

√
2

Λ̂(λ+ 1)
C3ϵ2n

)
,

where in the last equality we used the fact that the prior distribution is uncorrelated. Now, the result
follows immediately for sufficiently large n, if the prior distribution is uncorrelated and uniformly

37



distributed on the compact set Θi, for each i ∈ {1, 2, . . . , d} . In particular observe that for large
enough n, we have

Π(D1+λ (P
n
0 ∥Pn

θ ) ≤ nC3ϵ
2
n) ≥

d∏
i=1

θi0 +
√

2
Λ̂(λ+1)

C3ϵ2n − θi0 +
√

2
Λ̂(λ+1)

C3ϵ2n

m(Θi)

=
2d
(

2
Λ̂(λ+1)

C3ϵ
2
n

)d/2
∏d

i=1m(Θi)
=

 8

(Λ̂(λ+ 1))

(
d∏

i=1

m(Θi)

)−2/d

C3ϵ
2
n

d/2

,

where m(A) is the Lebesgue measure (volume) of any set A ⊂ R. Now if ϵ2n = logn
n , then for

8

Λ̂(λ+1)(
∏d

i=1 m(Θi))
2/dC3 > 2, 8

Λ̂(λ+1)(
∏d

i=1 m(Θi))
2/dC3ϵ

2
n ≥ e

− 8

Λ̂(λ+1)(∏d
i=1

m(Θi))
2/d

C3nϵ
2
n

for all

n ≥ 2, therefore,

Π(D1+λ (P
n
0 ∥Pn

θ ) ≤ nC3ϵ
2
n) ≥ e

− 4d

Λ̂(λ+1)(∏d
i=1

m(Θi))
2/d

C3nϵ
2
n

.

Proof. Proof of Lemma B.9: Since family Q contains all uncorrelated Gaussian distribu-
tions restricted to Θ, observe that {qn(·) ∈ Q}∀n ≥ 1. By definition, qin(θ) ∝

1√
2πσ2

i,n

e
− 1

2σ2
i,n

(θ−µi,n)
2

1Θi =
N (θi|µi,n,σi,n)1Θi

N (Θi|µi,n,σi,n)
and fix σi,n = 1/

√
n and θi = θi0 for all

i ∈ {1, 2, . . . , d}. Now consider the first term; using the definition of the KL divergence it fol-
lows that

KL(qn(θ)∥π(θ)) =
∫
qn(θ) log(qn(θ))dθ −

∫
qn(θ) log(π(θ))dθ. (87)

Substituting qn(θ) in the first term of the equation above and expanding the logarithm term, we obtain∫
qn(θ) log(qn(θ))dθ =

d∑
i=1

∫
qin(θi) log(q

i
n(θi))dθi

≤
d∑

i=1

∫
N (θi|µi,n, σi,n) logN (θi|µi,n, σi,n)dθi

= −
d∑

i=1

[log(
√
2πe) + log σi,n], (88)

where in the last equality, we used the well known expression for the differential entropy of Gaussian
distributions. Recall π(θ) =

∏d
i=1

1
m(Θi)

. Now consider the second term in (87). It is straightforward
to observe that,

−
∫
qn(θ) log(π(θ))dθ =

d∑
i=1

log(m(Θi)). (89)

Substituting (89) and (88) into (87) and dividing either sides by n and substituting σi,n, we obtain

1

n
KL(qn(θ)∥π(θ)) ≤ − 1

n

d∑
i=1

[log(
√
2πe)− log(m(Θi))−

1

2
log n]

=
d

2

log n

n
− 1

n

d∑
i=1

[log(
√
2πe)− log(m(Θi))]. (90)

Now, consider the second term in the assertion of the lemma. Since ξi, i ∈ {1, 2 . . . n} are independent
and identically distributed, we obtain

1

n
Eqn(θ)

[
KL
(
dPn

0 ∥p(X̃n|θ)
)]

= Eqn(θ) [KL (dP0∥p(ξ|θ))]
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Now using the expression for KL divergence between the two multivariate Gaussian distributions,
we have

1

n
Eqn(θ)

[
KL
(
dPn

0 ∥p(X̃n|θ)
)]

=
1

2
Eqn(θ)

[
(θ − θ0)

TΣ−1(θ − θ0)
]

≤ Λ̌−1

2
Eqn(θ)

[
(θ − θ0)

T (θ − θ0)
]

≤ d

n

Λ̌−1

2
(91)

where Λ̌ = mini∈{1,2,...d} Λii, and Σ−1 = QTΛ−1Q, where Q is an orthogonal matrix and Λ is a
daigonal matrix consisting of the respective eigen values of Σ. Combined together (91) and (90)
implies that

1

n

[
KL (qn(θ)∥π(θ)) + Eqn(θ)

[
KL
(
dPn

0 )∥p(X̃n|θ)
)]]

≤ d

2

log n

n
− 1

n

d∑
i=1

[log(
√
2πe)− log(m(Θi))] +

d

n

Λ̌−1

2
≤ C9

log n

n
. (92)

whereC9 := d
2+max

(
0,−∑d

i=1[log(
√
2πe)− log(m(Θi))] +

d
2 Λ̌

−1
)

and the result follows.

C.8 Gaussian process classification

Proof of Lemma B.11. In view of Theorem 7.1 in [11], it suffices to show that

N (ϵ,Θn(ϵ), dTV) ≤ eC̄nϵ2 ,

for some C̄ > 0. Now, first observe that

dTV(Pθ(y), Pθ0(y)) =
1

2
Eν (|Ψ1(θ(y))−Ψ1(θ0(y))|+ |Ψ−1(θ(y))−Ψ−1(θ0(y))|)

= Eν (|Ψ1(θ(y))−Ψ1(θ0(y))|)
≤ Eν (|θ(y)− θ0(y)|) ≤ ∥θ(y)− θ0(y)∥∞, (93)

where the second equality uses the definition of Ψ−1(·). Since, total-variation distance above is
bounded above by supremum norm, there exists a constant 0 < c′ < 1/2, such that

N (ϵ,Θn(ϵ), dTV) ≤ N (c′ϵ,Θn(ϵ), ∥ · ∥∞) ≤ e
2
3 c

′2C10nϵ
2

, (94)
where the last inequality follows from (13) in Lemma B.10. Then if follows from Theorem 7.1 in [11]
that for every ϵ > ϵn, there exists a test ϕn (depending on ϵ > 0) such that, for every j ≥ 1,

EPn
0
[ϕn] ≤ e

2
3 c

′2C10nϵ
2

e−
1
2nϵ

2 1

1− exp
(
− 1

2nϵ
2
) , and

sup
{θ∈Θn(ϵ):dTV (Pθ,Pθ0

)>jϵ}
EPn

θ
[1− ϕn] ≤ exp

(
−1

2
nϵ2j

)
.

Now for all n such that nϵ2 > nϵ2n > 2 log 2 and C10 = c′−2/4 > 1 and j = 1, we have

EPn
0
[ϕn] ≤ 2e−

1
3nϵ

2

, and (95)

sup
{θ∈Θn(ϵ):dTV (Pθ,Pθ0

)>ϵ}
EPn

θ
[1− ϕn] ≤ e−

1
2nϵ

2 ≤ e−
1
3nϵ

2

. (96)

Now observe that
sup
a∈A

|G(a, θ)−G(a, θ0)|

= max (c+|Eν [Ψ−1(θ(y))]− Eν [Ψ−1(θ0(y))]|, c−|Eν [Ψ1(θ(y))]− Eν [Ψ1(θ0(y))]|)
= max (c+|Eν [Ψ1(θ0(y))]− Eν [Ψ1(θ(y))]|, c−|Eν [Ψ1(θ(y))]− Eν [Ψ1(θ0(y))]|)
= max(c+, c−)|Eν [Ψ1(θ0(y))]− Eν [Ψ1(θ(y))]|
≤ max(c+, c−)Eν [|Ψ1(θ0(y))−Ψ1(θ(y))|]
≤ max(c+, c−)dTV (Pθ, Pθ0) (97)
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where the second equality uses the fact that Ψ−1(·) = 1−Ψ1(·).
Consequently,

{θ ∈ Θn(ϵ) : sup
a∈A

|G(a, θ)−G(a, θ0)| > max(c+, c−)ϵ} ⊆ {θ ∈ Θn(ϵ) : dTV (Pθ, Pθ0) > ϵ}

Therefore, it follows from (95) and (96) and the definition of Ln(θ, θ0) that

EPn
0
[ϕn] ≤ 2e−

1
3nϵ

2

, and (98)

sup
{θ∈Θn(ϵ):Ln(θ,θ0)>(max(c+,c−))2nϵ2}

EPn
θ
[1− ϕn] ≤ e−

1
2nϵ

2 ≤ e−
1
3nϵ

2

. (99)

Finally, the result follows for C = 1/3, C0 = 2 and C1 = (max(c+, c−))
2.

Proof of Lemma B.12. The Rényi divergence

D1+λ(P
n
0 ∥Pn

θ )

= n
1

λ
ln

∫ (
Ψ1(θ0(y))

1+λΨ1(θ(y))
−λ +Ψ−1(θ0(y))

1+λΨ−1(θ(y))
−λ
)
ν(dy)

= n
1

λ
ln

∫
eλ

1
λ ln(Ψ1(θ0(y))

1+λΨ1(θ(y))
−λ+Ψ−1(θ0(y))

1+λΨ−1(θ(y))
−λ)ν(dy). (100)

Note that the derivative of the exponent in the integrand above with respect to θ(y) is(
−λΨ1(θ0(y))

1+λΨ1(θ(y))
−λ−1ψ(θ(y)) + λΨ−1(θ0(y))

1+λΨ−1(θ(y))
−λ−1ψ(θ(y))

)
(Ψ1(θ0(y))1+λΨ1(θ(y))−λ +Ψ−1(θ0(y))1+λΨ−1(θ(y))−λ)

= λψ(θ(y))

(
−Ψ1(θ0(y))

1+λΨ1(θ(y))
−λ−1 +Ψ−1(θ0(y))

1+λΨ−1(θ(y))
−λ−1

)
(Ψ1(θ0(y))1+λΨ1(θ(y))−λ +Ψ−1(θ0(y))1+λΨ−1(θ(y))−λ)

= λ
ψ(θ(y))

Ψ1(θ(y))Ψ−1(θ(y))

(
−Ψ1(θ0(y))

1+λΨ−1(θ(y))
λ+1 +Ψ−1(θ0(y))

1+λΨ1(θ(y))
λ+1
)

(Ψ1(θ0(y))1+λΨ−1(θ(y))λ +Ψ−1(θ0(y))1+λΨ1(θ(y))λ)

= λ

(
−Ψ1(θ0(y))

1+λΨ−1(θ(y))
λ+1 +Ψ−1(θ0(y))

1+λΨ1(θ(y))
λ+1
)

(Ψ1(θ0(y))1+λΨ−1(θ(y))λ +Ψ−1(θ0(y))1+λΨ1(θ(y))λ)

= λ

(
−e−(λ+1)θ(y) + e−(1+λ)θ0(y)

)(
e−λθ(y) + e−(λ+1)θ0(y)

)
(1 + e−θ(y))

= λ
e−(1+λ)θ0(y)

(
1− e−(λ+1)(θ(y)−θ0(y))

)(
e−λθ(y) + e−(λ+1)θ0(y)

)
(1 + e−θ(y))

≤ λ
(λ+ 1)(θ(y)− θ0(y))(

e−λθ(y)+(λ+1)θ0(y) + 1
)
(1 + e−θ(y))

≤ λ(λ+ 1)|θ(y)− θ0(y)|, (101)

where in the fourth equality we used definition of the logistic function and the penultimate inequality
follows from the well known inequality that 1 − e−x ≤ x. Consequently, using Taylor’s theorem
it follows that the exponent in the integrand of the Rényi divergence in (100) is bounded above by
λ(λ+ 1)|θ(y)− θ0(y)|2 and thus by λ(λ+ 1)∥θ(y)− θ0(y)∥2∞. Therefore,

D1+λ(P
n
0 ∥Pn

θ )

= n
1

λ
ln

∫ (
Ψ1(θ0(y))

1+λΨ1(θ(y))
−λ +Ψ−1(θ0(y))

1+λΨ−1(θ(y))
−λ
)
ν(dy)

≤ n
1

λ
ln

∫
eλ(λ+1)∥θ(y)−θ0(y)∥2

∞ν(dy)

= n(λ+ 1)∥θ(y)− θ0(y)∥2∞.
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Now using the inequality for C3 = 16(λ+ 1) above observe that

Π(An) = Π(D1+λ (P
n
0 ∥Pn

θ ) ≤ C3nϵ
2
n)

≥ Π(n(λ+ 1)∥θ(y)− θ0(y)∥2∞ ≤ C3nϵ
2
n)

= Π(∥θ(y)− θ0(y)∥∞ ≤ 4ϵn) ≥ e−nϵ2n (102)

and the result follows from (15) of Lemma B.10.

Proof of Lemma B.13. Let us first analyze the KL divergence between the prior distribution and
variational family. Recall that two Gaussian measures on infinite dimensional spaces are either
equivalent or singular. [27, Theorem 6.13] specify the condition required for the two Gaussian
measures to be equivalent. In particular, note that θJ0 (·) ∈ Im(C1/2). Now observe that the covariance

operator of Qn has eigenvalues {ζ2j }Jj=1
2jd

k=1
, therefore operator S in the definition of Cq has eigen-

values {1− ζ2j /µ
2
j}Jj=1

2jd

k=1
. For τ2j = 2−2ja−jd for any a > 0,

∑J
j=1 2

jd
(

nϵ2n2
−2ja−jd

1+nϵ2n2
−2ja−jd

)2
=∑J

j=1 2
−jd

(
nϵ2n2

−2ja

1+nϵ2n2
−2ja−jd

)2
<∞, therefore S is an HS operator.

For any integer J ≤ Jα define θ̄J0 =
∫
θJ0 (y)ν(dy), where θJ0 (·) =

∑J
j=1

∑2jd

k=1 θ0;j,kϑj,k(·). Since,
θJ0 (·) ∈ Im(C1/2) and S is a symmetric and HS operator, we invoke Theorem 5 in [22], to write

KL(N (θ̄J0 , Cq)∥N (0, C)) = 1

2
∥C−1/2θ̄J0 ∥2 −

1

2
log det(I − S) +

1

2
tr(−S),

=
1

2

J∑
j=1

2jd∑
k=1

θ20;k,j
µ2
j

− 1

2
log

J∏
j=1

2jd∏
k=1

(1− κ2j )−
1

2

J∑
j=1

2jd∑
k=1

κ2j

=
1

2

J∑
j=1

2jd∑
k=1

θ20;k,j
µ2
j

− 1

2
log

J∏
j=1

(1− κ2j )
2jd − 1

2

J∑
j=1

2jdκ2j

=
1

2

J∑
j=1

2jd∑
k=1

θ20;k,j
µ2
j

− 1

2

J∑
j=1

2jd log(1− κ2j )−
1

2

J∑
j=1

2jdκ2j .

Now for µj2
jd/2 = 2−ja, and using the definition of Besov norm of θ0 denoted as ∥θ0∥2β,∞,∞, and

denoting 1− κ2j = 1
1+nϵ2nτ

2
j

, we have

KL(N (θ̄J0 , Cq)∥N (0, C))

≤ 1

2

J∑
j=1

2j(2a−2β+d)∥θ0∥2β,∞,∞ − 1

2

J∑
j=1

2jd log(1− κ2j )−
1

2

J∑
j=1

2jdκ2j

=
1

2

J∑
j=1

2j(2a−2β+d)∥θ0∥2β,∞,∞ − 1

2

J∑
j=1

2jd
(
log(1− κ2j ) + κ2j

)
=

1

2

J∑
j=1

2j(2a−2β+d)∥θ0∥2β,∞,∞ +
1

2

J∑
j=1

2jd

(
log(1 + nϵ2nτ

2
j )−

nϵ2nτ
2
j

1 + nϵ2nτ
2
j

)

≤ 1

2

J∑
j=1

2j(2a−2β+d)∥θ0∥2β,∞,∞ +
1

2

J∑
j=1

2jd
(
nϵ2nτ

2
j

)
,
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where the last inequality follows from the fact that, log(1 + x) − x
1+x ≤ x2

1+x ≤ x for x > 0.
Substituting τ2j = 2−2ja−jd, we have

1

n
KL(N (θ̄J0 , Cq)∥N (0, C)) ≤ 1

2n

J∑
j=1

2j(2a−2β+d)∥θ0∥2β,∞,∞ +
ϵ2n
2

J∑
j=1

2−2ja

≤
∥θ0∥2β,∞,∞

2n

J∑
j=1

2j(2a−2β+d) +
2−2a

2

1− 2−2Ja

1− 2−2a
ϵ2n.

The summation in the first term above is bounded by ϵ2n as derived in [30, Theorem 4.5]. Therefore,

1

n
KL(N (θ̄J0 , Cq)∥N (0, C)) ≤ max

(
∥θ0∥2β,∞,∞,

2−2a − 2−2Ja−2a

1− 2−2a

)
ϵ2n. (103)

Now consider the second term
1

n
EQn KL(Pn

0 ∥Pn
θ )

= EQn

∫ (
Ψ1(θ0(y)) log

Ψ1(θ0(y))

Ψ1(θ(y))
+ Ψ−1(θ0(y)) log

Ψ−1(θ0(y))

Ψ−1(θ(y))

)
ν(dy)

≤ EQn

∫
⟨θ(y)− θ0(y), θ(y)− θ0(y)⟩ν(dy)

= EQn

∫
∥θ(y)− θJ0 (y)− (θ0(y)− θJ0 (y))∥22ν(dy)

= EQn

∫
∥θ(y)− θJ0 (y)∥22 + ∥θ0(y)− θJ0 (y))∥22 − 2⟨θ(y)− θJ0 (y), θ0(y)− θJ0 (y)⟩ν(dy)

≤ EQn

∫
∥θ(y)− θJ0 (y)∥22ν(dy) + ∥θ0(y)− θJ0 (y))∥2∞

= EQn

∫
|

J∑
j=1

2jd∑
k=1

ζjZj,kϑj,k(y)|2ν(dy) + ∥θ0(y)− θJ0 (y))∥2∞

≤ EQn

J∑
j=1

2jd∑
k=1

ζ2jZ
2
j,k

∫
ϑj,k(y)

2ν(dy) + ∥θ0(y)− θJ0 (y))∥2∞

=

J∑
j=1

2jd∑
k=1

ζ2jEQn
[Z2

j,k] + ∥θ0(y)− θJ0 (y))∥2∞

=

J∑
j=1

2jd∑
k=1

µ2
j (1− κ2j ) + ∥θ0(y)− θJ0 (y))∥2∞

=

J∑
j=1

2jd
µ2
j

1 + nϵ2nτ
2
j

+ ∥θ0(y)− θJ0 (y))∥2∞

≤ 1

nϵ2n

J∑
j=1

2−2ja

τ2j
+ ∥θ0(y)− θJ0 (y))∥2∞

=
1

nϵ2n

J∑
j=1

2jd + ∥θ0(y)− θJ0 (y))∥2∞

=
2d

nϵ2n

2dJ − 1

2d − 1
+ ∥θ0(y)− θJ0 (y))∥2∞

≤ 2d/(2d − 1)

(log n)2
+ C ′ϵ2n,
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where in the second inequality, we used the second assertion of Lemma 3.2 [30] for logistic function,
the fifth inequality uses the fact that θ(y)− θJ0 (y) is orthogonal to θ0(y)− θJ0 (y). For any a ≤ α fix
J = Jα otherwise J = Ja, and then it is straightforward to check from the definition of ϵn given in the
assertion of the theorem that (2dJ−1/nϵ2n) ≤ (log n)−2. The term ∥θ0(y)−θJ0 (y))∥2∞ is also bounded
by C ′ϵ2n as shown in the proof of Theorem 4.5 in [30]. Consequently, the term 1

nEQn
KL(Pn

0 ∥Pn
θ ) is

bounded above by ϵ2n (upto a constant) for sufficiently large n since (log n)−2 < ϵ2n and the result
follows.

Proof of Theorem 4.2. The proof is a direct consequence of Theorem 3.2, Lemmas B.11, B.12, B.13,
and Proposition 3.2.
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