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A LAW OF TOTAL VARIANCE

The law of total variance for two continuous random variables X and Y can be derived as follows:
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B EXPERIMENTAL SETUP

This section contains additional information regarding the choices of epistemic uncertainty estima-
tion in the functions used by MuZero, modifications to the reward scheme of the environments used
in the evaluation, and specific hyper parameter choices and tuning.

B.1 OP2E WITH OTHER MCTS SEARCH HEURISTICS

The UCT search heuristic is not the heuristic used by MuZero. Instead, MuZero uses a variant called
probabilistic upper confidence tree (PUCT) bound (see MuZero’s appendices at (Schrittwieser et al.,
2020)):

ak = argmaxa∈A q(ŝk, a) + π(ŝk, a)λŝk,a, (17)

where λŝk,a =

√∑
a′ N(ŝk,a′)
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[
C1 + log

(N(ŝk,a
′)+C2+1
C2

)]
and where π(ŝk, a) is the probability of

taking action a at node ŝk according to the policy network π. A key difference between the two
heuristics is that PUCT takes into account some prior knowledge over the outcomes of the actions
in terms of π(ŝk, a), while UCT does not involve a prior policy. In addition, since the publication
of MuZero other search criteria have been proposed, such as the precise solution to the regularized
policy optimization problem (Grill et al., 2020) and a variation of this approach by (Danihelka et al.,
2021).

To incorporate OP2E into PUCT, in our experiments we have modified PUCT similarly to the pro-
posed modification to UCT, by adding the environmental uncertainty in the value prediction as an
additional term, in the form of the average standard deviation:

ak−1 = argmaxa∈A q(ŝk−1, a) + π(ŝk−1, a)λŝk−1,a + Cσ

√
σ2
ν

N(ŝk−1,a)
. (18)

Incorporating OP2E into the criteria used by the more recent approaches can be done by treating

the averaged standard deviation term Cσ

√
σ2
ν

N(ŝk−1,a)
as directly part of the Q-value and replacing

every estimate of q(ŝk−1, a) with q(ŝk−1, a)+Cσ

√
σ2
ν

N(ŝk−1,a)
. Deciding whether these modification

should be extended to the policy targets generated based on these estimates can follow the reasoning
of max policy targets from section 3.3.

B.2 ESTIMATING EPISTEMIC VALUE AND REWARD UNCERTAINTY WITH STATE VISITATION
COUNTING

Counting of state-action pairs’ visitations can naturally be used as an epistemic uncertainty estimate.
We identify three challenges to incorporating this epistemic uncertainty estimator into MuZero: 1)
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MuZero is planning with abstracted states, while the counter is designed to work against discrete
real states of the system. 2) Our method requires (at least) two independent estimates for the uncer-
tainty: one in reward, and one in value, while state visitation counting provides a single source for
uncertainty estimation. 3) Estimating uncertainty in continuous state-space environments, such as
Mountain Car. In this section, we will describe the approaches used to overcome each one of those
challenges.

B.2.1 ESTIMATING COUNTING UNCERTAINTY IN PLANNING

In order to estimate the uncertainty associated with real states during planning, we allow MuZero
access to a real model of the environment. This of course violates the assumption that MuZero is able
to learn entirely from interactions with the environment without access to any prior knowledge. This
is only introduced in order to evaluate the soundness of our method, and the real model is only used
to estimate the uncertainty with planned actions. The second uncertainty estimation method we use,
ensembles, does not violate any such assumptions. The epistemic uncertainty in reward-prediction
is estimated as follows:

urk = β
1

nsk + ϵ

Where nsk denotes the count of visitations to real state sk, the state associated with action trajectory
a0:k and observation o in a deterministic environment. β is some constant used to scale the uncer-
tainty, and ϵ is a constant used to guarantee numerical stability when nsk = 0. During the MCTS
planning phase, in each expansion step, the agent uses the real model to predict the transition asso-
ciated with the chosen action from the chosen state, and uses this prediction to estimate the reward
uncertainty.

B.2.2 CREATING SEPARATE ESTIMATES FOR REWARD UNCERTAINTY AND VALUE
UNCERTAINTY

In order to use state visitation counting as an independent uncertainty estimate for both the value
of a leaf planning-tree-node k as well as the reward predicted for a transition k, we employ two
ideas: 1) we assume that the reward uncertainty of future transitions urk+i

,∀i > 0, can be crudely
estimated as equal the local reward uncertainty urk without completely debilitating the value un-
certainty estimation’s reliability. 2) We utilize a similar approach to MC simulations to arrive at an
approximation of the value uncertainty uvk that is expected to be better than that provided by 1).

We combine both ideas to arrive at a final computation for the value-uncertainty estimate for leaf-
node k. First, the agent plans from real state sk forward, using the real model, with some action-
selection policy πσ one trajectory h steps into the future. At each step, the agent evaluates the
uncertainty of each transition with the state-counter. Second, upon arriving at step k + h, the agent
uses the geometric-series formula to approximate the uncertainty of following the same policy to
infinity, with the approximation that all uncertainties from state sk+h into the future, following
policy πσ , are constant and equal urk+h

:

uvk ≈
h−1∑
i=0

γ2iurk+i
+ γ2huvk+h

≈
h−1∑
i=0

γ2iurk+i
+

∞∑
i=h

γ2iurk+h
=

h−1∑
i=0

γ2iurk+i
+

γ2h

1− γ2
urk+h

The first step approximates uvk as the discounted sum of reward-uncertainties along the trajectory
ak:k+h−1, and then with an as yet unknown discounted end-of-trajectory value-uncertainty estimate
uvk+h

. The second step approximates the end-of-trajectory value-uncertainty estimate uvk+h
as the

sum of a geometric series with the constant reward uncertainty attained at the end of the trajectory,
urk+h

. The policy πσ we chose to follow is ”repeat action ak−1”. For example, if the action leading
to planning node k was ”accelerate to the right”, πσ chooses ”accelerate to the right” for all actions
along the trajectory ak:k+h. This enables uvk to propagate information from future decisions that
(may) be taken by the algorithm, which should provide rather-independent uncertainty estimation
from the local reward uncertainty estimates urk .
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B.2.3 EXTENDING STATE- VISITATIONS COUNTING TO CONTINUOUS STATE-SPACE
ENVIRONMENTS

The state space of the Mountain Car environment is continuous. In order to employ visitations-
counting in a continuous position-velocity state-space environment, we use discretization of the
state-space to a 50 by 50 grid of possible position-velocity combinations, which is made possible
because the ranges of both the velocity as well as the positions are finite.

B.3 ESTIMATING EPISTEMIC VALUE AND REWARD UNCERTAINTY WITH AN ENSEMBLE

Estimating the same quantities with the ensemble is done in a much more straight forward manner.
The variance in the predictions of the different ensemble members is computed, and is used as the
direct measure of the uncertainty in each function - reward and value. MuZero predicts the rewards
and values using a categorical representation rather than a simple regression to scalar, however.
The categorical representation can represent numbers in the range (−support, support), for some
hyperparameter support that specifies the size of the output layer of the network, which is support×
2 + 1. The vector-output of the network is passed through a SoftMax function. The weights of
the categorical distribution are multiplied by the values represented by the (−support, support).
Finally, the entries are summed to produce the final prediction. This architecture introduces an
additional challenge to the variance computation - rather than computing the variance over a set of
scalars, now one is presented with a set of distributions over which to compute the variance.

As an additional effect of this architecture, we have observed that in under-trained areas of the input
space, the networks have tendency to converge to outputs close to 0. We explain this with the claim
that for inputs that for the network are arbitrary, the network is likely to produce outputs that are ar-
bitrary. Under the assumption that each entry in the soft-max output vector is somewhat independent
from any other for arbitrary inputs, we expect arbitrary outputs for a categorical representation to, on
average, not be concentrated in one extreme side of the representation. Further, they are likely to be
about as concentrated on one ”side” of the vector as on the other, which will reduce the total abso-
lute value of the scalar represented by the vector, pushing it closer to 0. This suspected phenomenon
has two noteworthy effects: 1) the variance in the scalar-representation of the ensemble prediction
reduces to zero in under-trained areas of the input space, which is exactly adverse to the behavior
we require. 2) This results in an implicit, if unreliable, optimistic or pessimistic initialization of
rewards and value predictions (depending on the reward scheme of the environment). Specifically,
in environments where the true values are all negative and represented by the extreme state of the
soft max vector −support, this may induce an inherent optimistic-initialization effect to the agent’s
value and reward estimates, implicitly encouraging the agent to explore the unknown, because un-
known state are associated with value and reward predictions that are more likely to be close to zero.
This effect is expected to be even stronger when an ensemble is used, because the averaging effect
goes stronger with the size of the ensemble.

In order to mitigate these unintended effects, we have taken two steps. First, we have modified the
reward schemes of the environments we have tested against to only produce positive rewards, and
only in the goal state, to disable the effect of any unintended optimistic initialization, which may
conflict with the method of this work and give the vanilla version an unintended advantage. Second,
rather than compute the straight-forward variance in an ensemble as the variance over the translated-
to-scalar predictions, we compute the variance as the variance between the entries of the different
categorical representation-entries, entry by entry, and sum them as the final variance measure:

V[y] ≈
2×support+1∑

i=0

V[yi]

for y ∈ [0, 1]2support+1 denoting the categorical-vector output of the NN. An additional variance
computation that was considered but had not shown advantage in our preliminary experiments was
computing the average categorical distribution of the ensemble, and then taking the average Jensen-
Shannon distance (Nielsen, 2019) between each ensemble-member’s categorical distribution, and
the mean categorical distribution. While both approaches cannot be expected to be in the correct
scale of the real variance of the scalar reward or value predictions, our experiments show that the
entry-by-entry variance, at least, is sufficient to achieve both directed as well as deep exploration
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(figure 1). In addition, the tuning of the Cσ parameter can alleviate errors in the scale of the variance
with respect to the actual rewards and values.

B.4 REWARD SCHEMES

The standard reward scheme of the Mountain Car environment produces a reward of −1 at each
time step. The only escape available to the agent is the goal state, which is terminal. The optimal
policy induced by this reward scheme is ”arrive at the goal in the smallest number of timesteps
possible”. As mentioned in section B.3, reward schemes that induce negative values are likely to
cause unexpected and averse effects for the purpose of evaluating the modifications to the agent. For
this reason, we use an additional non-Markovian reward scheme.

In the non-Markovian reward scheme, the agent receives a reward of 0 at each transition accept
the transitions into the goal, for which it receives a non-constant reward equal rgoal = Ttimeout −
Telapsed. Ttimeout denotes the maximum number of timesteps the environment allows for, before
sending a timeout signal and terminating the agent. Telapsed is the number of timesteps elapsed in the
environment, up until the agent transitioned into the terminal goal state. While this non-Markovian
reward induces a non-Markovian environment, the optimal policy remains the same, and so does the
learning process of the agent.

In the final experiments conducted, the effects of the original −1s reward scheme of Mountain
Car that were observed in earlier experiments were not observed, and thus we present experiments
against the original reward scheme for the main experiments. The ablations were experimented
against the non-Markovian reward scheme, to reduce any additional influencing factors on the abla-
tions.

B.5 HYPERPARAMETER OPTIMIZATION

The purpose of the main evaluation presented in this work is to illustrate the effect of planning
to explore compared to the vanilla version of the algorithm. Further, as the the two versions of
the algorithm are not too different from each other, we expect that the majority of hyperparamer
optimization will effect all versions similarly. For this reason, no dedicated tuning of hyperparamers
was conducted as part of the experiments conducted in this work. The hyperparameters used were
chosen based on existing implementations for other environments in the original code base (Duvaud,
2021). The network architecture used for mountaincar was based on another implementation of
MuZero (de Vries et al., 2021) that was evaluated against the Mountain Car environment.

Two hyperparameters are somewhat exempt from this statement, however. The exploration coef-
ficient cσ introduced with our proposed methodology for planning for exploration was tuned for
each task and for each variant. The temperature parameter T was not tuned explicitly, but a differ-
ent temperature parameter was used between the different variants. Motivation and description of
the reasoning behind the optimization process and the process itself are provided in the following
sections.

B.5.1 TEMPERATURES

The temperature parameter T is used by MuZero for action sampling in the environment as follows:

at ∼ p(·), p(ai) =
N

1
T (n0, ai)∑

a′∈AN
1
T (n0, a′)

(19)

p(ai) denotes the probability of sampling action ai according to the temperature and the visitation
counts. When the temperature T → 0, the probability distribution collapses to greedy action se-
lection according the the maximum number of visitations. When the temperature T → ∞, the
distribution becomes uniform. The temperature induces exploration in the environment through ran-
dom action selection weighted towards ”better” actions from an exploitatory perspective, according
to the estimates of the tree. As the modifications proposed in this work are meant to provide much
more informed exploration, the temperatures used were lower than the original configuration used by
other implementations. The original range was 1 → 0.25, and the modified range was 0.25 → 0.1.
In the experiments, vanilla MuZero was evaluated both with the lower temperatures used by the
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planning with uncertainty variants (to not introduce any unexpected advantage from the lower tem-
peratures), as well as with higher temperatures pre-configured for other environments in the code
base we built upon, to give MuZero a chance with the weighted random action selection used by
MuZero for exploration. There was no significant difference between the performance of the dif-
ferent temperatures with vanilla MuZero. The experiments presented are with higher temperatures.
Exact hyperparameters are specified in appendix C.3.

B.5.2 TUNING THE EXPLORATION COEFFICIENT Cσ

The exploration coefficient Cσ (see section 3.2) was tuned independently for each uncertainty mech-
anism used, and again per environment. The tuning aimed to achieve preference by the UCB of un-
visited states over everything else, and the goal-reward over anything except un-visited states. The
tuning was stopped upon observation that deep exploration was achieved successfully in most seeds.
Once tuning was stopped, the experiments were initiated for the chosen number of seeds (10 for
the main experiments and 5 for the ablations). The range of Cσ investigated for the state-visitation-
counting method was between 0.1 and 100 and was done using rough and then fine grid-search.
The range of Cσ investigated for the ensemble-variance method was between 101 and 108 and was
search with a rough and then fine grid search.

C IMPLEMENTATION

The implementation used to evaluate the agent is accessible in {commented for review}. This im-
plementation was built on the implementation by (Duvaud, 2021), which in turn is built on the
official psuedocode released in the original MuZero paper (Schrittwieser et al., 2020). The imple-
mentation of the ensemble architecture was based on (Hansen, 2019), which is an implementation
of the bootstrapped-DQN with randomize prior networks proposed in (Osband et al., 2018). In
the following sections, we specify first the details of the network architecture used, and second the
hyperparameters used.

C.1 NETWORK ARCHITECTURE

Two network architectures were used in this work to evaluate the planning for exploration method-
ology. These architecture are divided between agents that used ensemble-variance as an uncertainty
mechanism, and the agents that didn’t. Both architectures use blocks of feed-forward networks for
every estimator used by the agent: 1) the representation function g(o). 2) the transition dynamics
f(s, a). 3) the reward function r(s). 4) the value function v(s) and 5) the policy function π(s).
Representation function block This feed-forward network consisted of an input layer of size 1 (the
dimensionality of the observation space), a hidden layer of size 16, and an output layer of size 4.
Transition dynamics function block This feed-forward network consists of an input layer of size
7 (state-abstraction-encoding size of 4, and action space of 3), two hidden layers of size 16, and an
output layer of size 4.
Reward & value function blocks These two feed-forward blocks have identical architecture,
consisting of an input layer of size 4, two hidden layer of size 16 and an output layer of size
support · 2 + 1, for a categorical representation of real numbers, as discussed in section B.3. The
support size used was 15, for a output-layer size of 31.
Policy function block This feed forward block used an input layer of size 4, two hidden layers of
size 16, and an output layer of size 3, the size of the action space.
Ensemble architecture The architecture of networks used by the ensemble-using agents formu-
lated the relevant blocks (reward and value blocks) as ensembles rather than individual blocks. This
translates to having 5 (the ensemble size used) independent blocks of reward, and 5 of value. The
prediction from the block is taken as the average of the individual blocks’ predictions.

C.2 HYPERPARAMETERS CONFIGURATION

We divide the hyperparameters into 3 distinct classes: 1) planning for exploration target-adaptation
parameters, such as whether to use n-step or 0-step targets. These parameters are described in the
experimental setup, section B. 2) Network-architecture details. These parameters are described in
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a dedicated appendix, C.1. 3) Additional hyperparameters, such as number of training steps, batch
size, learning steps decay, etc. These hyperparameters are detailed in this section, in table 1.

Slide Slide, abl. Mountain Car Mountain Car, abl. Comment
Num. of stacked obs. 1 1 1 1 -
Discount parameter γ 0.95 0.95 0.997 0.997 -
Planning nodes budget 30 30 200 200 1

Root dirichlet α 0.25 0.25 0.25 0.25 -
Root exploration fraction 0.25 0.25 0.25 0.25 -

UCB’s pb-c-base 19652 19652 19652 19652 2
UCB’s pb-c-init 1.25 1.25 1.25 1.25 3
Training steps 70000 45000 120000 100000 4Traning ratio 2.25 2.25 1.75 1.75

Batch size 128 128 128 128 -
Value-loss weight 1 1 1 1 5
Training hardware distributed CPUs distributed CPUs distributed CPUs distributed CPUs -

Learning rate λ 0.02 0.02 0.02 0.02
6Rate of λ decay 0.9 0.9 0.9 0.9

Decay steps csteps 500 500 2000 2000
Replay buffer size 500 500 1000 1000 -
Unroll steps in loss 10 10 10 10 -

n-step target’s n 50 50 50 50 -
Prioritized replay 0.5 0.5 0.5 0.5 7

Reanalyze True True True True 8
Ensemble size 5 - 5 - -

Table 1: Hyperparemeters used in the results presented in section 4

We provide a list of comments for additional details regarding some of the hyper-parameters:

1. The number of nodes in each MCTS planning tree. Preliminary results in Mountain Car
with planning budget of 50, showed the same behavior as in the results presented in section
4 but with lower stability.

2. A UCT parameter used by MuZero’s MCTS variant. For more details, see (Schrittwieser
et al., 2020).

3. A UCT parameter used by MuZero’s MCTS variant. For more details, see (Schrittwieser
et al., 2020).

4. The implementation maintains a ratio of Training ratio between the training steps and the
environmental steps. A ratio of x represents x training steps for each environment steps.
Additional results attained but not presented in the work experimented with up to 300000
steps. The behavior observed was the same as the one showed in the results presented. Ob-
serving that the large number of training steps does not appear to be necessary to demon-
strate the capacity of our method, and due to compute and time resource limitations, the
experiments with the final hyperparameters, presented in section 4, were conducted with a
smaller number of timesteps.

5. MuZero enables scaling of the different losses in the loss computation independently.

6. The learning rate decay is computed as follows: λρn/csteps , for n the current training step
count.

7. The sampling-priorities of trajectories in the replay buffer are computed as the absolute
value of the difference between the value and the value target, to the power of this hyper-
parameter.

8. The rudimentary implementation of MuZero-Reanlyze used in this implementation re-
places old value estimates from planning trees with new value estimates from the value
function directly, rather than from newly computed planning trees.

C.3 TEMPERATURES

Two ranges of temperatures were used in each environment. The regular temperatures were used to
evaluate the vanilla agent, while the low temperatures were used to evaluate the exploratory agent.
The exact temperature values are specified in table 2. The regular temperatures’ values switched at
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0.3, and 0.5 of the total training step budget. The low temperatures’ values switched at 0.3, 0.5 and
0.75 of the total training step budget.

Slide Mountain Car
Regular 1.0, 0.5, 0.25 1, 0.5, 0.25

Low 0.75, 0.25, 0.175, 0.02 0.5, 0.25, 0.175, 0.1

Table 2: Temperature ranges used in this work
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