A Additional definitions

We provide the definitions of important terms used throughout the paper. First, recall the definition
of covering numbers:

Definition A.1 (Covering numbers). Let P := {Py,0 € ©} be a parametric family of distributions
and d : P x P — [0,00) be a metric. An e—cover of a subset Py := {Py : § € K C O} of the
parametric family of distributions is a set K' C K such that, for each 6 € K there exists a ¢’ € K'
that satisfies d(Py, Py') < €. The e—covering number of Pk is N (¢, Px,d) = min{card(K') :
K' is an e—cover of K}, where card(-) represents the cardinality of the set.

Next, recall the definition of a test function [26]:

Definition A.2 (Test function). Let X,, be a sequence of random variables on measurable space
(Q,, X,8™). Then any S"-measurable sequence of functions {¢n}, ¢pn : Xn = [0,1]Vn € N, isa
test of a hypothesis that a probability measure on S™ belongs to a given set against the hypothesis
that it belongs to an alternative set. The test ¢y, is consistent for hypothesis P against the alternative
P" e {Pg : 0 € O\{0o}} if Epn[pn] = Ligcorio}3(0), V0 € © as n — oo, where 1.y is an
indicator function.

A classic example of a test function is gi)gs = liks,>K,} (0) that is constructed using the Kolmogorov-
Smirnov statistic KS,, := sup, |F,(¢) — Fo(t)|, where F,,(t) and Fy(¢) are the empirical and true
distribution respectively, and K, is the confidence level. If the null hypothesis is true, the Glivenko-
Cantelli theorem [29, Theorem 19.1] shows that the KS statistic converges to zero as the number of
samples increases to infinity.

Furthermore, we define the Hellinger distance h (61, 02) between the two probability distributions

1/2
Py, and Py, is defined as dg (0;,0) = (f (V/dPy, — ,/dsz)Q) . We define the one-sided

Hausdorff distance H (A||B) between sets A and B in a metric space D with distance function d is
defined as:
H(A||B) = sup dy(x, B), where dp,(z, B) = inf d(z,y).
€A yeB

Next, we define an arbitrary loss function L,, : © x © — R that measures the distance between
models (Pg!, Pgl)V{01,02} € ©. At the outset, we assume that L,, (61, 62) is always positive. We

define {e, } as a sequence such that ¢, — 0 as n — oo and ne2 > 1.

We also define

Definition A.3 (I'—convergence). A sequence of functions F,, : U — R, for each n € N,
I'—convergesto F : U — R, if

o for every u € U and every {un,n € N} such that u,, — u, F(z) < liminf,,_, o F,(up);

* for every w € U , there exists some {u,,n € N} such that u, — u, F(z) >
limsup,, , o Fn(un).

In addition, we define

Definition A.4 (Primal feasibility). For any two functions f : U — Rand b : U — R, a point
u* € U is primal feasible to the following constraint optimization problem

inzf4 f(w) subject to b(u) < ¢,
ue

ifb(u*) < ¢, fora given c € R.

B Applications

B.1 Single product newsvendor problem (cont.)

First, we fix the sieve set O,,(¢) = ©, which clearly implies that the restricted inverse-gamma prior
T1(#), places no mass on the complement of this set and therefore satisfies Assumption

Second, under the condition that the true demand distribution is exponential with parameter 6y (and
Py = Py,), we demonstrate the existence of test functions satisfying Assumption[2.1]
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Lemma B.1. Fix n > 5. Then, for any € > €, = ﬁ with ¢, — 0, and ne% > 1, there exists
a test function ¢, (depending on €) such that LYV (0,600) = n (sup,c 4 |R(a,0) — R(a, 00)])°
satisfies Assumption with Cy = 20 and C = %(K{VV)_Qfor a constant C; > 0 and KNV =

2 _ _ 2 1/2
N Py A

The proof of the above result follows by showing that d¥V = n=1/2,/LNV (6, 6,) can be bounded
above by the Hellinger distance between two exponential distributions on © (under which a test
function exists) in Lemma[C.10]in the appendix.

Third, we show that there exist appropriate constants such that the inverse-gamma prior satisfies
Assumption when the demand distribution is exponential.

Lemma B.2. Fixny > 2and any X > 1. Let A, := {6 € © : Dy, (PJ'||P}") < C3ne? }, where
D1y (P Py) is the Rényi divergence between Py and Py Then for €2 = 5 and any C3 > 0
such Co = aCs > 2, the truncated inverse-gamma prior Inv — T'g (A4; «, B) satisfies T1(A,,) >
exp(—nCae2),¥n > na.

Fourth, it is straightforward to see that the newsvendor model risk R(a, ) is bounded below for a
given a € A.

Lemma B.3. For any a € A and positive constants h and b, the newsvendor model risk R(a,0) =
(ha (s h)%) > (%) , where a := min{a € A} and 0* satisfies h — (b +
R)e=" (14 ab*) = 0.

This implies that R(a, 0) satisfies Assumption Finally, we also show that the newsvendor model
risk satisfies Assumption[2.4]

Lemma B4. Fix n > 1 and v > 0. For any € > ¢, and any a € A, R(a,0) satis-
fies IEH[H{R(a’9)7>c4(7)n62}e"R(“ve)} < exp(—Cs(y)ne?), for any Cy(y) > 27 (h6+ %) and
Cs(v) = Ca(y) — 2y (ha + L), where @ := max{a € A}.

Note that Lemma [B.1{implies that C' = 2(1(0% for any constant C; > 0. Fixing a = 1 and
1

using Lemma [B.2| we can choose C; = C3 = 2. Now, C can be chosen large enough such that
C > Cy(v) + Cs(y) for a given risk sensitivity v > 0. Therefore, the condition on constants
in Theorem reduces to C5(y) > 2+ Co + C3 = b, and it can be satisfied easily by fixing
Cs(7) = 5.1(say).

These lemmas show that when the demand distribution is exponential and with a non-conjugate
truncated inverse-gamma prior, our result in Theorem [3.2]can be used for RSVB method to bound the
optimality gap in decisions and values for various values of the risk-sensitivity parameter . Recall

that the bound obtained in Theorem [3.2depends on €2 and 7/ (7).

Lemma implies that €2 = 10%, but in order to get the complete bound we further need to
characterize 7% (y). Recall that, as a consequence of Assumption [3.1/in Proposition for a given
Cs = —infgeg infe 4 Eg[R(a,0)] that Cg > 0 and nff(y) < yn=1Cs + Cye/?.

Therefore, in our next result, we show that in the newsvendor setting, we can construct a sequence
{Qn(6)} C Q that satisfies Assumption 3.1] and thus identify €/, and the constant Cy. We fix Q to
be the family of shifted gamma distributions with support [T, 00).

Lemma B.5. Ler {Q.,,(0)} be a sequence of shifted gamma distributions with shape parameter a = n
and rate parameter b = %, then for truncated inverse gamma prior and exponentially distributed
likelihood model

[KL (Qu(O)II1L(8)) +Eq, o) |KL (P (X)) 4Py (X)) || < Coel

1
n

where €% = 10% and Cy = % + max (0, 2+ % — log V27 — log (FKEZ)) + alog 90) and prior

parameters are chosen such that Cg > 0.
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B.2 Multi-product newsvendor problem
Analogous to the one-dimensional newsvendor loss function, the loss function in its multi-product

version is defined as
U(a,&) :==h"(a—&* +b" (€ —a)*

where h and b are given vectors of underage and overage costs respectively for each product and
mapping (-)* is defined component-wise. We assume that there are d items or products and ¢ € R?
denotes the random vector of demands. Leta € A C Ri be the inventory or decision variable,
typically assumed to take values in a compact decision space A with a := {{min{a; : a; € A;}}L,
and @ := {{max{a; : a; € A;}}¢,, and @ > 0, where A; is the marginal set of i*" component
of A. The random demand is assumed to be multivariate Gaussian, with unknown mean parameter
6 € R? but with known covariance matrix ¥.. We also assume that ¥ is a symmetric positive
definite matrix and can be decomposed as Q7 AQ, where @ is an orthogonal matrix and A is a
diagonal matrix consisting of respective eigenvalues of 3. We also define A = max;e(1,2,...dy Mii
and A = min;e(y2,...qy Aii- The model risk

R(CL, 0) EPs Z]Eps ) +bi(& — ai)+]

=i

h“rb az (( Uiie))_bal+9( ’L)

h¢<<a;iie>) ¢((09))) ] an

@((M—@:)) + 1_(1)((‘17 0i)

which is convex in a. Here Pp, is the marginal distribution of ¢ for #*" product, ¢(-) and ®(-)
are probability and cumulative distribution function of the standard Normal distribution. We also
assume that the true mean parameter 6 lies in a compact subspace © C R¢. We fix the prior to be

uniformly distributed on © with no correlation across its components, that is 7(A) = % =

+Uii

Hle %, where m(B) is the Lebesgue measure (or volume) of B C R As in the previous
example, we fix the sieve set ©,(¢) = ©, which clearly implies that TI(6) places no mass on the

complement of this set and therefore satisfies Assumption[2.2]

Then under the condition that the true demand distribution has a multivariate Gaussian distribution
(with known X)) and mean 0y (Py = P»,), we demonstrate the existence of test functions satisfying
Assumption 2.1 by constructing a test function unlike the single-product newsvendor problem with
exponential demand.

Lemma B.6. Fix n > 1. Then, for any ¢ > ¢, := with ¢, — 0, and nez > 1 and

ﬁ
MNV 3 _
é _00H>\/C~;}, Ln (97 ) =n (bupa6A|R(a79) (CL, 90)|)

test function ¢, . 1= ]1{ _

satisfies Assumptwnwnh Co=1,C =4K?*Cand C =1/8 (— — 1) for sufficiently large C
such that C > 1 and A = maX;e(12,...a) Nii, where K = sup 4 g [|0g R(a, 0.

In the following result, we show that there exist appropriate constants such that prior distribution
satisfies Assumption [2.3| when the demand distribution is a multivariate Gaussian with unknown
mean.

Lemma B.7. Fixny > 2and any A > 1. Let A, := {0 € © : Dy (P}||P)) < Csne?}, where
Dy i (PR Py) is the Rényi Divergence between Py and Py. Then for €2 = log” and any C3 > 0

such that Oy = — 4d —C3 > 2 and for large enough n, the uncorrelated uniform
2 = RO, m(e)) 2 = S 8 g if

prior restricted to © satisfies T1(A,,) > exp(—nCae2).

Next, it is straightforward to see that the multi-product newsvendor model risk R(a, ) is bounded
below for a given a € A on a compact set © and thus it satisfies Assumption [2.5] Finally, we also
show that the newsvendor model risk satisfies Assumption [2.4]
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Lemma BS8. Fix n > 1 and v > 0. For any € > ¢, and a € A, R(a,0) satisfies
Eni[1{G(a,0)7>C4(v)ne2} €7 0] < exp(=Cs(y)ned), for any Ca(y) > 2y supg, gy avo G(a,0)
and C5(7y) = Ca(y) — 2vsupy, gyeano G(a, ).

Similar to single product example, in our next result, we show that in the multi-product newsvendor
setting, we can construct a sequence {Q,(0)} € Q that satisfies Assumption and thus identify
e/, and constant Cg. We fix Q to be the family of uncorrelated Gaussian distributions restricted to ©.

Lemma B.9. Let {Q.,(0)} be a sequence of product of d univariate Gaussian distribution defined as

—— 1 (90—, )2
; 1 oo (O—pin N(8ilpin,0i,0) 10, ;
q%(@) XX \/me 278n ]l@i = WMB andﬁx Oin = 1/\/ﬁ and 91' = 96f0r all
1 € {1,2,...,d}. Then for uncorrelated uniform distribution restricted to © and multivariate normal

likelihood model 1 [KL (Qn(0)|T1(0)) + Eq, (5) [KL (dpgl(f(n)) Hdp;(f(n))ﬂ < Coe’2, where
€2 = long and Cy := % + max (O7 - Zle[log(\/ 2me) — log(m(0,))] + %Afl).

Now, using the result established in lemmas above, we bound the optimality gap in values for the
multi-product newsvendor model risk.

Theorem B.1. Fix~y > 0. Suppose that the set A is compact. Then, for the multi-product newsvendor
model with multivariate Gaussian distributed demand with known covariance matrix ¥ and unknown
mean vector 0 lying in a compact subset © C R, prior T1(-) = | %, and the variational

Sfamily fixed to uncorrelated Gaussian distribution restricted to ©, and for any T > 0, the Py —
- 1/2
probability of the following event {Xn : R(agg, 00) — inf,c4 R(z,00) < 27M'(Y) (10%) } is

at least 1 — 7= for sufficiently large n and for some mapping M' : RT — R, where R(-,0) is the
multi-product newsvendor model risk.

Proof. The proof is a direct consequence of Theorem [3.2] Lemmas [B.8][B.9] and Proposi-
tion[3.21 O

B.3 Gaussian process classification (cont.)

We define the distance function as LGP (6, 09) = n (sup,¢ 4 |R(a,0) — R(a,6)|)°. In anticipation
of demonstrating that the binary classification model with GP prior and distance function LG” satisfy
the desired set of assumptions, we recall the following result, from [30]], which will be central in

establishing Assumptions[2.1} 2.2] and[2.3]

Lemma B.10. [Theorem 2.1 [30]] Let 6(-) be a Borel measurable, zero-mean Gaussian random
element in a separable Banach space (O, || - ||) with reproducing kernel Hilbert space (RKHS)
(H, || - ||l) and let 8y be contained in the closure of H in ©. For any € > €, satisfying g, (€) < ne?,
where

o, (€) I1All — log IL(||4]| < €) (12)

= inf
heH:||h—0o]|<e

and any Cyg > 1 with e—Crone, < 1/2, there exists a measurable set ©,,(¢) C © such that

log N(3¢,0,(e), || - ) < 6C1one?, (13)
T1(0 ¢ ©,(¢)) < e~C10m, (14)
II([|0 — 60| < 4ey) > e ™. (15)

The proof of the lemma above can be easily adapted from the proof of [30, Theorem 2.1], which is
specifically for e = ¢,,. Notice that the result above is true for any norm || - || on the Banach space if
that satisfies g, (¢) < ne2. Moreover, if @g, (€,) < ne2 is true, then it also holds for any € > ¢,
since by definition g, (€) is a decreasing function of e.

All the results in the previous lemma depend on (g, (€) being less than ne?. In particular, observe
that the second term in the definition of ¢y, (€) depends on the prior distribution on ©. Therefore,
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[30, Theorem 4.5] show that g, (€,) < ne2 ( with || - || as supremum norm and for ¢,, as defined
later in (9 ) is satisfied by the Gaussian prior of type

W()= 145251955 (), (16)

where {y;} is a sequence that decreases with j, {Z; ;} are ii.d. standard Gaussian random vari-
ables and {1, } form a double-indexed orthonormal basis (with respect to measure v), that is
Eu[9;1x01,m) = L{jmik=m})- Ja is the smallest integer satisfying 2724 = n/(2+4) for a given
a > 0. In particular, the GP above is constructed using the function class that is supported on

[0, 1]¢ and has a wavelet expansion, w(-) = Z] 1 Zk 1 w; Y5 (). The wavelet function space is
) ) - e 1/2

equipped with the Ly—norm: |lw|2 = 3777, ( L w;ikl? ) ; the supremum norm: ||w||oc =

Z] 1 274 max) < p<oia ; and the Besov (B,oo o0)—norm: [|wl|g;c0,00 = SUP1<jcoo 21897d

max <p<aid |Wj x| Note that W 1nduces a measure over the RKHS H, defined as a collection of trun-

cated wavelet functions w(-) = 3.7 ) Z w—1 Wj kY x(-), with norm induced by the inner-product on

7, Jd 2 . .
H as ||w||Z = Z}]L Zi:l Hf—i" The RKHS kernel K : [0, 1]¢ x [0, 1]¢ + R can be easily derived
as

Jo 277 Ja
K(z,y) =EW(x)W(y)] = E ZZ:U‘] Zj k05,5 (y) ZZM Zj V(@
Jj=1k=1 j=1k=1
Jo 294
= 15955 (Y)0;k ().
j=1k=1

Indeed, by the deﬁnition of this kernel and inner product, observe that
(K (z, )7w()> = ZJ 1 Zk LW, k,ujﬁj k() 1j = w(x). Moreover, (K(z,-),K(y,")) =
Z] 1 Zk 1 K5 29,1 (2)p 19J x(y ) = K(z,y). It is clear from its definition that TV is a centered
Gaussian random field on the RKHS

Next, using the definition of the kernel, we derive the covariance operator of the Gaussian random field
w. Recall that Y ~ 1/ which enables us to define the covariance operator C, following [27, (6.19)]
as (Ch,) f[o 14 y)hy (y)dv(y). Also, observe that {15, p; 1.} is the eigenvalue and eigen

functlon palr of the covariance operator C. Consequently, using Karhunen Loéve expansion [27,
Theorem 6.19] the prior induced by W on H is a Gaussian distribution denoted as A/(0,C). We also
recall the Cameron-Martin space denoted as Im(C'/?) associated with a Gaussian measure A/ (0, C)
on H to be the intersection of all linear spaces of full measure under A/(0,C) [27, (page 530)]. In

particular, Im(C'/?) is the Hilbert space with inner product (-, -)¢ = (C~1/2.,C~1/2.),

Next, we show the existence of test functions in the following result.

Lemma B.11. For any € > ¢, with €,, — 0, ne2 > 2log 2, and g, (€) < ne?, there exists a test
Sfunction ¢,, (depending on ¢) such that L,?P(Q,@o) = n(sup,c4 |R(a,0) — R(a, 00)|)? satisfies
Assumption2.1|with C = 1/6, Cy = 2 and C; = (max(ct,c_))>.

Assumption[2.2]is a direct consequence of (T4) in Lemma[B.T0] Next, we prove that prior distribution
and the likelihood model satisfy Assumption[2.3|using of Lemma [B.10]

Lemma B.12. For any A\ > 1, let A, := {0€O: Dy, (P}||P}) < CsneZ}, where
D11y (Py||P}) is the Rényi Divergence between P and P}. Then for any € > e, satisfying
0o, (€) < ne? and C3 = 16(\ + 1) and Cy = 1, the GP prior satisfies T1(A,,) > exp(—nCae2).

Assumption 2.4]and[2.5]are straightforward to satisfy since the model risk function R(a, 6) is bounded
from above and below.

Now, suppose the variational family Q¢ p is a class of Gaussian distributions on ©, defined as
N(m,,C,), m, belongs to © and C, is the covariance operator defined as C, = C'/2(I — S)C'/2,
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for any .S which is a symmetric and Hilbert-Schmidt (HS) operator on © (eigenvalues of HS operator
are square summable). Note that S and m, span the distributions in Qg p.

The following lemma verifies Assumption [3.1] for a specific sequence of distributions in Q.
Lemma B.13. For a given J € N, let {Q,} be a sequence variational distribution such
jd
that Q,, is the measure induced by a GP. Wq(-) = 03 (y) + ijl 22:1 (37 k05 k(-), where
i 2
07 () = 231:1 Zifl 00,5105, (-) and & = — 4. Then for GP prior induced by W =

1+ne%7’f'
Z}']:1 Zi:l 1; 7 195k and pj = 2734273 for some a > 0, ||00]| gi00,00 < 00, and 0 (y) lie in
the Cameron-Martin space Im(C/?), we have 2KL(N (6 ,C)|IN(0,C)) + LEq, KL(P||Py) <
Coc2, where ¢, is defined in E and Cy := max <||t90\|%’oo’oo7 %,Qd/@d — 1),0’),

where C' is a positive constant satisfying ||0o(y) — 07 (v))||%, < C'27278,

Using the result above together with Proposition [3.2]implies that the RSVB posterior converges at
the same rate as the true posterior, where the convergence rate of the true posterior is derived in [30,
Theorem 4.5] for the binary GP classification problem with truncated wavelet GP prior. Finally, we

use the results above to obtain bound on the optimality gap in values of the binary GP classification
problem.

C Proofs

C.1 Alternative derivation of LCVB

We present the alternative derivation of LCVB. Consider the logarithm of the Bayes posterior risk,

log Byy g ., [exp(R(a, 0))] = log /@ exp(R(a, 0))dII(6]X.,)

[ )
=8 | Q)

> /O 4Q(6) log -

exp(R(a, 9))d1’[(0|)~(n)

Q)
xp(R(a, 0))dI1(0] X,,)

= F(a;Q(), X,) (17)

where the inequality follows from an application of Jensen’s inequality (since, without loss of
generality, exp(R(a,d)) > 0foralla € Aand 6 € ©), and Q € Q. Then, it follows that

. ~ > . . i’
min log Ery g%, lexp(R(a, 0))] = min max Fla;Q(0), Xy)

— min max — KL (Q(9)||H(9|Xn)> +/®R(a,9)dQ(9). (18)

a€A geQ

C.2 Proof of Theorem [3.1]

We prove our main result after a series of important lemmas. For brevity we denote LR, (0, 60) =
p(‘f(n|0)
p(Xnlo)”

Lemma C.1. Foranyad € A, v > 0, and ¢ > 0,

EPO" |:</@Ln(9790) dQ2/7fy(0|Xn):|
/ CLn(0,60) TR0 LR,,(6,00)dII(6)
o Jo €780 LR,,(0,00)dI1(0)

LR,(0,00)dII(6)
mzn(e,eo)dn(e)} ‘

<logEyp; + daf, ey [KL@QO)ITIX,)

7 inf EQ[R(a,G)]} +logEpy [ / eV ia.0) T (19)
a (S]

(S]

18



Proof. For any fixed a’ € A,y > 0, and ¢ > 0, and using the fact that KL is non-negative, observe
that the integral in the LHS of equation (T9) satisfies,

Eor, 0% L0001 <Eg., 1%, [h’g eCan’aO)}
eCLn(0.00) 7 R(a0) gT1(9] X,,)
J e€En(0:00) 3 R(0) GTI(6] X,,)
{log egLn(e,eo)} +logEny, {QCL,,L(Q,eo)evR(age)}
dQ; ,(01Xn)
eCLn(8:00) e7R(a’.0) dT1(6] X,,)

~ 10 dQ:/v'y (G‘Xn)
QZ/Y,Y(GlX"L) g e'YR(a,ae) dH(g‘Xn) .

KL (dcz:;/,vwm)

- EQ;,W(ep?n)

+EBqr, wi%) llog

=logEn {eCLn(G,Oo)e’YR(a’,G)} LR

Next, using the definition of Q7 (6] X,,) in the second term of last equality, for any other Q(-) € Q

dQ(#) ]
eVR(a9) dI1(0| X,,) ]

CEq:, (61%,) [Ln(0:00)] < logEm, {GCL”(G’OO)GWR(G/’Q)} +Eq {log

Finally, it follows from the definition of the posterior distribution that
Eqe, 012, [Ln(0:00)]
< log/ oCLn(0.00) SYR(a’ 6) LR (0,00)dI1(0) ~
- o Jo LRn(0,60)dI1(0) evi(a’.0) q1(0] X,,)
_ log / eCLn(g,eo) e’YR(a’ﬁ)LRn(G, HO)dH(G) + o |log dQ(G) _
o Jo e F@OLR,(0,00)dII(0) eYR(a.0) q11(0] X,,)

Lo LR(6,60)dII(6)
‘o / R(@.0) : , (20)
& Jo Jo LR(0,00)d11(0)

+Eq [log dQ(6) } 7

where the last equality follows from adding and subtracting log Eyy {e’yR(“/ﬂ)LRn(G, 00)] Now

taking expectation on either side of equation (20) and using Jensen’s inequality on the first and the
last term in the RHS yields

Epp [CEQ;MMTL) [Ln(e,é’o)]}

ClogBpy | [ cstoan £ L0, 00
- 0 <) j‘@ GWR(G/’Q) ERn(G, 9())dH(0)

inf Epn |KL(QI|TI,
+ inf PO[ (Q|TT,)

L0, 000 | on

o LR.(6, 60)dI1(6)

where in the second term in RHS of (20)), we first take infimum over all a € A which upper bounds
the second term in (20) and then take infimum over all Q € Q, since the LHS does not depend on

Q. O

—~ inf E log I pn YR(a’,0)
3 inf B [R(a0)] | +1og By | [ ¢

Next, we state a technical result that is important in proving our next lemma.
Lemma C.2 (Lemma 6.4 of [34]). Suppose random variable X satisfies

P(X >t) < c1 exp(—cat),
Sforallt >ty > 0. Then for any 0 < 8 < c2/2,
Elexp(8X)] < exp(Bto) + c1.

Proof. Refer Lemma 6.4 of [34].
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In the following result, we bound the first term on the RHS of equation (T9). The arguments in the
proof are essentially similar to Lemma 6.3 in [34]]

Lemma C.3. Under Assumptions and 2.3| and for min(C, Cy4(v) + C5(7)) >
Co + C5 4+ Cy(y) + 2 and any € > €,

/egLn(o,ao) 0 LR,,(6,60)dI1(6)
o Jo R0 LR, (6, 00)dIL(0)

for0 < ¢ < Ch0/2, where Cyg = min{\, C,1}/C4 for any A > 0.

EP(? < 6(C‘1n62 + (1 +Co + 31/{/*7)7 (22)

Proof. First define the set
B, = {Xn : / LR, (0,00)d11(0) > e<1+C3>"62H(An)}, (23)
©

where set A,, is defined in Assumption We demonstrate that, under Assumption Pl (BS) is
bounded above by an exponentially decreasing(in n) term. Note that for A,, as defined in Assump-

tion 2.3
1 2
n < —(1+C3)ne
P" (H(An) /@ER,L(&&O)CZH(Q) <e )

1 2
< P < ¢~ (14+C3)ne )
<P <H(An) /@mA" LR,,(0,00)dII(0) < e ) (24)

Let dI1(6) := Mdl’[ #), and use this in for any A > 0 to obtain,
T(Ay) y

Py ( /@ LR(6,00)dI1(6) < 6<1+c3>m2) _pr Q /@ .CRn(a,ao)dﬁ(g)] - v )

Then, using the Markov’s inequality in the last equality above, we have

Pr (/ LR, (0,00)dI1(0) < e—(1+03)n€2> < e—(1+03)xn52]]§p(;1 ({/ LR, (0,00)dII1(0
e

< e~(1+Ca)Ane® U@ Epp ([mzn(e,eo)r )dﬁ(&)}

— o~ (1+C5)Ane? {/ exp(ADx41 (nggl))dﬁ(ﬂ)}
o
S e_(1+03)AnE2e)\C3n€fL S 6—)\77,527 (25)

where the second inequality follows from first applying Jensen’s inequality (on the term inside [])
and then using Fubini’s theorem, and the penultimate inequality follows from Assumption 2.3]and
the definition of I1(9).

Next, define the set K, := {0 € © : L,,(6,6,) > Cyne?}. Notice that set K, is the set of alternate
hypothesis as defined in Assumption[2.T] We bound the calibrated posterior probability of this set
K, to get a bound on the first term in the RHS of equation (T9). Recall the sequence of test function
{¢n,e} from Assumption Observe that

[ €@ LR, (0,0,)dI1(0)

n

Jo €@ LR, (8, 6)dI1(6)
[ B0 LR, (0,00)dT1(0)

Kn

Jo eR@8) LR, (6, 00)dI1(0)
< Epp[fn,] +Epp [(1— ¢n,e)135]

e, €70 LR, (6, 00)dTI(0)
Jo € B@9) LR,,(8,0,)dI1(0)
[ B LR, (0,00)dIL(0)

n 26
[ OF@D LR, (0, 60)ani(e) |

Epy

- EP(? (¢n,e +1- (bn e)

+Epp [(1 — ¢n,e)lp,

< ]EP(}an,e + EP(;’ []lBg] + EP(}L (1 - an,e)]]-Bn
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where in the second inequality, we first divide the second term over set B,, and its complement
Jicn &0 LR, (0,00)d11(0) o .
and then use the fact that Jo SR LR, (6.00)dI1(0) < 1. The third inequality is due the fact that

¢n,e € [0,1]. Next, using Assumption 2.3]and 2.5 observe that on set B,

/ @0 LR (6,80)dII(0) > W7 / LR (6, 060)dI1(6)
e e

> I/V'ye—(1—}-02—0—03)11672L > W’ye—(1+CQ+C3)n52.
Substituting the equation above in the third term of equation (26), we obtain

e, €D LR,,(0,00)dTI(0)
" Jo eB@0 LR, (6,00)dIL(0)

Epp |(1 = ¢ne)lp

< W42+ Cane'y {(1 — bn.o)lp, / Vi@ 0) ,CRn(G,GO)dH(H)}

n

< W42+ Cane’ g {(1 — fn.e) / B0 LR (0, oo>dH(0>} : )
K

n

Now using Fubini’s theorem observe that,

(x) = W—’ye(l-‘rCz-l-Cg)nez/ e'yR(a/’e)]EPsﬂ [(1 = bn.e)] dII(0)

K’!‘L

< W7 e(1+C2+Cs+Ca(y))ne? [/K Epy [(1 = ¢n.c)] dIL(0)

nN{evE(a’.6) §e04(’v)n62}

4+ ¢~ Ca(mne? / J—.
Knn{e7R@".0)>eCa(ne? }

where in the last inequality, we first divide the integral over set {6 € © : YR(@".0) < (Ca(Mne} apq
its complement and then use the upper bound on e7R(@"0) in the first integral. Now, it follows that

(%) < W1+CaHCat Calrne®

/ Epy [(1— ¢n.e)] dTI(8)

n

_,_6—04(7)7162/ TR0 g11(6)
{eVR(a/,0)>¢C4 (v)ne? 1

_ W—76(1+C2+C3+C4("/))n€2 |:/ Epen [(1 — ¢n,e)] dH(G)
K,NOy(€)

+/ Epy [(1— ¢n,0)] dII(9) + e~ C20 / e”R(””")dHWJ
K,NO, ()¢ {

eVR(a’,0) 5 Cy(v)ne? 1

< WOt Cat () { / Epy [(1 = ¢0.0)] dI1(0) + T1(0,,(€)°)
K,NO,,(¢)

1 e~ Ca(yne? / evRW"’)dH(e)},
{ewR(a',0)>eC4('y)neQ}

where the second equality is obtained by dividing the first integral on set ©,,(¢) and its complement,
and the second inequality is due the fact that ¢, . € [0, 1]. Now, using the equation above and
Assumption[2.1} [2.2] and 2.4]observe that

[, €10 LR, (6, 00)dTI(0)

(1 - (bn,e)]an f

E n
i o ¢1R@0 LR, (6,60)dI1()

< [/V—’Ye(l-‘rCz-‘:—Ca-‘,—C’4('y))ne2 |:2e—CTL62 + e—(cs(’Y)+C4("/))”€2} .

Hence, choosing C, C, C3, C4(7y) and C5(y) such that —1 > 14+Ca+C5+Cy(y) —min(C, (Ca(y)+
Cs(v))) implies
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_— i, OFCO LR 0O e -
£y | (1= 9n)lp, Jo €7R@0) LR, (6, 00)dII(0) | ~ c @D

By Assumption 2.1 we have
Eppn,e < Coe=Cn<, (28)

Therefore, substituting equation (23), equation (27), and (28) into (26)), we obtain

[, €70 LR, (6, 00)dTI(0)

< 1 -y 7C10C1n€2 2
T R LR, (6, 00)a(e) | = (Lo ’ 29)

Epy

where C19 = min{\, C, 1}/C}. Using Fubini’s theorem, observe that the LHS in the equation (29)
can be expressed as (K, ), where

LR,(0,00)
Jo e1@0) LR, (6,60)dI1(6)
Next, recall that the set K,, = {# € © : L, (0,600) > Cine*}. Applying Lemma |C.2|above with

X = LH(G,GO), c1 = (1 + Co + SW*V) ,co = Cig, tg = 0171672” and for 0 < C < 010/2, we
obtain

dp(0) = Epy [ } I1(0) e 0 .

R(a’,0
By | [ ectn0) R0 LR (6, 00)T1(0)
(C]

Jo e R@O) LR, (0, 00)dI1()

d&] < eSO L (14 Co+3W 7). (30)

O

Further, we have another technical lemma, that will be crucial in proving the subsequent lemma that
upper bounds the last term in the equation (19).

Lemma C.4. Suppose a positive random variable X satisfies
P(X > e') < ¢y exp(—(ca + 1)1),

forallt > 19 >0, c1 >0, and co > 0. Then,

C
E[X] < exp(to) + -
2

Proof. Forany Zy > 1,

E[X] < Zy —|—/ P(X > z)dz
Zo
=2 —|—/ P(X > eY)eVdy < Zy + cl/ exp(—cay)dy.
In Zo In Zo
Therefore, choosing Zy = exp(to),
E[X] < exp(to) + Z—l exp(—catp) < exp(to) + %
2 2
O
Next, we establish the following bound on the last term in equation (T9).
Lemma C.5. Under Assumptions 2.1} and for C5(y) > Cy + C3 + 2,
eYRa0) LR(0,00)dII(6) >
E n nAD < 04(’\/)”6“ 20 . 3]
P o f@ ﬁRn(e, eo)dH(Q) S € + 4(7) ( )

SJorany A > 1+ Cy(7).
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Proof. Define the set
M, = {0 € ©: R0 5 Catnne’y (32)

Using the set B,, in equation (23), observe that the measure of the set M, under the posterior
distribution satisfies,

Jar, LRn(0,600)dI1(6)
B8 TS LRA(6, 60)dIL(0)

Jas, LR(0,00)dI1(0)
BT LR (6, 60)dIL(0)

<Epp [1p:] +Epp |1 (33)

Now, the second term of equation (33)) can be bounded as follows: recall Assumption [2.3]and the
definition of set B,,, both together imply that,

Jar, L£Ra(0,00)dIL(0)

Epn
B8 T LR (6, 60)dTL(0)

1

< (A+CatCone g, []13”/ ERn(9760)dH(0):|
N

n

< 6(1+Cz+Cs)ne2EP6L [/ LRn(ﬁ,Ho)dﬂ(G)] - )
M’Il

Then, using Fubini’s Theorem (+x) = e(1+C2+C3)n<*[]( M), Next, using the definition of set M,,
and then Assumption [2.4] we obtain

Jrr, £R(0,00)dI1(6)
Jo LR.(0,00)d11(0)

Epr |13,

S e(1+CQ+C3)n62e—C4(’y)7l62/ e'yR(a’,O)dH(a)
My,

14Co+C3)ne?  —C. ne? —Cs ne?
< (1+C2 3)ne” o —Ca(v)ne” ,—Cs(7) ,

Hence, choosing the constants Co, C3, Cy(y) and Cs(7) such that —1 > 1+ Cy + C3 — C5(7)
implies

Jrs, LR (0,60)dI1(0)

Epn |15, < e~ (1+Ca(7))ne (34)
0 Jo LRn(8,60)dI1(0)
Therefore, substituting (23)) and (34) into (33)
pn f]\/{n ﬁRn(&’ QO)dH(Q) < 267C4(’Y)(Cll(7)+1)n62 (35)
O TS LR (6, 00)dTI(6) | = :

where C11(7y) = min{\, 1 + C4(v)}/Cs(vy) — 1. Using Fubini’s theorem, observe that the RHS
in (33) can be expressed as v(M,,), where the measure

‘CRTL(97 00)
Jo LR (0,00)dIL(0)

dv(8) = Epy [ } dri(e).

Applying Lemmafor X = B0 ¢ =9 ¢y = Cri(7), to = Ca(y)ne and A > 1+ Cyu(v),
we obtain

E YR 0) LR(6,00)dI1(0)
"0 e [y LRA(6,60)dII(6)

eC4 (v)ne2 + 2

< C10nen L 90, (). (36
< i) S e 4(y).  (36)

O
Proof. Proof of Theorem 3.1} Finally, recall (I9),
(Epp { / L, (6,6) dQ;,,7(0|Xn)]
(€]
YR(a"60) LR, (0,00)dII(0)
<logEpn CLn(6,60) _€ nl7, Y0 inf Epr |KL(Q|[IL,
=108 BH /@e Jo T @0 LR, (6,60)d11(0) | ote T (QIL.)
. oy LR (6,60)dII(6)

— ~ inf Eo[R(a, 6 log Epr vR(a’.0) ’ ) 37
7(112,4 Q[ (a’7 )]:| + log Py |:/®€ f@LRn(e’eo)dH(e) 37
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Substituting (31)) and (22)) into the equation above and then using the definition of 7 (7y), we get
ry | [ 200000 403, 015
Q)
1
<& {1o8(en T 4 (1 o+ 3W7)) o log (4O 42C4(3) ) + ()}
(1+ Co + 3W7)e(=¢Cmel) 4 20y (y)e~Calnne,
C )

min(C,\,1)
2C

< <01 + 204(7)> ne; + %nnff(v) +

where the last inequality uses the fact that logz < x — 1. Choosing { = C1/2 =

s

Epp {/@ Ly, (0,60) dQZ/(y(mX")}

_C10
2

2(1 + Co 4 3W—7)e(= 1) 4 40, (y)e~Cs(Nne,
Cho

where M (v) = Cy + %04(7) and M’ = % depend on C, Cy, C4(7y), W and A. Since the last two

terms in (38)) decrease and the first term increases as n increases, we can choose M’ large enough,
such that forall n > 1

< M(y)n(el) + M'nnf(v) + (38)

2(1 + C W= 4C
Minnfi(y) > 2GSV | 4G0)
ClO ClO
and therefore for M = 2M’,
Eng [ [ E0(0.00) 4@z 015 ] < M) + Munfi), (39)
e

Also, observe that the LHS in the above equation is always positive, therefore M (v)e2 + MnE(v) >
0Vn >1andy > 0.

O
C.3 Proof of Theorem [3.2]
Lemma C.6. Given a' € A and for a constant M, as defined in Theorem|3.1
Epp sup Eq-, (o1%.)[F(a,0)] — R(aveo)u < [M(7)ep + Mugi(7)]* . (40)
ac @y

Proof. First, observe that

2 2
(508 e, .00~ R@.0)) < (Eqs, s, [sunlRia0) - Ra.00)] )

a’,y

2
SEQ*, (0] X,) [(223|R(a,0> - R(aa 00)') ] ’

where the last inequality follows from Jensen’s inequality. Now, using the Jensen’s inequality again
2
(]EPf? [SUB Eq-, (0%, [1(a,0)] — R(a,0o) H )
ac any

<Epy

(21613 EQZ,W(Q\)@)[R(G,G)] — R(a, GO)DT |

Now, using Theorem 3.1 the result follows immediately.
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Proof of Theorem[3.2] Observe that
R(agg, 0o) — Zlg& R(z,6)
= |R(ajs: o) — inf, R(z,00)

= R(aps, 00) —Eq.. (g%, (e, 0)] + Eq-. (g%, [R(aps, 0)] — inf R(z,00)

< ‘R(a:{sﬂo) —Eg-., (OX,L)[R(a;&e)]‘ + ‘EQ:* W(e\X,L)[R(a;sﬁ)] - 'lilelgR(a,ﬂo)

apg Y

< 2sup / R(a,0)dQ%, (61%,) — R(a,00)| . @1)

acA

Given a3 € A and for a constant M (defined in Theorem[3.1)), we have from Lemmal|C.6for a’ = ajg

Epp |sup / R(a,0)dQz. . (01X,) — R(a, )

Llac A

] < [M()E + MpF()]* . @2)

It follows from above that the P — probability of the following event is at least 1 — 771

{Xn  Rags, 0) — inf R(z,600) < 27 [M(y)e] + Myf(y)]? } (43)

C.4 Proofs in Section[3.1]

Proof of Proposition3.1} Using the definition of 1*() and the posterior distribution TI(6]X,,),
observe that

wifi) = By [KL(@IT,) — jut BoR(0.0)]

~ jntEry |KL@ID + [ dQ(e)los (f d“(?(p(g”"”) — inf EQ[Rm,e)]]
B | J d(6)p(X.,10)
= QHelfQ KL(Q||1T) — 'y;reliEQ [R(a,0)] +Epy [EQ [Iog ( (X10) )H]

Now, using Fubini’s in the last term of the equation above, we obtain

nip () = Jnf |KL(Q(O)IITI(6)) — v inf Eq[R(a, 0)]

/ dH(G)p(XnW))] ] : (44)

Observe that, [, [ dT1(0)p(X,|0)dX, = 1. Since, KL is always non-negative, it follows from the
equation above that

+Eq {KL (dPng(Xn\e)) — KL (dPg

ni ()

L i [KL (@Q(O)N1(8)) ~ 7 in, Eg[R(a.0)] + Eq [KL (dPalp<Xn|e>)H

IN

n Qe

A

< = it [KL@O)I110) + Eg [KL (aPp Ip(%10))] | - 2 inf inf EqlR(a,0)],  @5)

where the last inequality follows from the following fact, for any functions f(-) and g(+),

inf(f —g) <inf f —infg.
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Recall €, \} Now, using Assumption |3.1} it is straightforward to observe that the first term

in (33).

1 -
- dnf [KL(Q(O)[11(6)) + Eq [KL (dFylp(X.16)) ]| < Cac?. (46)
Now consider the last term in ([@5). Notice that the coefficient of 1 is independent of n and is bounded
from below. Therefore, there exist a constant Cg = —infgeo 1nfa€ AEg[R(a,0)], such that with

equation (#6) it follows that n(y) < yn~1Cs + Cye!? and the result follows.

O
Proof of Proposition[3.2} First recall that
R _ . > s
wif) = it By [KL@QWO)ITOIX,) - 7 inf, BqlRla.0)
— inf Ery [KL@QO)IT6I%,)] ~ 7 inf Eq[R(a.0)] 7)
Observe that the optimization problem is equivalent to solving :
in Epp X o= <0.
min Epy [KL(Q(@)HH(e\Xn))} st — inf Eq[R(a,0)] <0 (48)
Now for any v > 0, Q% (0) € Q that minimizes the objective in (@7) is primal feasible if
— inf . <0.
int /O dQ* (6)R(a,6) < 0
Therefore, it is straightforward to observe that as + increases nn/*(v) decreases that is
dQ*
d / d .
[/ Q0 dH(0|X 7 aga 2 )}
O

C.5 Sufficient conditions on R(a, 0) for existence of tests

To show the existence of test functions, as required in Assumption [2.1] we will use the following
result from [11, Theorem 7.1], that is applicable only to distance measures that are bounded above
by the Hellinger distance.

Lemma C.7 (Theorem 7.1 of [L1l]). Suppose that for some non-increasing function D(e), some
€, > 0 and for every € > €,

N (g (Py: e <m(0,0)) <26} ,m) < D(e),

where m(-,-) is any distance measure bounded above by Hellinger distance. Then for every € > ¢,
there exists a test ¢,, (depending on € > 0) such that, for every j > 1,

1
Epn[p,] < D ——ne? d
Fy[¢n] < D(e) exp< 2" ) 1 —exp (—%neQ)’an
1
w el zan(-hn)
{6€0,,(€):m(6,60)>jc} 2
Proof of Lemma|C.7} Refer Theorem 7.1 of [T1]. O

For the remaining part of this subsection we assume that © C R, In the subsequent paragraph, we
state further assumptions on the risk function to show L, (-, ) as defined in (6) satisfies Assump-

tion For brevity we denote n~'/2\/L,, (6, 6,) by d,(6,6y), that is
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dL(91, 6‘2) = SUE |R(a, 6‘1) — R(a, 92)|, V{&l, 92} €0 (49)
ac
and the covering number of the set T'(¢) := {Py : dr.(0,6y) < €} as N(4,T(¢),dr), where 6 > 0 is
the radius of each ball in the cover. We assume that the risk function R(a, -) satisfies the following
bound.

Assumption C.1. The model risk satisfies
dr(01,02)| < K1dm(0,60),

where dg (01, 02) is the Hellinger distance between two models Py, and Py, .

For instance, suppose the definition of model risk is R(a,0) = [, £(z,a)p(y|0)dz, where {(z, a)
is an underlying loss function. Then, observe that Assumption is trivially satisfied if ¢(xz, a) is
bounded in z for a given a € A and A is compact, since dy, (61, 62) can be bounded by the total
variation distance drv (01, 602) = L [ |dPp, (z) — dPp,(z)| and total variation distance is bounded
above by the Hellinger distance [12]]. Under the assumption above it also follows that we can apply
Lemma to the metric dy, (-, -) defined in (@9). Now, we will also assume an additional regularity
condition on the risk function.

Assumption C.2. For every {01,602} € ©, there exists a constant Ko > 0 such that
dr(01,02) < K0y — 02,

We can now show that the covering number of the set T'(¢) satisfies
Lemma C.8. Given ¢ > § > 0, and under Assumption|C.2]

d
N5, T(e), dp) < (2; +2) . (50)

Proof of Lemma[C.8} For any positive k and €, let 6 € [0y — ke, 0y + ke]? C © C R?. Now consider
aset H; = {609,0},...07,0/™} and H = @, H; with J = | 2k¢ |, where ¢/ = 0 — ke + 0’ for
j=10,1,...,J} and 0;”1 = 0y + ke. Observe that for any 6 € [0y — ke, 0y + ke]?, there exists
a0’ € H such that |§ — 67]] < . Hence, union of the ' —balls for each element in set H covers

[00 — ke, 0y + ke]?, therefore N (', [0y — ke, 0o + ke], || - ||) = (J +2)%.
Now, due to Assumption for any 0 € [0y — ke, 0 + ke|?
dr(0,00) < Ko/ — 07| < K»d',

For brevity, we denote n =1 L,, (6, 6y) by dr.(6,6y), that is
dL(ela 92) = sui)\ |R(a, 91) — R(a,Hg)\, V{91,92} S @, (@28
ac
and the covering number of the set T'(€) := { Py : d1(0,00) < €} as N(5,T(¢),dr), where § > 0 is
the radius of each ball in the cover.

Hence, ¢’-cover of set [0y — ke, 0y + ke]? is K16’ cover of set T'(¢) with k = 1/K>. Finally,

) d 2ke d 2¢ 4
N(Kzd', T(e),dr) < (J+2)' < { G +2) = (o +2

which implies for § = K5d’,

N(5,T(e),dr) < (2; +2>5.

O
Observe that the RHS in (50) is a decreasing function of ¢, infact for § = ¢/2, it is a constant in €.

Therefore, using Lemmas and we show in the following result that L,,(6, 6) in (6) satisfies
Assumption 2.1}
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Lemma C.9. Fix n > 1. For a given ¢, > 0 and every ¢ > ¢€,, such that nei > 1. Under
Assumptionand L, (0,00) = n (sup,ec4 |R(a,0) — R(a, 90)|)2 satisfies
EPSL [¢n] S CO exp(—CneQ), (52)
<

sup Epy[1 — ¢n] < exp(—Cne?), (53)
{0€6:L,(0,00)>C1ne?}

where Cy = 2 % 10° and C' = 2%12 for a constant C; > 0.
1

Proof of Lemma[C.9; Recall di(0,6p) = (sup,ca|R(a,0) — R(a,00)|) and T'(e) = {Py
dr(0,00) < €}. Using Lemma|C.8| observe that for every € > ¢, > 0,

N (% (0:¢<dp(6,6) < 26},dL) <N (g (0:dL(0,60) < 26},dL) <10,

Next, using Assumption [C.T| we have
dr(0,00) < K1dg(6,6)).

It follows from the above two observations and Lemma 2 that, for every € > ¢, > 0, there exist tests
{®n,c} such that

exp(—C'ne?)
1 —exp(—C'ne?)’

sup Epp[l — ¢n.c] < exp(—C'ne?), (55)
{0€0:d,(0,00)>€}

Epp[¢n,e] < 104 (54)

where C' = 5 Il<2 . Since the above two conditions hold for every € > €,, we can choose a constant
1

K > 0 such that for every € > €,

exp(—C'K?ne?)
1 — exp(—C'K?ne?)

’ 2 2
sup Epp[l = ¢n.e = sup Epp[l = ¢ <e €K, (57)
{0€O:L,,(0,00)>K?ne?} {0€0:d(0,00)>Ke}

E’PJL [¢n,e} < 10d < 2(10(1)6_0/[(2”527 (56)

where the second inequality in (56) holds Vn > ng, where ng := min{n > 1: C'K?ne? > log(2)}
Hence, the result follows for C; = K2 and C = C'K2. O

Since L, (6,00) = %d% satisfies Assumption Theoremimplies the following bound.

Corollary C.1. Fixa' € Aand~ > 0. Let €,, be a sequence such that €,, — 0 as n — oo, ne2 > 1
and

La(6.60) = (sup |R(0.6) ~ Rla 0] )

Then under the Assumptions of Theoremand Lemma; for C = 20712 Co=2%10%Cy, >0
1

such that min(C, C4(v) + Cs(7y)) > Co+ C3 + Cy(y) +2, and for nE(v) as defined in Theorem
the RSVB approximator of the true posterior Qy, ., (0| X ) satisfies,

Ep [ |20 QO)QZW(HIXn)%] < n(M()E + M), (58)

Sor sufficiently large n and for a function M (v) = 2 (C1 + M Cy(v)) , where M = % .

Proof of Corollary[C_1} Using Lemma observe that for any ©,,(¢) C O, L, (0,6) satisfies
Assumptionwith Co =2x%10°, C = 5= and for any C; > 0, since

K7
2
Sup IEPH” [1 - (z)n,e] < sup EPQ” [1 — ¢n,e] < efcnen.
{0€0n(e):Ln(6,00)2C1ne } {0€0:L,,(0,00)>C1ne2 }
Hence, applying Theorem [3.1] the proof follows. -
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C.6 Newsvendor Problem

We fix n=1/2\/LNV(0,0y) = (sup,ec.4 |R(a,0) — R(a,,)|). Next, we aim to show that the expo-
nentially distributed model Py satisfies Assumption |2.1] for distance function LYV (6, 6;). To show
this, in the next result we first prove that dYV (6, 6y) = n~1/2,/LNV (0, 6,) satisfy Assumption
Also, recall that the square of Hellinger distance between two exponential distributions with rate

parameter 6 and 0 is d%(0,00) = 1 — 2 gfgg =1-2 1”;;2//6;.

Lemma C.10. Forany § € © = [T, o0), and a € A,

2 271/2
h h 2 (e ol e~2%
=) w2 ()
ANV (0, 6,) < ("° T> 0 g (6,0
where a := min{a € A} and a > 0 and 0y lies in the interior of ©.
Proof. Observe that for any a € A,
|R(a,6) — R(a, )|
h h g0 e—abo 2
== —Z 4 (b+h _
o ot )< R >
h R\ 2 e~ e—abo 2 h h e—a?  p—abo
=(=--= b+ h)? — 2(——=)(+h —
(aa) werm () =@ -a)en (%)
h h 2 e—a& e—a90 2
<[=-= b+ h)? - 5
<90 9>+(+)<9 90>7 &%)

where the last inequality follows since for > 6, (% — %) > 0 and (% — %) < 0 and vice

versa if § < 6 that together makes the last term in the penultimate equality negative for all § € ©.
Moreover, the first derivative of the upperbound with respect to 6 is

h h\ h e—af  p—abo 1 a
2(—— =)= —2(b+h)? — —ab 4~
(eo 9)92 (+)<9 90)6 {eﬁe]’

and it is negative when 6 < 6y and positive when 6 > 60 for all b > 0, h > 0, and a € A. Therefore,
the upperbound in (39) above is decreasing function of  for all § < 6 and increasing function of 6
for all & > 6. The upperbound is tight at § = 6,.

Now recall that the squared Hellinger distance between two exponential distributions with rate
parameter 6 and 6 is

VB8 _ 5 V000 _ (1= /00/0)
0 + 6o 1+60/0 1+ (/00/0)%

Note that for § < 6, d%(6,6p) is a decreasing function of 6 and for all § > 6 it is an increasing
function of €. Also, note that as # — oo, the squared Hellinger distance as well as the upperbound
computed in (39) converges to a constant for a given h, b, 0y and a. However, as § — 0, the
d%;(6,60) — 1 but the upperbound computed in (59) diverges.

d%(0,00) =1 —2

Since, © = [T, o0) for some T' > 0 and T < 6, observe that if we scale d%(6,06y) by factor by
which the upperbound computed in (59) is greater than dg at 6 = T', then

h n\? 5 e—al  g—abo 2
() o (755

2 2
L . E 2 efaT . efago
o b) e (o)

0.6
d%{(T’ 90) H( 0)
2 2
h h 2 (e—oT e~ 2%
A )Y (bt h) -
k) ; (7 ) 031(6,60),
dz, (T, 6o)

29



—a —a 2
where ¢ = inf{a : a € A} and in the last inequality we used the fact that (% - %) isa
decreasing function of a for any b, h, T, and 6, . Since, the RHS in the equation above does not

depend on a, it follows from the result in (59) and the definition of LYV (6, 6,) that

(- %)2 Foan (s - e;f)eo)Q
d3; (T, 6o)

1/2

dH(gv 00)

dy¥ (0,6,) <

O
Lemma C.11. Forany 0 € © = [T, 00), for sufficiently small T > 0, and 0y lying in the interior of

©, we have
2 4 /06y /00 /T
dH(97 00) - 1 29 + 00 < T + 90 < 90 |9 00

Proof. Observe that

ad%,(0.00) . (0+00)Y% — Vb, 0
Haa =2 (0+9o) 9+90 \/; \/>0

ad%;(6,00)
a0

Observe that § — 0, — 0. Since,f € © = [T, c0), therefore the supycg

e (VE-VF) -

((ngo)z <, / %“ — 4/ 9T0> > . Now the result follows immediately since the derivative of d2; (6, 6)
is bounded on ©, which implies that d% (6, 6y) is Lipschitz on ©. O

Lemma C.12. Forany € © = [T,00), and a € A,

‘ad 2.(0,60) <

oo. In fact, for sufficiently small T' > 0, supgcg ’w

h
dy’V (6,60) < 7310 = bol.

Proof. Recall,

h —ab
R(a,&)zha—§+(b+h)69
First, observe that for any a € A,
OR(a,0) _ h e~ e~ 1 h
alb+ h —(b+h)—=—=(h—(b+h 1 0 —. (60
i = gp —alb N = (b4 ) = 5 (= (b+ h)e (1 +a8)) < 7. (60)
The result follows immediately, since supycg aRéZ’O) < % O

Proof. Proof of Lemma[B.]

It follows from Lemma that d¥'V (0, 0y) for any 6 € © = [T, 00) and 6 lying the interior of ©,
satisfies Assumption |C. I[with

2 271/2
h h 2 [ eal e~ 2%
K, = (%_7) +(b+h) ( T 6o ) e KNV
e d2,(T, 0y) o

. Similarly, it follows from Lemma and that for sufficiently small 7 > 0, d¥V (6, 6,) satisfies

Assumption|C.2{with Ky = h/T? := K&'V'. Now using similar arguments as used in Lemma|C.§|
and Lemma - for a given €, > 0 and every € > €, such that ne > 1, it can be shown that

LYV(0,00) = n (sup,e4 |R(a,0) — R(a, 00)])” satisfies
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]Epn [(b ] S C() exp( CTLEQ), (61)
sup Epp[l — ¢n] < exp(—Cne?), (62)
{0€0:LYV (0,00)>C1ne}
where Cy = 20 and C' = for a constant C'; > 0. O

KNV)2

Proof. Proof of Lemma|[B.2}

First, we write the Rényi divergence between Fj' and Py,

1 dPm A 1 dP, A
Dy (P'(|1Pg') = XIOg/ (dpgl) iy = "Xlog/ (dp(e)) "
0

=nllo @ + 1 lo L
T TR O D6 N
when ((A+1)0p—A0) > 0 and Dq4y (PJ||Py) = oo otherwise. Also, observe that,

D11 (Py||P}) is non-decreasing in A (this also follows from non-decreasing property of the
Rényi divergence with respect to \). Therefore, observe that

b0
(D (PIIP}) < Cone?) > (Do (BY|IP}) < Canel) =11 (0 <log ¥ < Cyé )
—1I (906—036i <h< 90) .

Now, recall that foraset A C © = [T, 00), we define II(A) = Inv — T'(A N O)/Inv — I'(O©). Now,
observe that for sufficiently small 7" and large enough n, we have

i (eoe—caei <0< 90) >Tnv—T (eoe—csei << 90)

The cumulative distribution function of inverse-gamma distribution is Inv — T'({# € © : § < t}) :=

I(e.%)

T(ay > Where a(> 0) is the shape parameter, (> 0) is the scale parameter, I'(-) is the Gamma
function, and I'(-, -) is the incomplete Gamma function. Therefore, it follows for & > 1 that

Inv—T (906*036‘51 << 90)

T (Oz, ﬂ/ao) -T (a, ﬂ/QOeCsei) fﬁ//:ooecs 2 o= 30—1 gy
I(c) ')

aol'(a) 6o ¢

—B/00eC3 a N
Zeozl"(cz) <9ﬂ0> [eiacsmn]

where the penultlmate inequality folows since 0 < €2 < 1 and the last inequality follows from the
fact that, 1 — (f”‘c36 > e*‘lcmén, for large enough n. Also note that, 1 — e—aCsen > 6’0‘03”E
can’t hold true for €2 = 1/n. However, for €2 = 1“% it holds for any n > 2 when aC3 > 2.

Therefore, for inverse-Gamma prior restricted to ©, Cs = a3 and any A > 1 the result follows for
sufficiently large n.

O
Proof. Proof of Lemma[B.3} Recall,
h e—a@
0)=ha——-+(b+nh
R((L, ) a 0 +( + ) 0
First, observe that for any a € A,
OR(a,0) _ h e~ e 1 —af
50— ° a(b+h)< 5 —(b+h)9—2—9—2(h—(b+h)e (1+ab)).  (63)
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Using the above equation the (finite) critical point 8* must satisfy, h — (b + h)e=%" (1 + af*) = 0
Therefore,

1 1 ha?6*
(14 ab*)"

> * pu— —_——
R(a,0) > R(a,0") h(a 9*+9*(1+a9*)

Since h,b > 0 and af* > 0, hence
R(a’e) >

where @ := min{a € A} and @ > 0.

Proof. Proof of Lemma[B.4;
First, observe that R(a, #) is bounded above in 6 for a given a € A

h e— a0
R(a,@):hangr(bJrh) 7
b
<h —.
Shat o

Using the above fact and the Cauchy-Schwarz inequality, we obtain

eV 7 (9)do

/{em<a,0>>604(v)ne% }

1/2 1/2
< (/ eQ’yR(a,Q>7r(9)d9> (/ levR(a,9)>eC4(W)"f%7r(9)d9>

( ) 1/2 1/2
2v(ha+2%
S </e 0 71-(e)de) (/ ]l{e'y(haJrg)>ec4(7)n€%}ﬂ-(9)d9)

< e—Ca()ne;, (/ e27(ha+g)ﬁ(9)d9) ’ )

where the last inequality follows from using the Chebyshev’s inequality.

Now using the definition of the prior distribution, which is an inverse gamma prior restricted to
© = [T, 00), we have

T R@0) 1 (9)dh < e~ Cal0ner < / e“(h””ww)d@)

\/{e'yR(a‘G) >ec4('y)”6% }
2 - b
< o= Ca(Mne}, 2y (ha+ ) 7

where @ := max{a € A} and @ > 0. Since ne2 > 1, we must fix Cy(7) such that ¢“+(") >
2 (Wt 7) that is Ca(v) > 2y (ha+ ) and C5(v) = Cu(7) — 2v (ha + £).
O

Proof. Proof of Lemmal@ Since family Q contains all shifted-gamma distributions, observe that
n =T )

{an(-) € Q}Vn > 1. By definition, ¢, (0) = gpy(0 — T)"'e”™ % . Now consider the first

0

term; using the definition of the KL divergence it follows that
o0

KL(ga(0)[[7(6)) = /T " 4 (0) 1og(qn (0))d0 — / 40 (0) log((6))do. (65)

T
Substituting ¢, (@) in the first term of the equation above and expanding the logarithm term, we obtain

/T " 4 (0) log (g, (0))d0

o n" =T n"
:n—l/ log(0 —T)——— (0 —T)" te " % df —n +1lo ()
(n=1) | logto ~ 1) s (0~ 7) (5
o 0-T n" _n&T n"
=—1 -1 log————(0—T)""te " % df —n+1
og by + (n )/T og e %Lr(n)(@ T)" ‘e df — n + log (F(n)) (66)
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Now consider the second term in the equation above. Substitute § = % + T into the integral, we
have
. 9-T n" o-T i t 1
log———(0—T)" e " % df = / log — ——t" " tetdt
/T 0o QQF(n)( ) 0 nI(n)
t 1
< [({=-1)=t""Ttetdt=0. 67
<[ () w @
Substituting the above result into (66), we get

/TOO 4n(0) log(g,(0))do < —log by — n + log ( n" )

I'(n)
“logfy —n+1o (”)
g Vo g mﬂnilein
—log V27wl + = logn (68)

@

where the second inequality uses the fact that v/2rnn"e ™" < nF(n) Recall 7(6) = Fﬁ(a)é_“_le_%

Now consider the second term in (63)). Using the definition of inverse-gamma prior and expanding
the logarithm function, we have

~ [ anl6)t0g(x(6))a
T
50‘ ) /oo nn 4 _pt=T n
=—1lo +(a+1 log 0 O0—T)""e "% di+ P——
() + o0 [ st 0-) P
B« /°° 0 n" 1 —nf=T
= —1 log — 0 —T\" 0
o (va) * o @
n
+ + (a+1)logb
ﬂ(n —1)6, ( ) log 6o
5“) /°°0—T n" 1 _pt=T
—log | =/ ) + T 0—T)"""e "% db
<o (175) * |, o )
n
1)log 6
=g () " (a4 1)logd (69)
T %\ T (n—1)0o &0,
where the first inequality is due to fact that E,, [8/6] < Ey, [8/(6 — T)] for any > T and the
penultimate inequality follows from the observation in (67) and the fact that log - b < i—1 < ——%
for any 6y > T'. Substituting (69) and (68) into (63) and dividing either sides by n, we obtain
1
—KL(ga(9)]7(6))
<l —lo \/29—1—110 n—lo b +0 n + (a+1)log 6
= gV 2Tlo B g g (@) (n— 1)f, gbo
1logn 1 Johe
= - 1 —1 log 6y | - 70
5 +B(n_1)90 ( og vV 2m — log (F(a)> + (a)log 0> (70)

Now consider the second term in the assertion of the lemma. Since &;,¢ € {1,2...n} are independent
and identically distributed, we obtain

1 P
“Eq,0) [KL (aP31p(X016)) | = Eq, o) [KL (dPollp(€]6)]
Now using the expression for KL divergence between the two exponential distributions, we have
e 90 0 n" _
KL (R Xe)]:/ log =2 4 — — 1 0 —T)" e % do
Byo) [KL (B3 IpC%0l0))] = | (108 + g0 = 1) g @ =1y e

n 1
< 1-2= 71
_n_1+ p— (71)
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where second inequality uses the fact thatlogx < z—-1 < z— % for 6y > T'. Combined together (71)
and (70) for n > 2 implies that

=KL (40 (0)I(60)) + By [KL (aPD)lIp(%10)) ]
<

10gn+ L5420 g var —log (L) aloghy ) < Co B (72
n o T(a)

1
2
where Cy := % + max (0, 2+ 3 —log v2m — log (%) + alog 00> and the result follows. [J

Proof. Proof of Lemma Since family Q contains all gamma distributions, observe that {¢,,(-) €

Q}¥n > 1. By definition, ¢,(0) = 0" 9” le . Now consider the first term; using the
definition of the KL divergence it follows that

KL (g (0)[|7(0)) = /qn(9) log(qn(9))d9*/qn(9) log((6))do. (73)

Substituting ¢, (#) in the first term of the equation above and expanding the logarithm term, we obtain

J R e e e A B vy

nn
05T (n)

= —logfy + (n — 1)/log9£ nle "o d) —n + log (PT(Ln)> (74)
0

Now consider the second term in the equation above. Substitute § = t% into the integral, we have

0 0 t 1
1 0" e "0 dl = [ log — ——t" " LeTtdt
/"g b 9nr() ’ /Ognr(n) €

: / (Z - 1) ﬁtnile%dt =0. (75)
Substituting the above result into (74), we get
/qn(e) log(qn(0))d6 < —log by —n + log (%)
nn
< —logfy —n +log (\/Wb)
= —log V2ro + %log n, 76)

where the second inequality uses the fact that v/2rnn"e™" < nI'(n). Recall 7(0) = ¢ (a) g-o—le= 7,

Now consider the second term in (73)). Using the definition of inverse-gamma prior and expanding
the logarithm function, we have

- / 4. (6) log(m(6))d8
B n—1, n% n
IOg<F(a))+(a+1)/10g99”F( )9 d9+ﬂ7(n—1)90

_ pe / 0 _n" g1 -ng
log <F(a) + (a+1) [ log— 6o BET(n )9 e de

n
e,

B n
—log (F(a)) +ﬁ(n_1)90 + (o + 1) log 6o, (77)

+ (a4 1)log by
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where the last inequality follows from the observation in (73). Substituting (77) and (76) into (73)
and dividing either sides by n, we obtain

1

—KL(gn(9)]7(6))
1 1 ok n
ﬁ ( log V210, + flogn—log (F( )> +6(n— 7% + (a+1)1og60>
1logn 1 o
=5 + B(n — 1)00 ( log V21 — log (F(a)) + (a)log90> ) (78)

Now, consider the second term in the assertion of the lemma. Since, &;,7 € {1,2...n} are indepen-
dent and identically distributed, we obtain

B0 [KL (4B I1p(%10))] = By 0 KL (4P 1p(€[0))]

Now using the expression for KL divergence between the two exponential distributions, we have

1 n " _ 90 9 n— 1 ni
L [KL (a5, 10)] = [ (108 4 1) sontehoas

1
< 1-2=—— 79
=7 e (79)

where second inequality uses the fact that log < 2 — 1. Combined together (79) and (78) for n > 2
implies that

KL @@l70)) + By [KL (aPD)lIp(%10)) ]

llog” Lo+ 28 g vam—tog (2 + alogby <091°g” (80)
~—2 n 6o (o)

where Cy := % + max (0, 2+ % —log V27 — log (%) + alog 90) and the result follows. [

C.7 Multi-product Newsvendor problem

In the multi-dimensional newsvendor problem, we fix n~Y2\/LMNV(§ 0,) =
(supge 4 |R(a,0) — R(a,6)|), where R(a,§) = 25:1 [(hl + b)a;®(a;) — bia; + 0;(b; — h;)

. ¢((az_9 )/Uu) ¢((ai—0i)/0ii)
+0ii | Mgtta 00700 T VT ((ar—0: )/on)”

For brevity, we denote d}/NV (6, 60) = n=1/2\/LMNV (. 0,). First, we show that
Lemma C.13. For any compact decision space A and compact model space ©,

di\/INV(&eO) < K||9 - 90”7

for a constant K depending on compact sets A and © and given b, h and X..

Proof. Observe that

891.R(a79)

= (bl — hl) + ((li — 91)/0”(725((0,1 — 91)/0”) (b((ai _hel)/a-“) + — (I)((azb_ ei)/aii)
A lai—=0)\ [ ho((ai —0:)/oi)  bo((ai — 0:)/0ii)

oo ( i ) [Jiiq’((ai —0;)/0ii)? ] oii(1 — ®((a;i — 91‘)/%))2] ]

= (bl — hl) + (ai — Hi)/aiiqb((ai — ai)/aii) (p((al hel)/au) n — (I)((alb 01)/0—“)

+¢((ai —91‘)> |:h¢((ai_9i)/0'ii) bp((a; — 0i)/0ii) ] ' 381

Oii

O((a; — 0:)/0ii)* (1 —®((a; —0:;)/04i))?
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Since, A and © are compact sets, therefore {(a; — 0;)/0:; }&, lie in a compact set. Consequently,
#((a;—0;)/0:;) and ®((a;—0;)/0;) also lie in bounded subset of R and thus sup 4 g |96, R(a, 0)| <
K for a given b, h and X. Since , the norm of the derivative of R(a, ) is bounded on O for any
a € A, therefore, d¥NV (6, 0) is uniformly Lipschitz in .A with Lipschitz constant K, that is

dp'™(6,00) < K||0 — 0o

Next, we show that the Py satisfies Assumption 2.1} for distance function LNV (6, 6y).

Proof. Proof of Lemma [B.6}
First consider the following test function, constructed using X, = {&1,8,.. ., &}
One = 1%|0,~00]|>vEE}

where 6, = % Note that 6,, — 6y ~ N(-|0, 2%), where 13 is a symmetric positive definite
matrix. Therefore it can be decomposed as ¥ = Q7 AQ, where  is an orthogonal matrix and A is a
daigonal matrix consisting of respective eigen values and consequently 6,, — 8y ~ QN (+]0, %A) So,

we have |0, — 6|2 ~ [|V(-0, L A)||2. Notice that || A/(-[0, L A)||? is a linear combination of d Xty

‘n
random variable weighted by elements of the diagonal matrix %A. Using this observation, we first
verify that ¢,, . satisfies condition (i) of the Lemma. Observe that

Ery lon] = 75 (5|

Note that X%l) is T distributed with shape 1/2 and scale 2, which implies X?l) — 1 is a sub-gamma ran-

~ 2 -
0, — 90H > 062) e (Xn N Cl0, A2 > C’n62> .

dom variable with scale factor 2 and variance factor 2. Now observe that for A = maxX;e(1,2,...d} N

N . 1

Py (Xn SN0, A) |2 > CneQ) <Py (Xn Xy > d[\CnE2>
o (= 1

é PO <Xn : X%l) > mcn€2>

- 1
=P} (Xn : X(21) —-1> EC’nGQ - 1>

(ﬁ Cne2 71)2
< e_ 2(2+2(ﬁCne2—l))
< 671/8ﬁCn62+1/8 < 671/8(%71)7162’ (82)
where in the third inequality we used the well known tail bound for sub-gamma random variable
(Lemma 3.12 [5]]) assuming that C' is sufficiently large such that (ﬁC’neQ — 1) > 1 and in the last

inequality follows from the assumption that ne? > ne2 > 1.

Now, we fix the alternate set to be {# € R? : || — 6| > 2v/Ce2}. Next, we verify that ¢,, . satisfies
condition (if) of the lemma. First, observe that

Epp [l — ¢,] = Py (Xn : ‘ 0, — 90H2 < 062> < Py (Xn b — 0l = 110 — 6o — \/@) :
(83)

where in the last inequality, we used the fact that || — 6o|| < [0, — 0] + ’ 0, — HOH. Now on

alternate set {0 € R% : || — 6y > 2V Ce?},
Epp[L = 6u] < Bf (Ko s 160 — 0 > [0 - 60l] - VCE2)

< P} (R : 100 — 01l 2 [0 — 0]l ~ VTR)
< Py (Xn 6. — 0] > \/@) ) (84)
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Now, it follows from (82) and © C R? that

Biplon) <

IN

sup Epp[l — ¢n] < sup Epp[l — ¢n] < e 1/8(55—1)ne®
{0€6:(|6—00(|>2VCe?} {0€R:||0—6, || >2v/Ce?}

Using Lemma|C.13} {6 € © : n=V/2,/LMNV (0 6y) > 2K/ Ce2} = {6 € © : d¥NV(6,6,) >
2KVCe?} C {0 € O:||0 — || > 2V Ce?}, which implies that

sup Epp[l —n] < sup Epp[l — ¢nl.
{60€©:LMNV (0,00)>4K2Cne?} {6€©:(|6—60||>2v/Ce2}

Therefore, Py for § € O, satisifes Assumptions [2.1| for L, (0,60) = LMNV(9,6,) for Cy = 1,
Oy =4K*Cand € = 1/8 (& — 1), O

Proof. Proof of Lemma[B.7}
First, we write the Rényi divergence between two multivariate Gaussian distribution with known ¥ as

>\+1

DiaN(100) [N (16)) = == (0 — 60) TS (60 — 60), (85)

and D1\ (N(-]0)|IN (:|60)) < oc if and only if ¥~ is positive definite [13].

Since, we assumed that the sequence of models are iid, therefore, Diyx (PJ||Pf) =
+log [ (dP") AP} =nxlog [ <dp°) dPy =n (22(0 — 0))"S(6 — 6o)) , when £~ is posi-
tive definite and D14 (P§'||P§) = oo otherwise. Now observe that

2
(D14 a (PY|P}) < nC3e2) =11 (((9 —00)"S(0 — 6p)) < py 1036,%>

=11 (6~ 60)QITAIQ — 60)]) < 57 Cac? )

T 2 2
=1 (([(9 —00)Q1"[Q(0 — 6o)]) < 7{10‘ n 1)036n> ;
2 2
=1 (([(9 —00)]"[(0 — 60)]) < 7110‘ n 1>C36n> , (86)

where A = max;e(1,2,...d} A;; and in the second equality we used eigen value decomposition of
¥ = QTAQ. Next, observe that,

(D (Fy'||P') < nCaepy) =11 (([(9 —00)]"[(6 — 6o)]) < 1\()\2-1-1)032>

2
=1I <||(9 —0o)| < ”]\()\—1—1)036%>

2
>1I <||(9 =00l < WCSE%>

d 2
= [T {16: = 60)] < | ———Cse2 |,
palet AN+1)

where in the last equality we used the fact that the prior distribution is uncorrelated. Now, the result
follows immediately for sufficiently large n, if the prior distribution is uncorrelated and uniformly
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distributed on the compact set ©;, for each i € {1,2,...,d} . In particular observe that for large
enough n, we have

d 0+ [ —2—Cse2 — 0} + Cse2
AN+1) n A(/\+1)
II(D Pl|Py) < nC
( 1+>\( 0 H n 36 };[1 m(@ﬁ)
2d( Cser, )d/2 8 d e v
= A0 — [ = [T m©:) Cse2 |,
Hizl m(ez) (A()‘ + 1)) i=1
where m(A) is the Lebesgue measure (volume) of any set A C R. Now if €2 = log" , then for
— 8 5 C3n5
8 8 2 5, ACH (ML, meen)??
A(/\+1)(Hg:1 m(®i))2/d Cs > 2, A(A—H)(Hf:l m(@i))z/d 036” > e 1 for all
n > 2, therefore,
_A - 2/d Caney,
Dy (B 1P}) < nCsed) = ¢ M0 (ii o)

O

Proof. Proof of Lemma [B.9} Since family Q contains all uncorrelated Gaussian distribu-
tions restricted to ©, observe that {g,(-) € Q}Vn > 1. By definition, ¢, ()

—- 1 (07 i,n)z o
1 R le, = % and fix 0;,, = 1/y/n and 6, = 6} for all

27\'0'1.2'”
1 € {1,2,...,d}. Now consider the first term; using the definition of the KL divergence it fol-
lows that

KL(ga(0)[7(0)) = / 4 (6) 108 (4, (6))d6 — / 4 (6) log(m(6)) db. 87)

Substituting ¢, (#) in the first term of the equation above and expanding the logarithm term, we obtain
d . .
[ anl0)108(0,@)d0 =S~ [ 6100 10w(ai 006
i=1
d
< Z /N(Gi\ﬂi,mgi,n) log N (03| ti,n> 4. ) s

= _ Z log )+ log o »], (88)

where in the last equality, we used the Well known expression for the differential entropy of Gaussian

distributions. Recall w(0) = H?Zl ﬁ. Now consider the second term in (87). It is straightforward

to observe that,

- / 2 (0) log(m(0))dd = Zlog (89)

Substituting (89) and (88)) into (7)) and dividing either 51des by n and substituting o; ,,, we obtain
d

%Kuqn(e)nw(e)) < == llog(VEre) — log(m(©1)) — 3 log
_dlogn _ 1y log(v/2me) — 1 0 90
=5 n n Z[ og(v2me) — log(m(©;))]. (90)

i=1
Now, consider the second term in the assertion of the lemma. Since §;,7 € {1,2...n} are independent
and identically distributed, we obtain

LB [KL (4B 10(X10)) ] = By 0) (KL (dPo (E10))]
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Now using the expression for KL divergence between the two multivariate Gaussian distributions,
we have

a0 [KL (4R510CE00)] = 3240 [0~ 075710 0]
< —E, 0 [(0—00)"(0 —00)]

< —— oD
n 2
where A = minje(1 2, gy Ai, and £ L= QTA~1Q, where Q is an orthogonal matrix and A is a
daigonal matrix con51st1ng of the respective eigen values of 3. Combined together (91) and (90)
implies that

= [KL @ @l17(0)) + B0y [KL (aBDIp(Enl0))] ]
d X —
Y loa(vE0) ~losm(@)] + 5 - < GEEL o0

C.8 Gaussian process classification

Proof of Lemma[BI1] In view of Theorem 7.1 in [I1], it suffices to show that
N (¢, 0, (e), dry) < e
for some C' > 0. Now, first observe that

drv(Po(y), Poo(y)) = g E, ([%1(0(y)) = W1 (0o(y))| + 191 (0(y)) — ¥-1(60(y))])

)
B, (|\1’1(9(y)) — W1 (0o (y)))
< E, (16(y) — o(y)]) < 110(y) = 00(y) oo, (93)

where the second equality uses the definition of ¥_;(-). Since, total-variation distance above is
bounded above by supremum norm, there exists a constant 0 < ¢’ < 1/2, such that

N (6,0,(e),dry) < N (e, 0,(€), || - [|oo) < 3 Crone”, (94)

where the last inequality follows from (T3)) in Lemma[B.T0} Then if follows from Theorem 7.1 in [11]
that for every € > ¢, there exists a test ¢,, (depending on € > 0) such that, for every j > 1,

2 /2 2 1 1
Epn < e3¢ Cone® o—gne® and
rplon] = 1 —exp (—ine?)’

1
sup Epp [l — ¢n] < exp (—n62j> .
{0€0,,.(€):drv (Po,Pay)>je} 2

Now for all n such that ne? > ne2 > 2log2and Cjp = ¢/~2/4 > 1 and j = 1, we have

Epy [n] < 26737 and (95)
sup Epp [1—¢,] < e~ 3n€’ < e (96)
{0€0..(€):drv (Pa,Psy)>€}
Now observe that
sgB\G(a, 0) — G(a,b)|

= max (c4 [E, [V_1(0(y))] — Eu,[V_1(00(y))][, c—[E, [¥1(6(y))] — Eu[¥1(60(y))])

= max (c+|E, [¥1(00(y))] — Eo[1(0(y))][, e~ [Eu [¥1(0(y))] — Eu[¥1(0o(y))]|

= max(cy, c—)|[E,[¥1(6o(y))] — E[V1(6(y))]|

< max(cq, o )E,[|U1(00(y)) — U1(0(y))]]

< max(cy,c_)dry(Ps, Py,) ©7
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where the second equality uses the fact that U'_;(-) =1 — Uy (-).

Consequently,

{0 € O,(¢) : 81613|G(a,9) — G(a,00)| > max(cq,c_)e} C {0 € O,(¢) : drv(Py, Pa,) > €}

Therefore, it follows from (93) and (96)) and the definition of L, (6, ) that

Epy[pa] < 2¢73" and (98)

<
sup Epp[l — o] < e 27 <em3n (99)
{0€6,,(€):Ln(0,00)>(max(cy,c_))%ne?}

Finally, the result follows for C' = 1/3, Cy = 2 and C; = (max(cy,c_))2.

O
Proof of Lemma[B12} The Rényi divergence
DA (P || Fg')
=yl [ (Wa(00(u) P 65) + Yo (Bo(w) 1 600) ) vldy)
= /1\111 e>\§ln(‘l’l(90(?/))1“‘1’1(‘9(9))”#1’—1(90(11))1“‘1’—1(9(9))”)V(dy). (100)
Note that the derivative of the exponent in the integrand above with respect to 6(y) is
(=AW (0 (1) A1 (B(y) " (0(y) + AV _1(80(y)) "1 (8(y)) " (0(y)))
(T1(0o(y)) U1 (0(y)) A + U_1(0o(y) AT _1(0(y)) )
_ (=1 (80 (y) W1 (B(y) " + W1 (60(y) 1 (B(y) 1)
= A 0 ) T (0 + T (Ga() T (00) )
_ ¥(0(y)) (=91 (B0 () M1 (0(y ))A“Jr‘l’ 1(00(y) W (0(y) M)
U1(0(y)U-1(0(y))  (P1(Oo(y) TAV_1(0(y)* + V_1(0o(y) TAT1(0(y))*)
_ )\(—‘1’1(90(9))1H‘1’—1(9(y))M1 + U1 (6o(y))" AT (O(y)) !
(1 (00(y) AW _1(0(y)* + ¥_1(0o(y)) TPy (9( ))k)
(_6*(>\+1)9(y) 4 e*(1+>\)90(y))
=A (e_/\e(y) + e_()\+1)90(y)) (1 -+ e—‘g(y))
e~ (1+X))00(y) (1 — e—(/\+1)(9(y)—00(y)))
" (60w e OB W) (14 e 0W))
Sy D)~ 6w)
- (e*AG(y)HHl)Ho(y) + 1) (1+e0W)
S AA+DI0(y) — Oo(y)l, (101)

where in the fourth equality we used definition of the logistic function and the penultimate inequality
follows from the well known inequality that 1 — e™* < z. Consequently, using Taylor’s theorem
it follows that the exponent in the integrand of the Rényi divergence in (T00) is bounded above by
A+ 1)|0(y) — Oo(y)|* and thus by A(X + 1)]|6(y) — 0o(y) ]|, Therefore,

DA (F11Py)
=yt [ (B100(0) N 00) > + W1 0o() -1 00) ) v(a)
< n%ln/e>‘(>‘+1)”9(y)_90(y)”z°V(dy)

= n(A+1)]|0(y) — bo(»)]%.
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Now using the inequality for C5 = 16(\ + 1) above observe that

II(A,) = I(D1ya (PY|PF) < Csne)
> I(n(A+1)[10(y) — bo(y) |12, < Caney.)
T(|6(y) — Bo(y) ]| < dey) > e (102)

and the result follows from (T3) of Lemma [B:10}

Proof of Lemma[BI3] Let us first analyze the KL divergence between the prior distribution and
variational family. Recall that two Gaussian measures on infinite dimensional spaces are either
equivalent or singular. [27, Theorem 6.13] specify the condition required for the two Gaussian

measures to be equivalent. In particular note that 67 (-) € Im(C'/?). Now observe that the covariance
jd

2
operator of (,, has eigenvalues {C ? ] 1), therefore operator S in the definition of C, has eigen-

/ ja—j 2
values {1 — (7 /u3}/_ 13 . For 77 = 272774 for any a > 0, Z 274 (#) =

295-2ja—jd
1+nez2-270-J

2ja 2 .
Z] 2794 (%) < 00, therefore S is an HS operator.

292 d
1+nez2—270-J

For any integer J < J,, define 6 = [ 67 (y)v(dy), where 6 (-) = Z] 1 Zk 1 605,695 (+). Since,
07 (-) € Im(C*/?) and S is a symmetric and HS operator, we invoke Theorem 5 in [22]], to write

. 1 . 1 1
KL(N(67,Cq)IN(0,C)) = 5\\071/296]\\2 — 5 logdet(I — 5) + 5tr(=5),

27 J 274 J 274
1 90 k] 1 2
=322 ~Slos [T I - - 3330
=1 k=1 G=1k=1 G=1 k=1
J 274 o J J
1 00,7@ 1 2y27¢ 1 jd .2
SEDSH IR TS | (R S
j=1k=1 J j=1 j=1
1 J 294 02 J
0k, i
SED ) K TS ST S
j=1lhk=1 13 j=1 j=1
Now for 11;27%/% = 279, and using the definition of Besov norm of 6y denoted as [|6o||3 ., ... and
denoting 1 — k7 = m, we have
KL(N(6F,Cy) N (0,C))
1< 1< 1<
i(2a—28+d) 2 1 id ooy L id 2
< 522] a ||90||,3,oo,oo 5 223 log(1 /@'j) 5 ZQJ K
j=1 j=1 ji=1
1< 1<
_ i(2a—28+d 2 d
—§ZQJ( )||90||5,oo,oo— 2227 (log(l—ﬁ )‘*‘“ )
j=1 j=1
J 2.2
1 2a—28+d) d 2 2 NERT;
1522( )16 ||/aoooo+ 22] log(1 + ne;, ;) — Tone 2
j=1 j=1 n'j
J

29 G2 D 0| o 00 +

E TLGT

N)M—t

IN
N |

~
Il
_
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where the last inequality follows from the fact that, log(1 + z) — %= . < gforxz > 0.
Substituting 77 = 2727%774, we have

J J
1 _ 1 €2 Y
CKLV(],Co)IN(0,€)) < 5= S 2284 g2 4 By p-2ie
Jj=1 j=1
||90Hﬁ 2a 1 o 272Ja
00,00 (2a—26+d) | 2
= 22] 1—922a €n-

The summation in the first term above is bounded by en as derived in [30, Theorem 4.5]. Therefore,

%KL(N(@@’,CQ)HN(O,C)) < max (|¢90 272(11*_22_2; QG)ei. (103)
Now consider the second term
o, KL(F}||7)
_ Uy (0o(y)) U1 (0o(y))
— 5. [ (%1060 0n o) s o) tow )
<Eq, [ (6(0) - b0ly). ) — Gulu)v(dy)
~ 50, [ l6) — (Bolw) — 0 () 3w (dy)
~ Eo, / 10(5) — 62 W)I1Z + 160(w) — 62 ()12 — 200() — 07 (1), b ) — 03 () (dy)
<Eo, [ 16(6) - 67 ) Bv(dy) + 160(s) 67 ) I
J 2
:EQH/@Z@ 235093 (9) P(dy) + 160y) — 0 () |2
J=1k=1
J 2id
<Eo, 3. Y G2 [ 050)v(dy) + 160(0) - W)
Jj=1 k=1
J 2

ZZ< Eq, [22,] + 96(y) — 60 (1) |12

J 2id
=375 120 K2) + 1180(y) — 6 ()11
j=1k=1
J MQ
— jd J _ 2
=Y P L+ 0ow) — 6 (v)]
Jj=1 n-g
J
1 2-2ja
— — +[160(y) — 0 ()12
n :1 J

1 &
= 02+ () - 0 )%
noj=1

2d 247 _q 5 )
= ez gi =1 T 10— W)l
2¢/24=1) |,
W + C'e,,
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where in the second inequality, we used the second assertion of Lemma 3.2 [30] for logistic function,
the fifth inequality uses the fact that 6(y) — 6 (y) is orthogonal to 6y (y) — 0 (y). For any a < « fix
J = J, otherwise J = J,, and then it is straightforward to check from the definition of €,, given in the
assertion of the theorem that (2¢/~1 /ne2) < (logn)~2. The term ||0(y)—07 (y))||% is also bounded
by C’€2 as shown in the proof of Theorem 4.5 in [30]. Consequently, the term ~Eq KL (FP}'||Py') is
bounded above by €2 (upto a constant) for sufficiently large n since (logn)~2 < €2 and the result
follows. O

Proof of Theoreng The proof is a direct consequence of Theorem 3.2} Lemmas [B-TT] [B-12] [B-13]
O

and Proposition
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