
Co-evolution Transformer for Protein Contact
Prediction (Appendix)

A Societal Impacts

The proposed method is dedicated to protein contact prediction, which is an essential building block
of many important protein structure related tasks. We believe this study will benefit to future research
in the structural biology field and contribute to the understanding of protein functions. This study
is an application of computational biology and the experiments are conducted without using any
living organisms. It is difficult to measure its directly negative societal impact on biology. Algorithms
might be developed on the method presented in this paper, and applying these derived algorithms
themselves might have negative societal impacts.

B Additional Experiment Details

B.1 Data

Dataset All the models are trained on the structures extracted from PDB (version 2020-03) [1].
We filter the domains with 100% sequence identity, which leads to a dataset consisting of 96,167
non-redundant training domains, denoted as PDB100. To study the effect of training data, we also
filter the domains with 30% sequence identity to obtain a smaller training set consisting of 31,344
non-redundant domains, denoted as PDB30. All the data used in this study are derived from the
public databases and do not contain any personally identifiable information or offensive content. The
data splits of training/validation sets are attached in the supplementary materials.

Benchmark Two canonical benchmarks, i.e., CASP14 and CAMEO, are used for the model
evaluation, where the CASP14 targets are available at https://predictioncenter.org/ and
the CAMEO targets are available at https://www.cameo3d.org/. As shown in Figure 1, both
CASP14 and CAMEO include proteins of lengths in a wide range, showing the representativeness
and rationality of the two benchmarks. Our method outperforms the baselines significantly on these
proteins.

MSA Generation CoT is trained on the protein sequences with each one has 12 MSAs, and one
out of the 12 MSAs is sampled for the sequence each time during the training phrase. We generate
the MSAs by searching four databases with two open-source tools as follows. HHblits (version
3.3.0) [2] is used to search UniRef30 (version 2020-02) and BFD30 (version 2019-03) [3], while
HMMER (version 3.3.2) [4] is used to search UniRef90 (version 2020-02) [5] and MGnify90 (version
2019-05) [6]. For each combination, we run the tool three times with different E-values, i.e., 1, 0.1,
and 0.001, obtaining 12 MSAs in total for each protein sequence.

License of Assets HHblits and HMMER are free softwares distributed under the GNU General
Public License terms and the 3-Clause BSD open source license terms, respectively.

MSA Representation Inspired by [7], we represent one MSA as a collection of sequence pairs,
where each pair consists of the target protein and another homologous protein. The element of each
position in the paired sequence is encoded by a binary vector of 41 dimension. The first 20 dimension
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Figure 1: The protein sequence length distributions

L L/2 L/5 L L/2 L/5 L L/2 L/5 L L/2 L/5
Number of contacts

20

30

40

50

60

70

80

90

100

To
p-

L 
lo

ng
-r

an
ge

 c
on

ta
ct

 p
re

ci
si

on

FM (22 domains) FMTBM (14 domains) TBM (50 domains) CAMEO Hard (178 domains)

RaptorX trRosetta CopulaNet CoT

Figure 2: Comparison with SOTA baselines on CASP14 and CAMEO

values are the one-hot representation of the target protein residue and the other 21 dimension values
are the one-hot representation of the homologous protein residue. The additional dimension in the
latter one is used for the gaps in the homologous proteins represented by a special character ‘-’.

B.2 Experimental Evaluation

Implementation of Baselines The predictions of top-3 groups in the CASP14 challenge were
download from https://predictioncenter.org/. For the three SOTA methods, RaptorX [8], tr-
Rosetta [9], and CopulaNet [7], we download their model checkpoints from https://github.com/
j3xugit/RaptorX-3DModeling/, https://github.com/gjoni/trRosetta/ and https://
github.com/fusong-ju/ProFOLD/ respectively without any further retraining, and then eval-
uate their models and CoT on the identical MSAs, i.e., MSAs searched from BFD30 with E-value
0.001. For the sake of fairness, we evaluate all predictions with exactly the same evaluation scripts.

The Setting of CoT We summarize the main hyperparameters as follows:

• Optimizer: Adam [10] (learning rate = 4× 10−4, β1 = 0.9, β2 = 0.999);

• Weight decay: 10−4;

• Nonlinearity: ReLU;

• Warmup: 10, 000 steps;

• A Cosine learning rate scheduler;
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Table 1: Ablations for CoT on CASP14 FM domains. CNN Layers refers to the number of ResNet
blocks in the co-evolution enhancement submodule. The bolded line refers to the configuration and
result for the final CoT model.

CoT Layers Embedding Size CNN Layers Parameters Precision@L

2 128 32 14.4M 44.7
4 128 16 15.2M 46.8
6 128 12 16.6M 48.2
6 256 12 24.9M 48.3

• Training cost: about 30 hours on 4 Tesla V100 GPU cards for 100, 000 steps.

Comparison with MSA Transformer As discussed in Section 4.2, MSA Transformer [11] wasn’t
included in the comparison for two reasons: 1) it is an unsupervised model pretrained on a large
amount of extra sequence data; 2) we cannot access its supervised fine-tuning code/script in the public
repository. Therefore, we cannot reproduce the results on the CASP14 benchmark. Nevertheless, we
rerun the CoT model on the CASP13-FM dataset to compare with it, obtaining a 65.0% Precision@L
score, which is better than 57.1% reported in MSA Transformer. For a fair comparison, we have
filtered protein sequences similar to CASP13 targets (sequence identity more than 25%) in the training
set.

Ablation Study Comprehensive comparisons on two benchmarks are summarized in Figure 2. CoT
achieves consistently superior performance on all the kinds of proteins.

To further study the effect of the other hyperparameters on the model performance, we conducted
several ablative experiments, and the results are shown in Table 1. In order to validate the effectiveness
of the proposed co-evolution Transformer architecture, we implement two model variants which
are equipped with less CoT layers (i.e., 2 and 4) but have comparable parameters with the original
CoT model, which is achieved by increasing the depth of CNN in the co-evolution enhancement
submodule. The result shows that increasing CoT layers can continuously improve the performance
of PCP. We also train another model with larger model capacity by increasing embedding size from
128 to 256. The resulting model achieves a higher Precision@L score than before, demonstrating
that model capacity is also an important factor in this task.

To study the attention patterns that the co-evolution attention module has learned, we visualize the
values from all the attention heads of the final layer of CoT. As shown in Figure 3, most attention
heads reflect a close relationship with the ground-truth contact map, especially for the 2-nd, 3-rd, and
6-th attention heads, which demonstrates that CoA is capable of extracting contact related patterns.

Statistical Analysis for CASP14-FM/TBM Domains In practice, we notice that the improvement
of the CoT model over the CopulaNet model on CASP14-FM/TBM domains varies a lot, and a
possible reason is that the performance varies a lot on the small number of domains. To further
validate the effectiveness of CoT, we conduct a statistical test on these domains. Regarding that
14 FM/TBM samples are not enough to derive a statistical significance, we re-evaluated the CoT
model and the CopulaNet on FM/TBM domains with 12 groups of MSAs (described in Section 4.1),
obtaining 168 Precision@L scores for each method. The average Precision@L scores of CoT and
CopulaNet are 60.9% and 55.9%, respectively. Assume the results follow a normal distribution, we
conduct a Paired-samples t-test for the two groups of results, obtaining a t-statistic score 5.4 with
p-value 2.31× 10−7. Since the results may be not normally distributed, the Wilcoxon signed-rank
test is further conducted, obtaining a t-statistic score 2, 713.0 with p-value 4.34× 10−9. These two
results demonstrate that CoT is better than CopulaNet significantly in statistics.

The Impact of the MSA Depth As discussed in Section 4.5, the quality of predicted contacts is
highly correlated to Meff . To study the correlation, we plot the values of Precision@L and Meff on
the CASP14 FM domains as shown in Figure 4.

Performance on different MSA generation pipelines As discussed in Section 4.2, different
methods usually adopt different MSA generation pipelines during the evaluation phrase. To further
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Figure 3: Co-evolution attention maps extracted from the final layer of CoT for 4q2z_H

explore the impact of generation pipelines on the performance of our model, we re-evaluate the CoT
model on the four MSAs generated from different databases. The empirical results are summarized
in Table 2.

The performance of Co-evolution Transformer for different MSAs varies a lot. For FM domains,
CoT performs the best on the BFD30 generated MSA. For the CAMEO targets, CoT has similar
performance scores on the first three generated MSAs. A possible reason is that, the FM domains
are harder than the CAMEO targets due to the fact that fewer homologs for FM domains exist in
most databases (e.g., UniRef). Therefore, CoT is able to obtain a better result on an extremely large
database BFD30 for FM domains.

We also conduct the same experiments for the CopulaNet model, which shows a similar phenomenon
as CoT does.
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Figure 4: Correlation between Precision@L and Meff on the CASP14 FM domains. CC refers to
the correlation coefficient.

Table 2: Comparisons for four different MSA generation pipelines on CASP14 and CAMEO
(Precision@L)

Method Benchmark UniRef30 UniRef90 BFD30 MGnify90

CoT (ours) CASP14-FM 29.6 27.6 48.1 39.1
CAMEO 67.6 66.6 66.6 58.1

CopulaNet CASP14-FM 25.1 25.4 38.5 31.8
CAMEO 58.0 57.0 56.5 49.2
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