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Abstract

Several recent works have studied the societal effects of AI; these include issues1

such as fairness, robustness, and safety. In these problems, a learner seeks to2

minimize its worst-case loss over a set of predefined distributions. In this work,3

we provide a general framework for studying these problems, which we refer4

to as Responsible AI (RAI) games. We provide two classes of algorithms for5

solving these games: (a) game-play based algorithms, and (b) greedy stagewise6

estimation algorithms. The former class of algorithms is motivated by online7

learning and game theory, whereas the latter class is motivated by the classical8

statistical literature on boosting, and regression. Empirically we demonstrate the9

generality and superiority of our techniques for solving several RAI problems10

around subpopulation shift.11

1 Introduction12

In recent years, AI is increasingly being used in high-stakes decision-making contexts such as hiring,13

criminal justice, and healthcare. Given the significant impact these decisions can have on people’s14

lives, it is important to ensure these AI systems have beneficial social effects. An emerging line of15

work has attempted to formalize such desiderata ranging over ethics, fairness, train-time robustness,16

test-time or adversarial robustness, and safety, among others. Each of which form rich sub-fields with17

disparate desiderata, which are sometimes collated under the umbrella of “responsible AI”. Many18

organizations are increasingly advocating the use of responsible AI models [Microsoft, 2021, Google,19

2020].20

But how do we do so when the majority of recent work around these problems is fragmented and21

usually focuses on optimizing one of these aspects at a time? Indeed optimizing for just one of these22

aspects has even been shown to exhibit adverse effects on the other aspects [Roh et al., 2020]. As an23

initial step, we study a general framework that is broadly applicable across many of the settings above,24

and which we refer to as Responsible AI (RAI) games. Our starting point is the recent understanding25

of a unifying theme in all these disparate problems, that a learner seeks to minimize its worst-case26

loss over a set of predefined distributions. For example, in fairness, we seek to perform well on all27

sub-groups in the data. In robustness, we aim to design models that are robust to perturbations of the28

training data or the test distribution. This allows us to set up a zero-sum game between a learner that29

aims to learn a responsible model, and an adversary that aims to prevent the learner from doing so. In30

the general RAI game setting, this is a computationally difficult game that need not even have a Nash31

equilibrium. Accordingly, we first attempt to go from a single predictor to a deterministic ensemble,32

namely a distribution over predictors that can then be de-randomized via a majority vote. While this33

yields a more flexible set of predictors, obtaining the optimal deterministic ensemble is even more34

computationally challenging than the original RAI game. Accordingly, we study a relaxation of this35

deterministic ensemble RAI game, which we term the randomized ensemble RAI game, which can36

also be motivated as a linearization of the original RAI game.37
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We note that our framework encompasses not only the responsible AI settings but also the setting of38

classical boosting. Drawing upon the insights from boosting, we provide boosting based algorithms39

for solving responsible AI games. Owing to the recent work in online convex optimization and40

two-player gameplay [McMahan, 2011, Bubeck, 2011], the algorithms come with convergence41

guarantees. We also conduct empirical analyses to demonstrate the convergence and performance of42

our proposed algorithms. Interestingly, the algorithms allow for plug-and-play convenience, with43

changes in the RAI settings requiring only simple changes to the algorithms. More importantly,44

we could consider intersections of different responsible AI considerations, which in turn be simply45

incorporated in our algorithms. Finally, we also study the population risks of our algorithms in certain46

important settings. We show the surprising result that for the case of binary classification with the 0/147

loss, the optimal predictor for a large class of RAI games is the same as the Bayes optimal predictor,48

thus generalizing an emerging line of results demonstrating this for certain specific games [Hu et al.,49

2018, Zhai et al., 2023]. Under such settings, solving the RAI game could nonetheless be helpful in50

finite sample settings (as also demonstrated in our experiments) since the RAI game serves to encode51

desiderata satisfied by the Bayes optimal classifier.52

2 Problem Setup and Background53

We consider the standard supervised prediction setting, with input random variable X ∈ X ⊆ Rd,54

output random variable Y ∈ Y , and samples S = {(xi, yi)}ni=1 drawn from a distribution Pdata55

over X × Y . Let P̂data denote the empirical distribution over the samples. We also have a set56

H of hypothesis functions h : X 7→ Y from which we wish to learn the best predictor. We57

evaluate the goodness of a predictor via a loss function ℓ : Y × Y 7→ R, which yields the empirical58

risk: R̂(h) = EP̂data
ℓ(h(x), y) where EP̂data

(f(x, y)) = 1
n

∑n
i=1 f(xi, yi). Apart from having59

low expected risk, most settings require h to have certain properties, for example, robustness to60

distribution shift, fairness w.r.t subpopulations, superior tail performance, resistance to adversarial61

attacks, robustness in the presence of outliers, etc. We cast all these subproblems into an umbrella62

term “Responsible AI”; thus, it is important to deploy predictors that are responsible. Each of these63

properties has been studied extensively in recent works, albeit individually. In this work, we attempt64

to provide a general framework to study these problems. We provide a discussion of these and other65

related work in Appendix C.66

3 RAI Games67

In many cases, we do not wish to compute an unweighted average over training samples; due to68

reasons of noise, tail risk, robustness, and fairness, among many other “responsible AI” considerations.69

Definition 1 (RAI Risks) Given a set of samples {(xi, yi)}ni=1, we define the class of empirical RAI70

risks (for Responsible AI risks) as: R̂Wn
(h) = supw∈Wn

Ew(h(x), y), where Wn ⊆ ∆n, is some set71

of sample weights (a.k.a uncertainty set), and Ew(f(x, y)) =
∑n

i=1 wif(xi, yi).72

Various choices of Wn give rise to various RAI risks. Table 1 presents examples of RAI risks that are73

popular in ML. Interestingly, classical problems such as boosting are special cases of RAI risks. In74

this work, we rely on this connection to design boosting-inspired algorithms for minimizing RAI75

risks. More choices for Wn can be obtained by combining the one’s specified in Table 1 using union,76

intersection, convex-combination operations. For example, if one wants models that are fair to certain77

pre-specified groups, and at the same-time achieve good tail-risk, then one could choose Wn to be78

the intersection of Group-DRO and α-CVaR uncertainty sets.79

Remark 1 (Test-time Robustness) We note that our framework can also be extended to the prob-80

lem of adversarial test-time robustness where there is an adversary corrupting the inputs sent to81

the model during inference. Let A(x) be the set of perturbations that the adversary can add to82

input x. The uncertainty set in this case contains distributions supported on {(x′, y′) : ∃(x, y) ∈83

P̂data such that x′ ∈ x+A(x), y′ = y}.84

Given the empirical RAI risk R̂Wn
(h) of a hypothesis, and set of hypotheses H , we naturally wish to85

obtain the hypothesis that minimizes the empirical RAI risk: minh∈H R̂Wn
(h). This can be seen as86

solving a zero-sum game.87
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Name Wn Description

Empirical Risk Minimization {P̂data} object of focus in most of ML/AI

Worst Case Margin ∆n,
entire probability simplex

used for designing
margin-boosting algorithms

[Warmuth et al., 2006, Bartlett et al., 1998]

Soft Margin {w : KL(w||P̂data) ≤ ρn}
used in the design of

AdaBoost [Freund and Schapire, 1995]
α-Conditional Value

at Risk (CVaR) {w : w ∈ ∆n, w ⪯ 1
αn}

used in fairness
[Zhai et al., 2021a, Sagawa et al., 2019]

Distributionally Robust
Optimization (DRO) {w : D(w||P̂data) ≤ ρn}

various choices for D
have been studied

f -divergence [Duchi and Namkoong, 2018]

Group DRO {P̂data(G1), P̂data(G2), . . . P̂data(GK)}
P̂data(Gi) is dist. of ith group

used in group fairness, agnostic
federated learning [Mohri et al., 2019]

Table 1: Various ML/AI problems that fall under the umbrella of RAI risks.

Definition 2 (RAI games) Given a set of hypothesis H , and a RAI sample weight set Wn, the class88

of RAI games is given as: minh∈H maxw∈Wn
Ew(h(x), y).89

We thus study RAI Games for the special cases above and for an arbitrary constraint set Wn.90

4 Ensemble RAI Games91

In this section, we begin our discussion about ensembles. In general, a statistical caveat with92

Definition 2 is that good worst-case performance over the sample weight set Wn is generally harder,93

and for a simpler set of hypotheses H , there may not exist h ∈ H that can achieve such good94

worst-case performance. Thus it is natural to consider deterministic ensemble models over H , which95

effectively gives us more powerful hypothesis classes. Let us first define RAI risk for such classifiers.96

Definition 3 (Deterministic Ensemble) Consider the problem of classification, where Y is a dis-97

crete set. Given a hypothesis class H , a deterministic ensemble is specified by some distribution98

Q ∈ ∆H , and is given by: hdet;Q(x) = argmaxy∈Y Eh∼QI[h(x) = y]. Correspondingly, we can99

write the deterministic ensemble RAI risk as R̂Wn
(hdet;Q(x)) = maxw∈Wn

Ewℓ(hdet;Q(x), y).100

We discuss alternative definitions of deterministic ensembles in the Appendix. This admits a class of101

deterministic RAI games:102

Definition 4 (Deterministic Ensemble RAI games) Given a set of hypothesis H , a RAI sample103

weight set Wn, the class of RAI games for deterministic ensembles over H is given as:104

min
Q∈∆H

max
w∈Wn

Ewℓ(hdet;Q(x), y).

However, the aforementioned game is computationally less amenable because of the non-smooth105

nature of de-randomized predictions. Moreover, there are some broader challenges with RAI games106

given by Definitions 2 and 4. Firstly, they need not have a Nash Equilibrium (NE), and in general,107

their min-max and max-min game values need not coincide. This poses challenges in solving the108

games efficiently. Next, in some cases, directly optimizing over the worst-case performance might109

not even be useful. For instance, [Hu et al., 2016, Zhai et al., 2021a] show the pessimistic result that110

for classification tasks where when models are evaluated by the zero-one loss, ERM achieves the111

lowest possible DRO loss defined by some f -divergence or the α-CVaR loss, given that the model is112

deterministic. To this end, we consider the following randomized ensemble:113

Definition 5 (Randomized Ensemble) Given a hypothesis class H , a randomized ensemble is spec-114

ified by some distribution Q ∈ ∆H , and is given by: P[hrand;Q(x) = y] = Eh∼QI[h(x) = y].115

Similarly, we can define its corresponding randomized ensemble RAI risk: R̂rand;Wn(Q) =116

maxw∈Wn Eh∼QEwℓ(h(x), y).117

We can then also define the class of ensemble RAI games:118

Definition 6 (Randomized Ensemble RAI Games) Given a set of hypothesis H , a RAI sample119

weight set Wn, the class of mixed RAI games is given as:120

min
Q∈∆H

max
w∈Wn

Eh∼QEwℓ(h(x), y). (1)
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This is a much better class of zero-sum games: it is linear in both the hypothesis distribution P , as121

well as the sample weights w, and if the sample weight set Wn is convex, is a convex-concave game.122

As shown below, under some mild conditions, this game has a Nash equilibrium which can be well123

approximated via efficient algorithms.124

Proposition 2 Let H be parameterized by θ ∈ Θ ⊆ Rp, for convex, compact set Θ125

and let Wn be a convex, compact set. Then minQ∈∆H
maxw∈Wn

Eh∼QEwℓ(h(x), y) =126

maxw∈Wn
minQ∈∆H

Eh∼QEwℓ(h(x), y)127

The proposition follows as a direct consequence of well known minimax theorems (Appendix E.3).128

4.1 Going from Deterministic to Randomized Ensembles129

To begin, we point out that what we want is a deterministic ensemble rather than a randomized130

ensemble. In fact, it can be seen that the deterministic ensemble in Definition 3 is a specific de-131

randomization of the randomized ensemble. It is such deterministic ensembles that we usually simply132

refer to as ensemble predictors. But the RAI risk for the ensemble predictor is NOT equal to the133

ensemble RAI risk minimized by our desired game in Equation 1 above for randomized ensembles.134

Thus, the ensemble RAI game might not in general capture the ideal deterministic ensemble. In this135

section, we study why and when might solving for a random ensemble is meaningful.136

Binary Classification. Interestingly, for the very specific case of binary classification, we can provide137

simple relationships between the risks of the randomized and deterministic ensemble.138

Proposition 3 Consider the setting with Y = {−1, 1}, the zero-one loss ℓ, and Wn = ∆n. Then,139

R̂Wn
(hdet;Q) = I[R̂Wn

(hrand;Q) ≥ 1/2].

See Appendix F.2 for a simple proof. In this case, we can also relate the existence of a perfect140

deterministic ensemble (“boostability”) to a weak learning condition on the set of hypotheses.141

Specifically, suppose H is boostable iff there exists Q ∈ ∆H s.t. R̂Wn
(hdet;Q) = 0. From the above142

proposition this is equivalent to requiring that R̂Wn
(hrand;Q) < 1/2. We thus obtain:143

inf
Q∈∆H

sup
w∈Wn

Ew,Qℓ(h(x), y) < 1/2 ⇐⇒ sup
w∈Wn

inf
h∈H

Ewℓ(h(x), y) < 1/2

where the equivalence follows from the min-max theorem and the linearity of the objective in P .144

The last statement says that for any sample weights w ∈Wn, there exists a hypothesis h ∈ H that145

has w-weighted loss at most 1/2. We can state this as a “weak-learning” condition on individual146

hypotheses in H . The above thus shows that for the specific case of Y = {−1, 1}, the zero-one loss147

ℓ(y, y′) = I[y ̸= y′], and Wn = ∆n, we can relate boostability of H to a weak learning condition on148

hypothesis within H .149

General Classification But in general, we do not have simple connections between R̂Wn
(hdet;Q)150

and R̂Wn(hrand;Q). All we can guarantee is the following upper bound:151

Proposition 4 Let γQ = 1/mini∈[n] maxy∈Y PQ[h(xi) = y]. Then,152

R̂Wn
(hdet;Q) ≤ γQR̂Wn

(hrand;Q).

See Appendix F.2 for a simple proof.153

Corollary 5 For binary classification, we have γP ≤ 2 and thus, we recover the well known bound154

R̂Wn
(hdet;Q) ≤ 2R̂Wn

(hrand;Q)155

Remark 6 These bounds might be loose in practice. Specifically, for the binary case, if156

R̂Wn(hrand;Q) ≤ 1
2 then we have R̂Wn(hdet;Q) = 0. To this end, prior work [Lacasse et al., 2006,157

Germain et al., 2015, Masegosa et al., 2020] have developed tighter bounds using second-order158

inequalities. We leave the analyses of these second-order RAI games to future work.159
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As such, we can cast minimizing randomized RAI risk as minimizing an upper bound on the160

deterministic ensemble RAI risk. Thus, the corresponding randomized RAI game can be cast as a161

relaxation of the deterministic RAI game. In the sequel, we thus focus on this randomized ensemble162

RAI game, which we will then use to obtain a deterministic ensemble. Following the bounds above,163

the corresponding deterministic ensemble risk will be bounded by the randomized ensemble RAI risk164

5 Algorithms165

In this section, we present two algorithms for solving the RAI game in Equation (1). Our first166

algorithm is motivated from online learning algorithms and the second algorithm is motivated from167

greedy stepwise algorithms that have been popular for solving many statistical problems such as168

regression. For simplicity of presentation, we assume H is a finite set. However, our results in the169

section extend to uncountable sets.170

5.1 Methods171

Game-play. In game play based algorithms, both the min and the max players are engaged in a172

repeated game against each other. Both players rely on no-regret algorithms to decide their next173

action. It is well known that such a procedure converges to a mixed NE of the game Cesa-Bianchi174

and Lugosi [2006]. In this work, we follow a similar strategy to solve the game in Equation (1)175

(see Algorithm 1 for the pseudocode). In the tth round of our algorithm, the following distribution176

wt ∈W is computed over the training data points177

wt ← argmax
w∈Wn

t−1∑
s=1

Ewℓ(h
s(x), y) + ηt−1Reg(w) (2)

This update is called the Follow-The-Regularized-Leader (FTRL) update. Here, Reg(·) is a strongly178

concave regularizer and ηt−1 is the regularization strength. One popular choice for Reg(·) is the179

negative entropy which is given by−
∑

i wi logwi. This regularizer is also used by AdaBoost, which180

is a popular boosting algorithm. In Appendix G.2, we provide analytical expressions for wt for181

various choices of Wn,Reg(·). We note that the regularizer in the FTRL update ensures the stability182

of the updates; i.e., it ensures consecutive iterates do not vary too much. This stability is naturally183

guaranteed when Wn is a strongly convex set (an example of a strongly convex set is the level set of184

a strongly convex function. See Appendix for a formal definition and more details). Consequently,185

the regularization strength ηt−1 could be set to 0 in this case, and the algorithm still converges to a186

NE [Huang et al., 2017].187

Once we have wt, a new classifier ht is computed to minimize the weighted loss relative to wt, and188

added to the ensemble. This update is called the Best Response (BR) update. Learning ht in this way189

helps us fix past classifiers’ mistakes, eventually leading to an ensemble with good performance.190

Algorithm 1 Game play algorithm for solving Equation (1)
Input: Training data {(xi, yi)}ni=1, loss function ℓ, constraint set Wn, hypothesis set H , strongly
concave regularizer R over Wn, learning rates {ηt}Tt=1

1: for t← 1 to T do
2: FTRL: wt ← argmaxw∈Wn

∑t−1
s=1 Ewℓ(h

s(x), y) + ηt−1Reg(w)
3: BR: ht ← argminh∈H Ewtℓ(h(x), y)
4: end for
5: return PT = 1

T

∑T
t=1 w

t, QT = Unif{h1, . . . hT }

Greedy. We now take an optimization theoretic viewpoint to design algorithms for Equation (1).191

Let L(Q) denote the inner maximization problem of (1): L(Q) := maxw∈Wn Eh∼QEwℓ(h(x), y).192

When L(Q) is smooth (this is the case when Wn is a strongly convex set), one could use Frank-Wolfe193

(FW) to minimize it. The updates of this algorithm are given by194

Qt ← (1− αt)Qt−1 + αtG, where G = argmin
Q

〈
Q,∇QL(Q

t−1)
〉
.
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Here, ∇QL(Q
t−1) = argmaxw∈Wn

Eh∼Qt−1Ewℓ(h(x), y). This algorithm is known to converge195

to a minimizer of L(Q) at O(1/t) rate [Jaggi, 2013]. When L(Q) is non-smooth, we first need to196

smooth the objective before performing FW. In this work we perform Moreau smoothing [Parikh197

et al., 2014], which is given by198

Lη(Q) = max
w∈Wn

Eh∼QEwℓ(h(x), y) + ηReg(w). (3)

Here Reg(·) is a strongly concave regularizer. If Reg(·) is 1-strongly concave, it is well known that199

Lη(Q) is O(1/η) smooth. Once we have the smoothed objective, we perform FW to find its optimizer200

(see Algorithm 2 for pseudocode).201

Relaxing the simplex constraint. We now derive a slightly different algorithm by relaxing the202

simplex constraint on Q. Using Lagrangian duality we can rewrite minQ∈∆H
Lη(Q) as the following203

problem for some λ ∈ R204

min
Q⪰0

Lη(Q) + λ
∑
h∈H

Q(h).

One interesting observation is that when Wn is the entire simplex and when λ = −1/2, we recover205

the AdaBoost algorithm. Given the practical success of AdaBoost, we extend it to general Wn. In206

particular, we set λ = −1/2 and solve the resulting objective using greedy coordinate-descent. The207

updates of this algorithm are given in Algorithm 2.208

Remark 7 Algorithm 2 takes the step sizes {αt}Tt=1 as input. In practice, one could use line search209

to figure out the optimal step-sizes, for better performance.210

Algorithm 2 Greedy algorithms for solving Equation (1)
Input: Training data {(xi, yi)}ni=1, loss function ℓ, constraint set Wn, hypothesis set H , strongly
concave regularizer R over Wn, regularization strength η, step sizes {αt}Tt=1

1: for t← 1 to T do
2: Gt = argminQ

〈
Q,∇QLη(Q

t−1)
〉

3: FW: Qt ← (1− αt)Qt−1 + αtGt / Gen-AdaBoost: Qt ← Qt−1 + αtGt

4: end for
5: return QT

We provide convergence rates for the algorithms below:211

Proposition 8 (Convergence Rates) Let l(h(x), y) ∈ [0, 1] ∀h ∈ H, (x, y) ∈ D and Reg : ∆n → R212

be a 1-strongly concave function w.r.t norm ∥.∥1. Let QT be the output returned from running213

Algorithm 1 or 2 for T iterations. Let DR be a constant S.T. D2
R = maxx,y∈Wn |Reg(x)− Reg(y)|.214

1. (Gameplay) If ηt = η, then QT satisfies L(QT ) ≤ minQ L(Q) +
ηD2

R

T +O( 1η ).215

2. (Greedy) If line-search is performed for αt, then QT (FW or the Gen-AdaBoost update)216

satisfies L(QT ) ≤ minQ L(Q) + ηD2
R +O( 1

ηT ).217

We refer the reader to Appendix G.1 for a simple proof using existing theory on online convex218

optimization [McMahan, 2011, Jaggi, 2013]. Another useful insight is that Algorithms 1 and 2 are219

related to each other under special settings as shown by Appendix I.1.220

Corollary 9 Consider Reg(w) = −
∑n

i=1 wi logwi and l as the zero-one loss. Then, Algorithm 1221

and Algorithm 2 (line-search) achieve ϵ−approximate NE with ϵ as O
(√

log(n)
T

)
.222

Weak Learning Conditions It might not be practical for H-player to play BR (Step 3: Algorithm223

1) or correspondingly, to find the best possible classifier at every round (Step 2: Algorithm 2). Under224

weak learning conditions, we can indeed achieve (approximate) convergence when we only solve225

these problems approximately. See Appendix I.2 for more details.226
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6 Generalization Guarantees227

In this section, we study the population RAI risk and present generalization bounds which quantify228

the rates at which empirical RAI risk converges to its population counterpart.229

6.1 Population RAI Games230

Recall, the empirical RAI risk optimizes over all sample re-weightings w ∈Wn that lie within the231

probability simplex ∆n. Thus it’s population counterpart optimizes over distributions P that are232

absolutely continuous with respect to the data distribution Pdata:233

RW (h) = sup
P :P≪Pdata,

dP
dPdata

∈W

EP [ℓ(h(x), y)].

Following [Shapiro et al., 2021], we can rewrite this as follows. Suppose we use Z = (X,Y ) ∈ Z :=234

X × Y , so that P, Pdata are distributions over Z. We then define ℓh : Z 7→ R as ℓh(z) = ℓ(h(x), y).235

We can then write the population RAI risk as (see Appendix H for a proof):236

RW (h) = sup
r:Z7→R+,

∫
r(z)dPdata(z)=1,r∈W

EPdata [r(z)ℓh(z)]. (4)

For classification, we define the RAI-Bayes optimal classifier as: Q∗
W = argminQ RW (Q). Here,237

the minimum is w.r.t the set of all measurable classifiers (both deterministic and random). This is the238

“target” classifier we wish to learn given finite samples. Note that this might not be the same as the239

vanilla Bayes optimal classifier: Q∗ = argminQ E[R̂(Q)], which only minimizes the expected loss,240

and hence may not satisfactorily address RAI considerations.241

We now try to characterize the RAI-Bayes optimal classifier. However, doing this requires a bit more242

structure on W . So, in the sequel, we consider constraint sets of the following form:243

W =

{
r : Z 7→ R+ :

∫
gi(r(z))dPdata(z) ≤ ci, i ∈ [m]

}
, (5)

where we assume that gi : R+ 7→ R, i ∈ [m] are convex. Note that this choice of W encompasses a244

broad range of RAI games including DRO with f -divergence, CVaR, soft-margin uncertainty sets.245

Perhaps surprisingly, the following proposition shows that the minimizer of population RAI risk is246

nothing but the vanilla Bayes optimal classifier.247

Proposition 10 (Bayes optimal classifier) Consider the problem of binary classification where Y =248

{−1,+1}. Suppose ℓ(h(x), y) = ϕ(yh(x)) for some ϕ : R → [0,∞) which is either the 0/1 loss,249

or a convex loss function that is differentiable at 0 with ϕ′(0) < 0. Suppose the uncertainty set W is250

as specified in Equation (5). Moreover, suppose {gi}i=1...m are convex and differentiable functions.251

Then, the vanilla Bayes optimal classifier is also a RAI-Bayes optimal classifier.252

Remark 11 In the special case of m = 1 in Equation (5), we recover the result of [Hu et al., 2018].253

However, our proof is much more elegant than the proof of [Hu et al., 2018], and relies on the dual254

representation of the population RAI risk.255

One perspective of the above result is that the vanilla Bayes optimal classifier is also “responsible”256

as specified by the RAI game. This is actually reasonable in many practical prediction problems257

where the label annotations are actually derived from humans, who presumably are also responsible.258

Why then might we be interested in the RAI risk? One advantage of the RAI risks is in finite sample259

settings where the equivalence no longer holds, and the RAI risk could be construed as encoding prior260

knowledge about properties of the Bayes optimal classifier. We also note that the above equivalence261

is specific for binary classification.262

6.2 Generalization Guarantees263

Our generalization bounds rely on the following dual characterization of the RAI population risk.264
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Proposition 12 Suppose the uncertainty set W is as specified in Equation (5). Then for any hypothe-265

sis h, the population RAI risk can be equivalently written as266

RW (h) = inf
λ≥0,τ

EPdataG
∗
λ(ℓh(z)− τ) +

m∑
i=1

λici + τ, (6)

where G∗
λ is the Fenchel conjugate of Gλ(t) =

∑m
i=1 λigi(t).267

We utilize the above expression for RW (h) to derive the following deviation bound for R̂Wn(h).268

Theorem 13 Consider the setting of Proposition 12. Suppose {gi}i=1...m are convex and differen-269

tiable functions. Suppose ℓh(z) ∈ [0, B] for all h ∈ H , z ∈ Z . Suppose, for any distribution Pdata, the270

minimizers (λ∗, τ∗) of Equation (6) lie in the following set: E = {(λ, τ) : ∥λ∗∥∞ ≤ Λ̄, |τ∗| ≤ T}.271

Moreover, let’s suppose the optimal λ∗ for Pdata is bounded away from 0 and satisfies mini λ
∗
i ≥ Λ

¯
.272

Let G,L, be the range and Lipschitz constants of G∗
λ:273

G := sup
(λ,τ)∈E

G∗
λ(B − τ)−G∗

λ(−τ), L := sup
x∈[0,B],(λ,τ)∈E,λ:mini λi≥Λ

¯

∣∣∣∣∣∣∂G∗
λ(x− τ)

∂(λ, τ)

∣∣∣∣∣∣
2
.

For any fixed h ∈ H , with probability at least 1− 2e−t274

|RW (h)− R̂Wn
(h)| ≤ 10n−1/2G(

√
t+m log(nL)).

Given Theorem 13, one can take a union bound over the hypothesis class H to derive the following275

uniform convergence bounds.276

Corollary 14 Let N(H, ϵ, ∥ · ∥L∞(Z)) be the covering number of H in the sup-norm which is277

defined as ∥h∥L∞(Z) = supz∈Z |h(z)|. Then with probability at least 1−N(H, ϵn, ∥ · ∥L∞(Z))e
−t,278

the following holds for any h ∈ H: |RW (h) − R̂Wn
(h)| ≤ 30n−1/2G(

√
t+m log(nL)). Here279

ϵn = n−1/2G
√

t+m log(nL).280

The above bound depends on parameters (λ∗, τ∗, G, L) which specific to the constraint set W . To281

instantiate it for any W one needs to bound these parameters. We note that our generalization282

guarantees become sub-optimal as Λ
¯
→ 0. This is because the Lipschitz constant L could potentially283

get larger as λ approaches the boundary. Improving these bounds is an interesting future direction.284

7 Experiments285

In this section, we demonstrate the generality of proposed RAI methods. Given a large number of286

possible W , we do not attempt an exhaustive empirical analysis. Instead, we explore one specific287

setting described below and underscore the plug-and-play nature of RAI Games. We conduct288

experiments on both synthetic and real-world datasets. Please refer to Appendix for details on289

synthetic experiments. We consider a number of responsible AI settings, including subpopulation290

shift, in the domain-oblivious (DO) setting where we do not know the sub-populations [Hashimoto291

et al., 2018, Lahoti et al., 2020, Zhai et al., 2021a], the domain-aware (DA) setting where we292

do [Sagawa et al., 2019], and the partially domain-aware (PDA) setting where only some might be293

known.294

Datasets & Domain Definition. We use the following datasets: COMPAS [Angwin et al., 2016],295

CIFAR-10 (original, and with a class imbalanced split [Jin et al., 2021, Qi et al., 2021]) and CIFAR-296

100. See the Appendix for more details on our datasets. For COMPAS, we consider race (White vs297

Other) and biological gender (Male vs Female) as our sensitive attributes. This forms four disjoint298

subgroups defined by these attributes. In the PDA setting, we partition only across the attribute race299

while training, but still run tests for all four subgroups. On CIFAR-10, class labels define our 10300

subpopulations. Similarly as above, for the PDA setting, we make 5 super-groups of two classes301

each. On CIFAR-100, class labels define our 100 subpopulations. For the PDA setting, we make 20302

super-groups, each consisting of five classes.303

Baselines. We compare our method against the following baselines: (a) Deterministic classifiers304

trained on empirical risk (ERM) and DRO risks, particularly the quasi-online algorithm for Group305
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DRO [Sagawa et al., 2019] (Online GDRO), and an ITLM-inspired SGD algorithm [Zhai et al., 2021b,306

Shen and Sanghavi, 2018] for χ2 DRO (SGD (χ2)) (b) Ensemble models AdaBoost [Schapire, 1999]307

Proposed Methods. We focus on Algorithm 2 and refer to FW and Gen-AdaBoost updates as308

RAI-FW and RAI-GA, respectively. Moreover, our implementations include the following alterations:309

• We track the unregularized objective value from Equation 1 for the validation set, and whenever it310

increases we double the regularization factor η, which we find can improve generalization. • We also311

use this objective w.r.t the normalized Qt to perform a line search for the step size α. For the FW312

update, our search space is a ball around 1
t at round t, while for GA, we search within (0, 1).313

Base Learners & Training. We defer the details of our base learners and hyperparameter choices to314

the Appendix.315

Constraint sets Wn. For RAI algorithms, we use the following constraint sets: • Domain Oblivious316

(DO): We use the χ2-DRO constraint set to control for worst-case subpopulations. • Domain Aware317

(DA): We use the Group DRO constraint set as the domain definitions are known. • Partially318

Domain-Aware (PDA): We use a novel set Wn which is the intersection over Group DRO constraints319

over the known domains and χ2 constraints to control for unknown group performance. For baselines,320

we use AdaBoost and SGD(χ2) for the DO setting. Online GDRO serves as our baseline for both DA321

and PDA settings, where the algorithm uses whatever domain definitions are available.322

Table 2: Mean and worst-case expected loss for baselines, RAI-GA and RAI-FW. (Complex) indicates the use
of larger models. Constraint sets Wn are indicated in (.).

Setting Algorithm COMPAS CIFAR-10 (Imbalanced) CIFAR10 CIFAR100

Average Worst Group Average Worst Class Average Worst Class Average Worst Class

DO ERM 31.3 31.7 12.1 30.4 8.3 21.3 25.2 64.0

(Complex) RAI-GA (χ2) 31.3 31.2 11.7 29.0 8.2 19.0 25.6 56.8
RAI-FW (χ2) 31.2 31.4 11.9 29.1 8.0 15.4 25.4 58.0

DO

ERM 32.1 34.6 14.2 33.6 11.4 27 27.1 66.0
AdaBoost 31.8 32.6 15.2 40.6 12 28.7 28.1 72.2
SGD (χ2) 32.0 33.7 13.3 31.7 11.3 24.7 27.4 65.9

RAI-GA (χ2) 31.5 33.2 14.0 32.2 10.8 25.0 27.4 65.0
RAI-FW (χ2) 31.6 32.5 13.9 32.6 10.9 23.4 27.5 63.8

DA Online GDRO 31.7 32.2 13.1 26.6 11.2 21.7 27.3 57.0
RAI-GA (Group) 32.0 32.7 13.0 27.3 11.5 22.4 27.4 56.6
RAI-FW (Group) 32.1 32.3 13.0 26.0 11.4 20.3 27.9 52.9

PDA Online GDRO 31.5 32.7 13.4 32.2 11.3 25.2 27.7 64.0
RAI-GA (Group ∩ χ2) 31.4 32.9 13.0 30.1 10.8 23.7 27.5 62.5
RAI-FW (Group ∩ χ2) 31.8 32.3 13.5 29.4 11.2 24.0 27.9 58.9

Results and Discussion. We run our methods and baselines under the settings described above and323

report the results in Table 2. As such, we can make the following observations:324

1. RAI-FW and RAI-GA methods significantly improve the worst-case performance with only a few325

base learners across all datasets in all three settings, while maintaining average case performance.326

2. The plug-and-play framework allows for several different Wn to enhance various responsible AI327

qualities at once. This is especially useful in the PDA setting, where the performance lead widens,328

indicating that RAI is able to optimize effectively for both known and unknown subpopulations329

while Online GDRO suffers from some of the group information being unknown. In practice, one330

can construct many more novel sets Wn.331

3. Although bigger (complex) models exhibit stronger performance than RAI ensembles, there are332

several caveats to this observation. Firstly, these models are ∼10-15 times larger than our base333

models. This limits their use w.r.t both training and inference compute required. However, RAI334

ensembles utilize a small number of much smaller models which can be individually trained quite335

easily. Next, even with these large models as base learners, constructing RAI ensembles exhibits336

a strong performance boost, indicating that our framework is able to “boost” models of varying337

complexities.338

8 Conclusion339

We propose a general game-theoretic framework for learning responsible AI models. We propose340

practical algorithms to solve these games, as well as statistical analyses of solutions of these games.341
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A Broader Impact577

Responsible AI has become an important topic as ML/AI systems increase in scale, and are being578

deployed in a variety of scenarios. Models not optimized for responsible facets can have disastrous579

consequences [Kalra and Paddock, 2016, Angwin et al., 2016, Fuster et al., 2018].580
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Our research promotes the principles of Responsible AI (RAI), encompassing ethics, fairness, and581

safety considerations. By providing a framework to consider these simultaneously, this research582

could help prevent scenarios where optimizing for one aspect unintentionally compromises another583

[Ma et al., 2022], mitigating the risk of creating biases or vulnerabilities in AI systems.584

We also address the fragmentation in recent work around Responsible AI. The ’plug-and-play’585

nature of our approach allows for the easy adaptation of algorithms for different Responsible AI586

considerations. This adaptability could lead to more practical and user-friendly tools for implementing587

RAI across different applications.588

Numerous ML models like Large language models, (GPT-3, GPT-4), are rapidly transforming589

numerous domains, including natural language processing, data analysis, content creation, and more.590

Given their remarkable ability to generate human-like text, they can be used to construct narratives,591

answer queries, or even automate customer service. However, with such capabilities come significant592

responsibilities, as these models can inadvertently perpetuate biases, misinformation, or harmful593

content if not correctly regulated. Therefore, ensuring the responsible behavior of these models is594

crucial [Chan, 2023, Bender et al., 2021]. Our research presents a general framework that can be595

pivotal in the responsible design of such large language models.596

B Limitations597

We now identify some limitations of our current work, along with corresponding future directions598

• To more concretely establish the empirical superiority of our optimization techniques, more599

experiments involving large over-parametrized models need to be conducted.600

• The proposed generalization bounds are not tight for all risks. A more careful analysis would be601

needed for such a generalization.602

• Our framework only handles uncertainty sets that are supported on the training data. It’d be inter-603

esting to generalize our framework further to support other uncertainty sets based on Wasserstein604

divergences that are not necessarily supported on the training data.605

• Finally, the presence of outliers can often destabilize training of large models[Zhai et al., 2021b].606

However, our current framework assumes the training data is un-corrupted. In future, we aim to607

extend our framework to support corruptions in the training data.608

C Related Work609

Distribution shift. [Koh et al., 2021] classifies distribution shift problems into two categories:610

Domain generalization, and subpopulation shift. In this work, we focus on the subpopulation shift611

problem, where the target distribution is absolutely continuous to the source distribution. It has two612

main applications: fairness [Hashimoto et al., 2018, Hu et al., 2018, Sagawa et al., 2019, Zhai et al.,613

2021b] and long-tail learning (i.e. learning on class-imbalanced datasets) [Cao et al., 2019, Menon614

et al., 2021, Kini et al., 2021].615

Distributionally Robust Optimization (DRO). In DRO one aims to study classifiers that are robust616

to deviations of the data distribution. DRO has been studied under various uncertainty sets including617

f -divergence based uncertainty sets [Namkoong and Duchi, 2017, Duchi and Namkoong, 2018,618

Sagawa et al., 2019], Wasserstein uncertainty sets [Sinha et al., 2017, Gao et al., 2022], Maximum619

Mean Discrepancy uncertainty sets [Staib and Jegelka, 2019], more general uncertainty sets in620

the RKHS space [Zhu et al., 2020]. [Li et al., 2021] evaluate model performance under worst-621

case subpopulations, [Jin et al., 2021] provide non-asymptotic convergence guarantees for smooth622

non-convex DRO623

Boosting. Classical boosting aims to improve the performance of a weak learner by combining624

multiple weak classifiers to produce a strong classifier [Breiman, 1999, Friedman et al., 2000,625

Friedman, 2001, Freund and Schapire, 1995, Freund et al., 1996, Mason et al., 2000]. Over the years,626

a number of practical algorithms have been introduced such as AdaBoost [Schapire, 1999], LPBoost627

[Demiriz et al., 2002], gradient boosting [Mason et al., 1999], XGBoost [Chen and Guestrin, 2016],628

boosting for adversarial robustness [Zhang et al., 2022], [Meunier et al., 2021], [Balcan et al., 2023],629

and holistic robustness [Bennouna and Parys, 2022].630
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Fairness. There are a number of fairness notions for algorithmic fairness, ranging from individual631

fairness [Dwork et al., 2012, Zemel et al., 2013], group fairness [Hardt et al., 2016, Zafar et al.,632

2017], counterfactual fairness [Kusner et al., 2017], and Rawlsian max-min fairness [Rawls, 2020,633

Hashimoto et al., 2018].634

D Notation and Terminology635

D.1 Notation636

Table 3: Notation

Symbol Description
X Input Random Variable
X Input Domain
Y Output Random Variable
Y Output Domain
Z Sample Random Variable (X,Y )
Z Sample Domain X × Y
S Sample Set

Pdata Data Generating Distribution
P̂data Empirical Distribution (Uniform) over S
H Set of Hypothesis
Q Distribution over Hypothesis from H
h Any given hypothesis

hrand;Q Randomized Ensemble given by Q
hdet;Q De-randomized/Deterministic Classifier corresponding to hrand;Q

l Loss Function
R̂(h) Empirical Risk of h
Wn Set of allowed sample weights (aka Uncertainty Set)

R̂Wn(h) Empirical RAI Risk of h
RW (h) Population RAI Risk of h

R̂rand;Wn
(Q) Randomized Ensemble RAI Risk

KL(p||q) KL-divergence Metric between p and q
Gi Subpopulation/Domain i
Reg Any given regularizer function

D.2 Terminology637

Strongly Convex Sets A set A is λ-strongly convex w.r.t a norm ∥·∥, if, for any x, y ∈ A, γ ∈ [0, 1],638

the ∥ · ∥ norm ball with origin γx+ (1− γ)y and radius γ(1− γ)λ∥x− y∥2/2 lies in A.639

f -divergence For any two probability distributions P,Q, f -divergence between P and Q is defined640

as Df (Q||P ) = EP [f(dQ/dP )]. Here f : R+ → R is a convex function such that f(1) = 0.641

E Background642

E.1 Two Player Zero-sum Games643

Consider the following game between two players. One so-called “row player” playing actions644

h ∈ H , and the other “column player” playing actions z ∈ Z. Suppose that when the two players645

play actions h, z respectively, the row player incurs a loss of l(h, z) ∈ R, while the column player646

incurs a loss of −l(h, z). The sum of the losses for the two players can be seen to be equal to zero so647

such a game is known as a two-player zero-sum game. It is common in such settings to refer to the648

gain l(h, z) of the column player, rather than its loss of −l(h, z). Both players try to maximize their649

gain/minimize their loss.650
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It is common in game theory to consider a linearized game in the space of probability measures,651

which is in general better behaved. To set up some notation, for any probability distributions Ph over652

H , and Pz over Z, define:653

l(Ph, Pz) = EPh,Pz
l(h, z)

Nash Equilibrium A Nash Equilibrium (NE) is a stable state of a game where no player can gain654

by unilaterally changing their strategy while the other players keep theirs unchanged. In a two-player655

zero-sum game, a Nash Equilibrium is a pair of mixed strategies (h∗, z∗) satisfying656

sup
z∈Z

l(h∗, z) ≤ l(h∗, z∗) ≤ inf
h∈H

l(h, z∗)

Note that whenever a pure strategy NE exists, the minimax and maximin values of the game are equal657

to each other:658

inf
h∈H

sup
z∈Z

l(h, z) = l(h∗, z∗) = sup
z∈Z

inf
h∈H

l(h, z)

What often exists is a mixed strategy NE, which is precisely a pure strategy NE of the linearized659

game. That is, (P ∗
h , P

∗
z ) is called a mixed strategy NE of the zero-sum game, if660

sup
Pz∈PZ

l(P ∗
h , Pz) ≤ l(P ∗

h , P
∗
z ) ≤ inf

Ph∈PH

l(Ph, P
∗
z )

For this paper, Q ≡ Ph, w ≡ Pz , ∆H ≡ PH and Wn ≡ PZ .661

ϵ-Approximate Nash Equilibrium An ϵ-approximate Nash Equilibrium is a relaxation of the Nash662

Equilibrium, where each player’s strategy may not be the best response but is still within ϵ of the best663

response. Formally, a pair of mixed strategies (Ph, Pz) is an ϵ-approximate Nash Equilibrium if664

inf
Ph∈PH

l(Ph, Pz) + ϵ ≥ l(Ph, Pz) ≥ sup
Pz∈PZ

l(Ph, Pz)− ϵ (7)

No Regret Algorithms No-regret algorithms are a class of online algorithms used in repeated665

games. The regret of a player is defined as the difference between their cumulative payoff and the666

best cumulative payoff they could have achieved by consistently playing a single strategy. A no-regret667

algorithm guarantees that the average regret of a player goes to zero as the number of iterations668

(or rounds) tends to infinity. In the context of two-player zero-sum games, if both players follow669

no-regret algorithms, their average strategy profiles converge to the set of Nash Equilibria.670

E.2 Online Learning671

A popular and widely used approach for solving min-max games is to rely on online learning672

algorithms [Hazan, 2016, Cesa-Bianchi and Lugosi, 2006]. In this approach, the row (minimization)673

player and the column (maximization) player play a repeated game against each other. Both players674

rely on online learning algorithms to choose their actions in each round of the game, with the objective675

of minimizing their respective regret. The following proposition shows that this repeated gameplay676

converges to a NE.677

Proposition 15 ([Gupta et al., 2020]) Consider a repeated game between the minimization and678

maximization players in the linearized game. Let (P t
h, P

t
z) be the actions chosen by the players in679

iteration t. Suppose the actions are such that the regret of each player satisfies:680

T∑
t=1

l(P t
h, P

t
z)− inf

h∈H

T∑
t=1

l(h, P t
z) ≤ ϵ1(T )

681

sup
z∈Z

T∑
t=1

l(P t
h, z)−

T∑
t=1

l(P t
h, P

t
z) ≤ ϵ2(T )

Let PhAV G, PzAV G denote the mixture distributions 1
T

∑T
i=1 P

i
h and 1

T

∑T
i=1 P

i
z . Then682

(PhAV G, PzAV G) is an ϵ-approximate mixed NE of the game with:683

ϵ =
ϵ1(T ) + ϵ2(T )

T
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There exist several algorithms such as FTRL, FTPL, and Best Response (BR), which guarantee684

sub-linear regret. It is important to choose these algorithms appropriately, given the domains H,Z as685

our choices impact the rate of convergence to a NE and also the computational complexity of the686

resulting algorithm.687

E.3 General Minimax Theorems (Proof of Proposition 2)688

We first state the following convenient generalization of the original Von Neumann’s minimax689

theorem.690

Proposition 16 (Von Neumann-Fan minimax theorem, [Borwein, 2016]) Let X and Y be Banach691

spaces. Let C ⊂ X be nonempty and convex, and let D ⊂ Y be nonempty, weakly compact, and692

convex. Let g : X ×Y → R be convex with respect to x ∈ C and concave and upper-semicontinuous693

with respect to y ∈ D, and weakly continuous in y when restricted to D. Then,694

sup
y∈D

inf
x∈C

g(x, y) = inf
x∈C

sup
y∈D

g(x, y)

We now proceed to the proof of Proposition 2. Observe that a convex, compact Wn satisfies the695

conditions for D in the above proposition. Moreover, we have C = ∆H i.e. the set of probability696

measures on Θ. It is indeed nonempty and convex. Also, our g is bilinear in Q and w, and thus is697

convex-concave. Thus, Proposition 2 directly follows from the above result.698

Relaxations We can relax the assumption that h is parameterized by a finite dimensional vector θ.699

For simpler H , the minimax result directly holds with mild assumptions.700

• If H = {h1, h2, ...hn} i.e. H is finite. Then the original minimax theorem by Neumann701

holds for arbitrary functions l.702

• If H = {h1, h1, ...} i.e. H is denumerable. We further assume l is a bounded loss function.703

Then from Theorem 3.1 from [Wald, 1945] to compact and convex W over n (finite)704

datapoints, we can conclude the relation holds.705

Hoever, minimax theorems for more general H require other conditions like the continuity of loss,706

compactness in function space, etc. See [Simons, 1995] and [Raghavan, 1994].707

F Ensemble RAI Games708

F.1 Alternative Definitions: Deterministic Ensembles709

Alternative definitions for deterministic ensembles could be considered. For example, one could710

consider hdet;Q(x) = argminy∈Y Eh∼Qℓ(h(x), y). [Cotter et al., 2019, Wu et al., 2022] designed711

other more sophisticated strategies, but these are largely domain dependent. For reasons that will be712

explained later, we stick with Definition 3 in this work. For regression, a popular de-randomization713

strategy is to compute the expected prediction: hdet;Q(x) = Eh∼Q[h(x)].714

F.2 Proofs715

F.2.1 Proposition 3716

Proof.717

sup
w∈∆n

ÊwI[hdet;Q(x) ̸= y] = sup
i∈[n]

I[yi ̸= argmax
y∈Y

EQ[h(xi) = y]]

= I[ sup
w∈∆n

EwEQI[h(x) ̸= y] ≥ 1/2]

= I[R̂Wn
(hrand;Q) ≥ 1/2]

as required. □718
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F.2.2 Proposition 4719

Proof. Denote yQ(x) = argmaxy∈Y EQ(h(x) = y). Then,720

R̂Wn(hdet;Q) = sup
w∈Wn

Ewℓ(yQ(x), y)

≤ sup
w∈Wn

Ewℓ(yQ(x), y)
PQ(h(x) = yQ(x))

1/γQ

≤ γQ sup
w∈Wn

Ew

∑
y′∈Y

ℓ(y′, y)PQ(h(x) = y′)

= γQ sup
w∈Wn

EwEQ

∑
y′∈Y

ℓ(y′, y)I[h(x) = y′]

= γQ sup
w∈Wn

EwEQℓ(h(x), y)

= γQR̂Wn(hrand;Q),

as required. □721

G Algorithms722

G.1 Convergence Rates723

G.1.1 Gameplay724

We begin with the following lemma adapted from [McMahan, 2017] (Theorem-1)725

Lemma 17 Consider the setting of Algorithm 1, and further assume that ηt ≥ ηt−1 > 0, Reg(w) ≥ 0,726

ηtReg(w) is 1-strongly concave w.r.t. some norm ∥.∥(t). Then for any w∗ ∈Wn and any T > 0, we727

have:728

RegretD,T ≤ ηT−1Reg(w∗) +
1

2

T∑
t=1

∥lt∥2(t−1),∗ (where lti = l(ht(xi), yi))

Consider ηt = η and ∥.∥(t) =
√
η∥.∥1, then729

RegretD,T ≤ ηReg(w∗) +
1

2η

T∑
t=1

∥lt∥2∗ ≤ ηD2
R +

T

2η

Moreover, as H-player plays BR,730

RegretH,T ≤ 0

Using Proposition 15, we achieve ϵ-approximate NE with:731

ϵ = ϵT ≤
RegretH,T +RegretD,T

T
=

ηD2
R

T
+O

(
1

η

)
Using definition in Equation 7 gives us the required result.732

G.1.2 Greedy733

FW Update Note that we are trying to minimize the objective Lη(Q) w.r.t Q by the FW update.734

Using properties of Fenchel conjugates, it is well known that Lη(Q) is 1
η smooth w.r.t. ∥.∥1. Also,735

the diameter of the simplex ∆H w.r.t. ∥.∥1 is ≤ 1. By [Jaggi, 2013] (Lemma 7), we have Cf ≤ 1
η ,736

and thus by [Jaggi, 2013] Theorem 1, we have:737

Lη(Q
T )−min

Q
Lη(Q) ≤ 2

η(T + 2)
= O

(
1

ηT

)
Using the definition of Lη(Q),738

L(QT )−min
Q

L(Q) ≤ ηD2
R +O

(
1

ηT

)
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Gen-AdaBoost Update This update boils down to a standard coordinate descent update on convex739

and 1
η smooth Lη(Q) (w.r.t ∥.∥1). Following along the lines of analysis in [Boyd and Vandenberghe,740

2004] (Section 9.4.3),741

Lη(Q
t) ≤ Lη(Q

t−1)− η

2
∥∇QLη(Q

t−1)∥2∞

Using this decent equation, we can follow standard gradient descent analysis to get:742

Lη(Q
T )−min

Q
Lη(Q) ≤ O

(
1

ηT

)
The rest of the argument will go through as above.743

G.2 Closed Form Updates for different uncertainty sets744

In this section, we derive closed-form updates for Equation 2 for the entropic regularizer (also745

mentioned below). We consider common settings mentioned in Table 1.746

wt ← argmax
w∈Wn

t−1∑
s=1

Ewℓ(h
s(x), y)− ηt−1

∑
w log(w)

• Wn = {P̂data} (Empirical Risk Minimization)

wt ← P̂data

• Wn = ∆n (Worst Case Margin)

wt ← ut

∥ut∥1
where ut

i ← exp

(
−
∑t−1

s=1 l(h
s(xi), yi)

ηt−1

)

• Wn = {w : w ∈ ∆n, w ⪯ 1
αn} (α-CVaR)

wt
i ← min

(
1

αn
, exp

(
−
∑t−1

s=1 l(h
s(xi), yi)

ηt−1
− λ

))
for λ S.T.

∑
i

wt
i = 1

Algorithm 3 describes a projection procedure to find such λ in O(n log n) time.747

Algorithm 3 Projection for α-CVaR set
Input: l, η, α

1: yi ← exp
(
−

∑t−1
s=1 l(hs(xi),yi)

ηt−1

)
2: v ← 1

αn
3: if yi

∥yi∥1
≤ v ∀i then

4: wi ← yi

∥yi∥1

5: return w
6: else
7: y(i) ← sort{yi} S.T. y(i) ≥ y(j) ∀ i ≤ j
8: function CANDIDATE(m)
9: cm ← v

y(m)

10: Sm ←
∑

i v1cmy(i)≥v + cmy(i)1cmy(i)<v

11: return Sm

12: end function
13: Let m∗ ← binary search for the smallest m such that CANDIDATE(m) ≤ 1

14: cm∗ ← 1−
∑

i≤m∗ v∑
i>m∗ y(i)

15: wi ← min(cm∗yi, v)
16: return w
17: end if
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• Wn = {w : D(w||P̂data) ≤ ρn} (DRO) For general f -divergences, there do not exist closed form748

updates for wt. However, they can still be empirically solved using FW-like updates.749

• Wn = {P̂data(G1), P̂data(G2), . . . P̂data(GK)} (Group DRO)

wt ← ut

∥ut∥1
where ut

i ← exp

(
−
∑t−1

s=1

∑
i∈Gk

l(hs(xi), yi)

ηt−1sk

)
for i ∈ Gk, sk = |Gk|

G.3 Proof of Corollary 9750

Proof. Note that Reg is 1-strongly concave w.r.t ∥.∥1 and ∥.∥2. A conservative upper bound for751

D2
R ≤ log(n) for all Wn(⊆ ∆n). Thus, we can thus take appropriate values of η to get:752

L(QT ) ≤ min
Q

L(Q) +O

(√
log(n)

T

)

Thus, we have ϵ ∼ O
(√

log(n)
T

)
from Proposition 15. □753

H Generalization754

H.1 Population Risk755

We first present a proposition which gives an equivalent characterization of the RAI population risk756

Proposition 18 The following are equivalent characterizations of the population RAI risk757

1.

RW (h) = sup
P :P≪Pdata,

dP
dPdata

∈W

EP [ℓ(h(x), y)].

2.

RW (h) = sup
r:Z7→R+,

∫
r(z)dPdata(z)=1,r∈W

EPdata [r(z)ℓh(z)].

Proof. The equivalence between (1) and (2) follows by reparameterizing P in (1) as follows758

dP (z) = r(z)dPdata(z),

for some r(z) ≥ 0 □759

Now suppose the uncertainty set W is as defined in Equation (5). The next proposition uses duality760

to derive an equivalent characterization of the RAI risk in this setting.761

Proposition 19 Suppose the uncertainty set W is as specified in Equation (5). Then for any hypothe-762

sis h, the population RAI risk can be equivalently written as763

RW (h) = inf
λ≥0,τ

EPdataG
∗
λ(ℓh(z)− τ) +

m∑
i=1

λici + τ, (8)

where G∗
λ is the Fenchel conjugate of Gλ(t) =

∑m
i=1 λigi(t).764

Proof. We rely on duality to prove the proposition. First observe that the population RAI risk can be765

rewritten as766

RW (h) = sup
r:Z7→R+,

∫
r(z)dPdata(z)=1,r∈W

EPdata [r(z)ℓh(z)]

(a)
= sup

r:Z7→R+

inf
λ≥0,τ

EPdata [r(z)ℓh(z)] + τ

(
1−

∫
r(z)dPdata(z)

)
+

m∑
i=1

λi

(
ci −

∫
gi(r(z))dPdata(z)

)
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Since the above objective is concave in r and linear in λ, τ , we rely on Lagrangian duality to rewrite767

it as768

RW (h) = inf
λ≥0,τ

sup
r:Z7→R+

L(r, λ, τ),

where L(r, λ, τ) is defined as:769

L(r, λ, τ) = EPdata

[
r(z)(ℓh(z)− τ)−

m∑
i=1

λigi(r(z))

]
+

m∑
i=1

λici + τ.

Recall the interchangeability theorem:770

inf
r∈H

∫
F (r(z), z)p(z)dz =

∫ (
inf
t∈R

F (t, z)

)
p(z)dz,

so long as the spaceH is decomposable. Since in our case we are working with the set L1(Z, P ) =771

{r : Z 7→ R :
∫
r(z)p(z)dz = 1}, which is decomposable, we can apply the interchangeability772

theorem to get:773

sup
r:Z7→R+

EPdata

[
r(z)(ℓh(z)− τ)−

m∑
i=1

λigi(r(z))

]
= EPdata sup

t≥0

[
t(ℓh(z)− τ)−

m∑
i=1

λigi(t)

]
= EPdataG

∗
λ(ℓh(z)− τ),

where Gλ(t) =
∑m

i=1 λigi(t), and G∗
λ is its Fenchel conjugate. so that:774

R(ℓh) = inf
λ≥0,τ

m∑
i=1

λici + τ + EPdataG
∗
λ(ℓh(z)− τ).

□775

We have the following properties of the Fenchel conjugate G∗
λ(t). These follow from the properties776

of Fenchel conjugates described in Rockafellar [1970].777

Lemma 20 Consider the setting of Proposition 19. The Fenchel conjugate G∗
λ is convex, differen-778

tiable and an increasing function that satisfies779

dG∗
λ(x)

dx
≥ 0, ∀x ∈ R.

Proof of Proposition 10 For the sake of clarity, we first state Proposition 10 below.780

Proposition 21 (Bayes optimal classifier) Consider the problem of binary classification where Y =781

{−1,+1}. Suppose ℓ(h(x), y) = ϕ(yh(x)) for some ϕ : R → [0,∞) which is either the 0/1 loss,782

or a convex loss function that is differentiable at 0 with ϕ′(0) < 0. Suppose the uncertainty set W is783

as specified in Equation (5). Moreover, suppose {gi}i=1...m are convex and differentiable functions.784

Then, the vanilla Bayes optimal classifier is also a RAI-Bayes optimal classifier.785

Proof. Following Proposition 19 it is easy to see that the RAI Bayes optimal classifier is the minimizer786

of the following problem787

inf
h

inf
λ≥0,τ

m∑
i=1

λici + τ + EPdataG
∗
λ(ϕ(yh(x))− τ),

where the minimization over h is over the set of all classifiers. For any fixed (λ, τ), we now show that788

the classifier h that minimizes the above optimization problem is a vanilla Bayes optimal classifier.789

First note that the above optimization problem, for a fixed (λ, τ), can be rewritten as790

inf
h

EPdataG
∗
λ(ϕ(yh(x))− τ).

Using the interchangeability theorem, we can further rewrite this as791

EPx
data

[
inf

u∈{−1,+1}
EPdata(·|x) [G

∗
λ(ϕ(uy)− τ)]

∣∣∣x] .
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Here, P x
data is the marginal distribution of Pdata over x, and Pdata(·|x) is the distribution of y condi-792

tioned on x.793

Now suppose ϕ is the 0/1 loss794

ϕ(x) =

{
0, if x > 0

1, otherwise
.

Recall, G∗
λ is an increasing function (see Lemma 20). So G∗

λ(−τ) ≤ G∗
λ(1 − τ). Using this, it is795

easy to see that for any x, the following is a minimizer of infu∈{−1,1} EPdata(·|x) [G
∗
λ(ϕ(uy)− τ)]796

u∗ =

{
1, if Pdata(y = 1|x) ≥ 1

2

−1, otherwise
.

This shows that the vanilla Bayes optimal classifier is a minimizer of the population RAI risk.797

Now suppose ϕ : R → [0,∞) is convex, differentiable at 0 with ϕ′(0) < 0. Moreover, suppose798

h : X → R is a real valued classifier. In this case, the RAI Bayes optimal classifier is a minimizer of799

the following objective800

EPx
data

[
inf
u∈R

EPdata(·|x) [G
∗
λ(ϕ(uy)− τ)]

∣∣∣x] .
Let ι(x) = G∗

λ(ϕ(x)− τ). It is easy to see that ι(x) is convex. This is because ι′(x) = (G∗
λ)

′(ϕ(x)−801

τ)ϕ′(x) is an increasing function; this follows from the fact that G∗
λ is convex with non-negative802

gradients. Moreover, ι′(0) = (G∗
λ)

′(ϕ(0) − τ)ϕ′(0) ≤ 0. Then, Bartlett et al. [2006], Tewari and803

Bartlett [2007] show that for any x, the following u∗ is a minimizer of the inner optimizatin problem:804

u∗ > 0 if Pdata(y = 1|x) ≥ 1
2 , u∗ < 0 otherwise. This shows that vanilla Bayes optimal classifier is805

minimizer of the population RAI risk. □806

H.2 Generalization Guarantees807

H.2.1 Proof of Proposition 12808

Proposition 12 directly follows from Proposition 19.809

H.2.2 Proof of Theorem 13810

We first present a key concentration result we use in the proof.811

Lemma 22 ((Hoeffding bound [Wainwright, 2019]) Suppose that the random variables {Xi}ni=1812

are independent with mean µi, and bounded between [a, b]. Then for any t ≥ 0, we have813

P

(
|

n∑
i=1

Xi − µi| ≥ t

)
≤ 2 exp

(
− 2t2

n(b− a)2

)
.

We now proceed to the proof of the Theorem. Following Proposition 12, we know that the population814

and empirical RAI risk of a classifier h can be written as815

RW (h) = inf
λ≥0,τ

m∑
i=1

λici + τ + EPdataG
∗
λ(ℓh(z)− τ)

R̂Wn
(h) = inf

λ≥0,τ

m∑
i=1

λici + τ + EP̂data
G∗

λ(ℓh(z)− τ)

Our goal here is to bound the following quantity for any given h:816

|RW (h)− R̂Wn
(h)| ≤ sup

(λ,τ)∈E,λ:mini λi≥Λ
¯

∣∣∣EPdataG
∗
λ(ℓh(z)− τ)− EP̂data

G∗
λ(ℓh(z)− τ)

∣∣∣.
The rest of the proof focuses on bounding the RHS of the above equation. The overall idea is to first817

provide a high probability bound of the RHS for any given λ, τ . Next, we take a union bound over all818

feasible (λ, τ)’s by constructing an appropriate ϵ-net.819
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Fixed λ, τ . Observe that G∗
λ(ℓh(z)− τ) is bounded and satisfies820

G∗
λ(−τ) ≤ G∗

λ(ℓh(z)− τ) ≤ G∗
λ(B − τ).

This follows from the fact that G∗
λ is an increasing function (see Proposition 20), and ℓh is bounded821

between 0 and B. From Heoffding bound we know that for any fixed h ∈ H , the following holds822

with probability at least 1− 2e−t823 ∣∣∣EPdataG
∗
λ(ℓh(z)− τ)− EP̂data

G∗
λ(ℓh(z)− τ)

∣∣∣ ≤ G

√
t

n
.

Union bound over λ, τ . Define set E ′ as824

E ′ := {(λ, τ) : λ ≥ 0,min
i

λi ≥ Λ} ∩ E . (9)

Let N(E ′, ϵ, ∥ · ∥2) be the ϵ-net over E ′ in ∥ · ∥2 norm. It is well known that there exists such a set
whose size is upper bounded by [Wainwright, 2019]

|N(E ′, ϵ, ∥ · ∥2)| ≤ O

(
Λ̄ + T

ϵ

)m+1

. For any (λ, τ) ∈ E ′, let (λϵ, τϵ) be an element in N(E ′, ϵ, ∥ · ∥2) that is ϵ-close to (λ, τ). Now825

consider the following826

sup
(λ,τ)∈E′

∣∣∣EPdataG
∗
λ(ℓh(z)− τ)− EP̂data

G∗
λ(ℓh(z)− τ)

∣∣∣
≤ sup

(λ,τ)∈N(E′,ϵ,∥·∥2)

∣∣∣EPdataG
∗
λ(ℓh(z)− τ)− EP̂data

G∗
λ(ℓh(z)− τ)

∣∣∣
+ sup

(λ,τ)∈E′

∣∣∣EPdataG
∗
λ(ℓh(z)− τ)− EPdataG

∗
λϵ
(ℓh(z)− τϵ)

∣∣∣
+ sup

(λ,τ)∈E′

∣∣∣EP̂data
G∗

λ(ℓh(z)− τ)− EP̂data
G∗

λϵ
(ℓh(z)− τϵ)

∣∣∣
Since G∗

λ is L-Lipschitz, the last two terms in the RHS above can be upper bounded by Lϵ. Substitut-827

ing this in the above equation, we get828

sup
(λ,τ)∈E′

∣∣∣EPdataG
∗
λ(ℓh(z)− τ)− EP̂data

G∗
λ(ℓh(z)− τ)

∣∣∣
≤ sup

(λ,τ)∈N(E′,ϵ,∥·∥2)

∣∣∣EPdataG
∗
λ(ℓh(z)− τ)− EP̂data

G∗
λ(ℓh(z)− τ)

∣∣∣+ 2Lϵ

(a)

≤ G

√
t

n
+ 2Lϵ,

where (a) follows from Equation (9), and holds with probability at least 1 −
(

Λ̄+T
ϵ

)m+1

e−t.829

Choosing ϵ = G
L

√
t
n , we get the desired result.830

H.3 Proof of Corollary 14831

The proof follows from a standard covering number argument. For any h ∈ H , let hϵ be the point in832

the ϵ-net that is closest to h. Then we have833

sup
h∈H
|RW (h)− R̂Wn

(h)| ≤ sup
h∈N(H,ϵn,∥·∥L∞(Z))

|RW (h)− R̂Wn
(h)|

+ sup
h∈H
|RW (h)−RW (hϵ)|+ sup

h∈H
|R̂Wn

(h)− R̂Wn
(hϵ)|

Observe that the last two terms above are bounded by ϵn. Also observe that the first term in the RHS834

can be upper bounded by 10n−1/2G(
√

t+m log(nL)) with probability at least 1− 2N(H, ϵn, ∥ ·835

∥L∞(Z))e
−t. Combining these two and substituting the value of ϵn gives us the required result.836

25



I Algorithms: Further Discussion837

I.1 Equivalence Conditions for RAI Algorithms (1 and 2)838

Proposition 23 Assume that we set αt =
1
t and perform coordinate descent update in Algorithm 2839

(FW) i.e. Gt = argminh∈H

〈
h,∇QLη(Q

t−1)
〉
, then the update is equivalent to the update given by840

Algorithm 1 with ηt = ηt.841

Proof. From Equation 3, and using the fact that Lη(Q) can be written as a fenchel conjugate, we842

know that843

∇QLη(Q
t−1) = argmax

w∈Wn

Eh∼Qt−1Ewℓ(h(x), y) + ηReg(w)

= argmax
w∈Wn

t−1∑
s=1

Ewℓ(h
s(x), y) + ηtReg(w)

(
as αt =

1

t

)
This matches Equation 2 with ηt−1 = ηt. Moreover,844

Gt = argmin
h∈H

Eh∈HEwt l(h(x), y) where wt = ∇QLη(Q
t−1)

This corresponds to the update for ht in Algorithm 1. Thus, we have our equivalence. □845

I.2 Weak Learning Conditions846

For the well-known scenario of binary classification and zero-one loss, we recover the quasi-AdaBoost847

weak learning condition:848

Proposition 24 Consider the scenario of binary classification and l as the zero-one loss. If the849

H-player only plays an approximate best response strategy i.e. ht satisfies Ewtℓ(ht(x), y) ≤ 1/2− γ850

for some γ > 0, then R̂Wn(hdet:QT ) = 0 for T > T0 for some large enough T0.851

Proof. Since the D-player uses regret optimal strategy, we have that:852

1

T

T∑
t=1

Ewtℓ(ht(x), y) ≥ max
w∈Wn

1

T

T∑
t=1

Ewℓ(h
t(x), y)− ϵT ,

while from the approximate-BR condition we have that:853

1

T

T∑
t=1

Ewtℓ(ht(x), y) ≤ 1/2− γ,

so that we have:854

max
w∈Wn

1

T

T∑
t=1

Ewℓ(h
t(x), y) ≤ 1/2− γ + ϵT ,

so that for T > T0 large enough so that ϵT < γ/2, we have that:855

max
w∈Wn

1

T

T∑
t=1

Ewℓ(h
t(x), y) < 1/2− γ/2.

As QT assigns mass 1/T to each of {ht}Tt=1, we have:856

R̂Wn(hrand;QT ) = max
w∈Wn

EQTEwℓ(h
t(x), y) < 1/2− γ/2

=⇒ R̂Wn(hdet:QT ) = 0 (from Proposition 3)

Hence, we see that hdet;QT incurs zero error. □857

For the general setting, we have a slightly stronger weak learning condition, which follows from the858

analysis of Frank-Wolfe update [Freund and Grigas, 2014, Jaggi, 2013].859
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Proposition 25 Consider Algorithm 2 with the FW update and Reg(.) as a 1-strongly concave860

regularize w.r.t. ∥.∥1. If Gt satisfies Gt ≤ minQ
〈
Q,∇QLη(Q

t−1)
〉
+ δt, where {δk} is the861

sequence of approximation errors with δt ≥ 0, then:862

1. If δt ≤ ϵ
η(t+2) i.e. decaying errors, then Lη(Q

T ) ≤ minQ Lη(Q) + 2(1+ϵ)
η(T+2)863

2. If δt ≤ ϵ
η i.e. constant errors, then Lη(Q

T ) ≤ minQ Lη(Q) + 2
η(T+2) +

ϵ
η864

Proof. Note that we are trying to minimize the objective Lη(Q) w.r.t Q by the FW update. Using865

properties of Fenchel conjugates, it is well known that Lη(Q) is 1
η smooth w.r.t. ∥.∥1. Also, the866

diameter of the simplex ∆H w.r.t. ∥.∥1 is ≤ 1.867

1. By [Jaggi, 2013] (Lemma 7, Theorem 1), we have Cf ≤ 1
η , and thus, we have:868

Lη(Q
T )−min

Q
Lη(Q) ≤ 2(1 + ϵ)

η(T + 2)

2. By [Freund and Grigas, 2014] (Theorem 5.1), in case of approximation errors, the FW/optimality869

gap converges as before along with a convex combination of errors at each time step i.e. if we870

are able to solve the linear optimization problem within constant error ϵ
η , then these errors do not871

accumulate. Moreover, the convex combination can be bound by the maximum error possible and872

we get,873

Lη(Q
T )−min

Q
Lη(Q) ≤ 2

η(T + 2)
+

ϵ

η

□874

J Experiments875

RAI games constitute an optimization paradigm that goes beyond traditional approaches such as876

distributionally robust optimization, fairness, and worst-case performance. We have seen that for877

specific uncertainty sets W , RAI Games optimize over well-established robust optimization objectives.878

As such, the purpose of our experiments is to demonstrate the practicality and generality of our879

proposed strategies, rather than establishing state-of-the-art over baselines. Given a large number880

of possible W , we do not attempt an exhaustive empirical analysis. Instead, we underscore the881

plug-and-play nature of RAI Games.882

J.1 Setup883

Subpopulation Shift A prevalent scenario in machine learning involves subpopulation shift, neces-884

sitating a model that performs effectively on the data distribution of each subpopulation (or domain).885

We explore the following variations of this setting:886

• Domain Oblivious (DO). Recent work [Hashimoto et al., 2018], [Lahoti et al., 2020], [Zhai887

et al., 2021a] studies the domain-oblivious setting, where the training algorithm lacks knowledge888

of the domain definition. In this case, approaches like α-CVaR and χ2-DRO aim to maximize889

performance over a general notion of the worst-off subpopulation.890

• Domain Aware (DA). Several prior works [Sagawa et al., 2019] have investigated the domain-aware891

setting, in which all domain definitions and memberships are known during training.892

• Partially Domain-Aware (PDA). More realistically, in real-world applications, there usually893

exist multiple domain definitions. Moreover, some of these domain definitions may be known894

during training, while others remain unknown. The model must then perform well on instances895

from all domains, regardless of whether their definition is known. This setting is challenging896

as it necessitates the model to learn both domain-invariant and domain-specific features and to897

generalize well to new instances from unknown domains.898

J.2 Further Details for Section 7899

Base Learners We use linear classifiers, WRN-28-1, and WRN-28-5 [Zagoruyko and Komodakis,900

2016] as base classifiers for COMPAS, CIFAR-10 and CIFAR-100 respectively. To get a sense of901
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performance improvements, we also benchmark performance with larger models, namely a three-902

hidden-layer neural network for COMPAS and WRN-34-10 for CIFAR-10/100.903

Proposed Methods This paper introduces two categories of algorithms. We elect not to present904

results for Algorithm 1, which we notice has similar performance to Algorithm 2. Conversely,905

we provide in-depth experimental analyses for both updates of Algorithm 2, which warrant some906

special attention due to due to their relation to AdaBoost. In this section, we refer to the FW and907

Gen-AdaBoost updates as RAI-FW and RAI-GA, respectively. Our implemented versions incorporate908

a few alterations: 1. We track the un-regularized objective value from Equation 1 for the validation set.909

If it increases at any round t, we increase the regularization factor η by a fixed multiple (specifically,910

2). We notice that it leads to better generalization performance over the test set. 2. The same911

un-regularized objective w.r.t normalized Qt is also used to perform a line search for the step size912

α. For the FW update, our search space is a ball around 1
t at round t, while for the GA update, we913

search within the range (0, 1).914

Training. We use SGD with momentum = 0.9 for optimization. We first warm up the model915

with some predefined epochs of ERM (3 for COMPAS and 20 for CIFAR-10/100), followed by a916

maximum of T = 5 base models trained from the warm-up model with sample weights provided by917

our algorithms. Each base model is trained for 500 iterations on COMPAS and 2000 iterations on918

CIFAR-10/100. Each experiment is run three times with different random seeds. For evaluation, we919

report the averaged expected and worst-case test loss from Equation 1.920

Datasets We conduct our experiments on three real-world datasets:921

• COMPAS [Angwin et al., 2016] pertains to recidivism prediction, with the target being whether an922

individual will re-offend within two years. This dataset is extensively used in fairness research. We923

randomly sample 70% of the instances for the training data (with a fixed random seed), and the924

remainder is used for validation/testing.925

• CIFAR-10 and CIFAR-100 are widely used image datasets. For CIFAR-10, we consider two926

settings: the original set and an imbalanced split [Jin et al., 2021, Qi et al., 2021]. In the imbalanced927

split, we make worst-case performance more challenging by randomly sampling each category928

at different ratios. To be precise, we sample the ith class with a sampling ratio ρi where ρ =929

{0.804, 0.543, 0.997, 0.593, 0.390, 0.285, 0.959, 0.806, 0.967, 0.660}. For these datasets, we use930

the standard training and testing splits, reserving 10% of the training samples as validation data.931

Hyperparameters For COMPAS, we warm up for 3 epochs and then train every base classifier for932

500 iterations. For CIFAR-10 and CIFAR-100, we warm up the models for 20 epochs and train base933

classifiers for 2000 iterations. The mini-batch size is set to 128. It should be noted that the primary934

aim of our experiments is not hyperparameter tuning. The experiments in this paper are designed to935

demonstrate use cases and compare different algorithms. Hence, while we maintain consistency of936

hyperparameters across all experiments, we do not extensively tune them for optimal performance.937

J.3 Interesting Observation: Boosting Robust Learners938

Table 4: Mean and worst-case expected loss for RAI-FW + robust optimization algorithms.

Algorithm COMPAS CIFAR-10 (Imbalanced) CIFAR10 CIFAR100

Average Worst Group Average Worst Class Average Worst Class Average Worst Class

SGD (χ2) 32.0 33.7 13.3 31.7 11.3 24.7 27.4 65.9
RAI-FW + SGD (χ2) 30.9 32.2 13.6 31.0 11.2 23.8 27.6 63.8

Online GDRO 31.7 32.2 13.1 26.6 11.2 21.7 27.3 57.0
RAI-FW + Online GDRO 31.6 33.3 12.9 24.4 11.4 19.5 27.8 51.2

Boosting Robust Base Learners We conclude our results with one interesting observation. Until939

now, we have been comparing our ensembles with deterministic models. As such, we acknowledge940

that given the inherent differences between the two, making a fair comparison is challenging. However,941

we find that our setup can "boost" not only ERM but also other robust base learners i.e. if we use942

these robust optimization methods to find our base learners under analogous RAI constraints, we are943

28



Algorithm Synthetic Datset-I

Average Loss Worst Class Loss

ERM 27.3 82.6
AdaBoost 26.5 27.7
α-LPBoost 23.5 23.7
RAI-GA 23.9 24.4
RAI-FW 23.9 24.2
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Figure 1: Results for Dataset-I. Left: Average and worst class losses for baselines and proposed RAI updates.
Right: α-CVaR objective values vs number of rounds for train and test splits

able to further enhance the robust performance of these algorithms. The results are shown in Table 4.944

We hypothesize that individually robust base learners are able to help the ensemble generalize well,945

allowing our approach to further optimize through ensembles.946

J.4 Synthetic Datasets947

In this section, we use synthetic datasets to illustrate how our RAI algorithms converge, and how948

different constraints on W translate into performance across various responsible metrics. We use the949

following distributions to construct the datasets, and use class labels as the group labels.950

• Dataset-I: P (X|Y = 0) = N ((0, 0), I), P (X|Y = 1) = 1
3N ((−3, 1), I)) + 1

3N ((3, 0), I)) +951
1
3N ((0,−3), I)), P (Y = 0) = 0.7, P (Y = 1) = 0.3.952

• Dataset-II: P (X|Y = 0) = 5
12N ((−2,−2), 0.5I)+ 2

12N ((−2,−2), 0.5I)+ 5
12N ((2, 2), 0.5I),953

P (X|Y = 1) = 2
5N ((−3, 0), 0.3I)) + 3

5N ((3, 0), 0.3I)), P (Y = 0) = 0.7, P (Y = 1) = 0.3954

We sample 1000 points each for both training and testing from both distributions. Note that these955

datasets deliberately exhibit: 1. Class imbalance (particularly in Dataset-I) 2. Multiple minority956

sub-populations (within and between classes) 3. Varying noise levels in the sub-populations (predom-957

inantly in Dataset-II). Such characteristics are frequently encountered in real-world scenarios and958

demand responsible classifiers.959

Models For base learners, we use linear classifiers for Dataset-I and neural network classifiers with960

a single hidden layer of size 4 and ReLU activations for Dataset-II. We find that base learners can be961

models with varying complexity.962

Hyperparameters Due to the limited size of the datasets, we forgo the warm-up stage. At every963

round, we run 1000 iterations with a mini-batch size of 32. We run α-LPBoost with the default value964

η = 1. For α-CVaR experiments, we take α = 0.7 across all experiments. For lower values of α,965

we observe similar results and comparisons, albeit with a substantial reduction in average metrics.966

Consequently, we opt for conservative values to standardize average performance across all models967

and subsequently compare worst-case performance in responsible settings.968

J.4.1 Results and Discussion969

• Domain Oblivious (DO) To begin, we run ERM, AdaBoost, α-LPBoost, and RAI games on970

Dataset-I. For RAI-GA and RAI-FW games, we use α-CVaR uncertainty set as W . Given the class971

imbalance, Y = 0 and Y = 1 represent good candidates for subpopulations of interest. The results972

are reported in Figure 1. We immediately observe the following:973

• Both proposed methods RAI-FW and RAI-GA effectively decrease the objective value and achieve974

lower worst-class classification loss, as compared to both ERM and AdaBoost.975

• They closely follow the α−LPBoost iterates. Intuitively, our quasi-boosting updates resemble976

α−LPBoost for the CVaR objective, and that is reflected in similar objective values.977

• Domain Aware (DA) For this setting, we run ERM, AdaBoost, Online GDRO, RAI-GA, and978

RAI-FW on Dataset-II. We use Group DRO over the five gaussian groups as the uncertainty set W .979
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Although Dataset-II was selected due to the presence of more pronounced subpopulation behavior,980

we get similar results for Dataset-I as well. The results are reported in Figure 2 and Table 5.981
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Figure 2: Results for Dataset-II. Left: Visualization of classifiers learned. For ensembles, we derandomized
them using Definition 3. RAI methods (and Online GDRO) effectively prioritize minority and noisy instances
(orange). Right: Testing Group DRO objective values vs the number of rounds (train values are similar and
omitted to improve figure clarity). Quantitative results are reported in Table 5

• Partially Domain-Aware (PDA) For this setting, we run our algorithms for Dataset-II. Similar to982

gaussian memberships, the class labels Y provide another secondary definition of implicit grouping983

in the dataset. We report the results in Table 5. A critical observation from the DA setting results984

is that Online GDRO, and RAI (Group) all exhibit inferior performance according to the secondary985

class definition i.e. although they optimize for the known groups (gaussian), they fail to optimize for986

unknown groups (class labels). Thus, a natural solution is to run RAI updates over the intersection987

of χ2 (for unknown groups) and Group (for known groups) constraints. As seen in the Table, we988

see that both RAI-GA and RAI-FW achieve a middle ground by significantly improving worst-case989

performance for both known and unknown groups.990

Algorithm Synthetic Datset-II

Group 1 Group 2 Group 3 Group 4 Group 5 Worst Group Average Worst Class

ERM 0.0 3.1 15.2 22.9 1.6 22.9 5.5 5.7
RAI-GA (χ2) 3.1 5.6 10.1 13.3 2.5 13.3 5.3 5.9
RAI-FW (χ2) 2.1 4.7 8.9 13.4 2.9 13.4 4.9 5.1

Online GDRO 5.1 3.7 5.8 10.2 5.6 10.2 6.1 6.2
RAI-GA (Group) 5.0 4.2 7.4 10.3 3.2 10.3 5.4 5.7
RAI-FW (Group) 10.0 4.7 6.5 9.5 5.5 10.0 6.9 7.5

RAI-GA (χ2 ∩ Group) 3.4 4.0 7.3 10.3 3.4 10.3 5.1 5.5
RAI-FW (χ2 ∩ Group) 4.7 4.9 9.2 10.6 2.6 10.6 5.2 6.1

Table 5: Average, worst group, and worst class losses for Synthetic Dataset-II. All the algorithms listed after
Online GDRO have access to group information.
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