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Abstract

The evaluation of generative models has received significant attention in the ma-
chine learning community. When applied to a multi-modal distribution which is
common among image datasets, an intuitive evaluation criterion is the number of
modes captured by the generative model. While several scores have been proposed
to evaluate the quality and diversity of a model’s generated data, the correspondence
between existing scores and the number of modes in the distribution is unclear. In
this work, we propose an information-theoretic diversity evaluation method for
multi-modal underlying distributions. We utilize the Rényi Kernel Entropy (RKE)
as an evaluation score based on quantum information theory to measure the number
of modes in generated samples. To interpret the proposed evaluation method, we
show that the RKE score can output the number of modes of a mixture of sub-
Gaussian components. We also prove estimation error bounds for estimating the
RKE score from limited data, suggesting a fast convergence of the empirical RKE
score to the score for the underlying data distribution. Utilizing the RKE score, we
conduct an extensive evaluation of state-of-the-art generative models over standard
image datasets. The numerical results indicate that while the recent algorithms for
training generative models manage to improve the mode-based diversity over the
earlier architectures, they remain incapable of capturing the full diversity of real
data. Our empirical results provide a ranking of widely-used generative models
based on the RKE score of their generated samples1.

1 Introduction

Deep generative models trained by generative adversarial networks (GANs) [1] and diffusion models
[2] have achieved impressive results in various unsupervised learning settings [3, 4, 5, 6]. Due to their
success in generating image samples with high visual quality, the analysis of large-scale generative
models has received great attention in the machine learning community. In particular, the evaluation
of generative models has been extensively studied in the recent literature to understand the benefits
and drawbacks of existing approaches to training generative models.

To address the evaluation task for generative models, multiple assessment scores have been proposed
in the literature. The existing evaluation metrics can be divided into two general categories: 1)

1The code repository is available at https://github.com/mjalali/renyi-kernel-entropy.
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distance-based metrics including Fréchet Inception Distance (FID) [7] and Kernel Inception distance
(KID) [8] scores, which measure a distance between the learned generative model and data distribution,
2) quality-based metrics including the Inception score [9], precision and recall scores [10, 11], and
density and coverage scores [12], aiming to measure the quality and diversity of the generated samples
based on the confidence and variety of labels assigned by a pre-trained neural net on ImageNet.

On the other hand, a different measure of diversity that is popular and standard in the information
theory literature is entropy. The primary challenge with an entropy-based approach to the assessment
of generative models is the statistical costs of entropy estimation in the typical high-dimensional
spaces of image data, requiring a sample size exponentially growing with the dimension of data.
Consequently, without further assumptions on the data distribution, it will be statistically and
computationally infeasible to estimate the entropy value for high-dimensional image data.

In this work, we propose a novel information-theoretic approach for the diversity evaluation of
generative models. Our proposed approach targets multi-modal data distributions comprised of
several distinct modes, which is an applicable assumption to image datasets with a cluster-based
structure due to their latent color and shape-based features. In this approach, we follow the entropy
calculation in quantum information theory [13, 14] and utilize matrix-based Rényi entropy scores to
evaluate the variety of samples produced by a generative model.

Considering the Rényi entropy in the Gaussian kernel space, we propose Rényi kernel entropy (RKE)
and relative Rényi kernel entropy (RRKE) scores to measure the absolute and relative diversity of a
multi-modal distribution with respect to the actual data distribution. We develop computationally
efficient methods for estimating these entropy scores from empirical data with statistical convergence
guarantees. We also prove that the RKE score will converge to standard differential entropy as the
Gaussian kernel bandwidth approaches zero.

We provide an interpretation of the RKE score by deriving its closed-form expression for benchmark
Gaussian mixture models (GMMs). In the GMM case, we show that the proposed RKE score
reveals the number of Gaussian components in the underlying GMM, which motivates the method’s
application to general mixture distributions. We further extend this interpretation to mixture models
with sub-Gaussian modes, e.g. modes with a bounded support set, to support the RKE score in more
general settings. We discuss the numerical performance of the proposed score in synthetic mixture
settings. Our numerical results demonstrate the fast convergence of the RKE score from a limited
number of synthetic mixture data.

Next, we present the results of our numerical experiments on the evaluation of various state-of-the-art
GAN and diffusion models using the RKE and RRKE metrics. Our numerical evaluation of the RKE
score shows the lower diversity obtained by standard GAN models compared to real training data,
which provides an information-theoretic numerical proof complementary to the birthday-paradox
empirical proof for the same result in [15]. Furthermore, our empirical results suggest that the recent
GAN and diffusion model architectures improve the mode-based variety of generated data over earlier
GAN formulations. We can summarize the main contributions of this work as follows:

• Proposing an information theoretic approach to evaluate the diversity of generative models

• Developing computationally efficient methods to compute Rényi kernel entropy scores

• Providing theoretical and numerical support for the proposed evaluation methodology in the
benchmark setting of Gaussian and sub-Gaussian mixture models

• Diversity evaluation of standard generative models using the information-theoretic method

2 Related Work

The evaluation of GAN-based generative models has been studied by a large body of related works.
As surveyed in [16], several evaluation methods have been developed in the literature. The Inception
score (IS) [9] uses the output of a pre-trained Inception-net model as features and proposes a score
summing up the entropy-based diversity of assigned labels’ distribution and confidence score averaged
over the conditional labels’ distribution. The modified IS (m-IS) in [17] substitutes the KL-divergence
term in IS with a cross entropy term, which helps m-IS capture diversity within images from a certain
class. Unlike these works, our proposed approach bases on matrix-based entropy scores which capture
the number of clusters in a multi-modal distribution.
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Also, several distance-based evaluation metrics have been proposed in the deep learning literature.
The Wasserstein Critic [18] attempts to approximate the Wasserstein distance between the real
and generated samples. The Fréchet Inception Distance (FID) [7] measures a distance based on the
embedding of the last layer of the pre-trained Inception-net, where it fits multivariate Gaussian models
to real and generated data and calculates their Fréchet distance [19]. [20] conduct a comprehensive
comparison of several standard GAN architectures based on IS and FID scores, discussing the
similarities and differences of the GANs’ performance. As another variant of FID, [21] suggest a
bias-free estimation of FID using quasi-Monte Carlo integration. In another related work, [8] propose
Kernel Inception Distance (KID) as the squared maximum mean discrepancy (MMD) between two
distributions. Adversarial accuracy and divergence scores in [22] utilize two classifiers to compute
the closeness of distributions of real and fake data conditioned on category labels from the two
classifiers. Unlike the above metrics, our proposed relative Rényi entropy score focuses on the
number of common modes between real and fake data, and hence reduces the statistical complexity
of estimating the entropy.

The diversity vs. quality tradeoff of GANs’ generated samples has also been studied in multiple
related works. [15] examine the diversity of GANs’ data through a birthday paradox-based approach
and suggest that the support set size of GANs’ data could be smaller than real training data. The
precision and recall evaluation by [10] assigns a two-dimensional score where precision is defined as
the portion of fake data that can be generated by real distribution while recall is defined as the portion
of real data that can be generated by the generative model. The improved precision and recall in [11]
further address the sensitivity disadvantages of these scores by estimating the density function via
the k-nearest neighbour method. Also, the density and coverage scores [12] provide a more robust
version of precision and recall metrics to outliers. Additionally, [23] proposed a 3-dimensional metric,
that measures the fidelity, diversity and generalization of models. We note that our work offers a
complementary approach to the diversity evaluation for GANs, and since it directly estimates the
matrix-based entropy from data, it requires a comparatively smaller sample size for proper estimation.

3 Preliminaries

3.1 Kernel-based Feature Maps and Representation

Throughout the paper, we use X ∈ X to denote the data vector. Also, we denote the kernel feature
map by ϕ : Rt → Rd which gives us the kernel function k : Rt ×Rt → R as the inner product of the
corresponding feature vectors: k(x,y) =

〈
ϕ(x), ϕ(y)

〉
. Given n training data x1, . . . ,xn we use Φ

to denote the normalized kernel feature map-based data matrix, i.e.,

Φ =
1√
n

ϕ(x1)...
ϕ(xn)

 .

Then, the kernel matrix K ∈ Rn×n whose (i, j)th entry will be 1
nk(xi,xj) will be identical to

K = ΦΦ⊤. Observe that, by definition, K will be a positive semi-definite (PSD) matrix, possessing
positive eigenvalues λ1, . . . , λn where the non-zero eigenvalues are shared with the empirical kernel
covariance matrix C = Φ⊤Φ. We call a kernel function normalized if k(x,x) = 1 for every x ∈ X .
A standard example of a normalized kernel function is the Gaussian kernel with bandwidth parameter
σ defined as:

kσ(x,y) := exp
(
−∥x− y∥22

2σ2

)
.

For every normalized kernel function, the eigenvalues of kernel matrix K (and also empirical kernel
covariance C) will be non-negative and add up to 1 as the trace of K will be 1. As a result, K’s
eigenvalues can be interpreted as a probability sequence.

3.2 Rényi Entropy for PSD Matrices

A standard extension of the entropy concept to PSD matrices is the matrix-based Rényi entropy
[14]. The Rényi entropy of order α > 0 for a PSD matrix A ∈ Rd×d with eigenvalues λ1, . . . , λd is
defined as

REα(A) :=
1

1− α
log

(
Tr(Aα)

)
=

1

1− α
log

( d∑
i=1

λα
i

)
,
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where Tr denotes the trace operator. A commonly-used special case which we use throughout the
paper is the Rényi entropy of order α = 2 defined as RE2(A) = log

(
1/

∑d
i=1 λ

2
i

)
.

Proposition 1. For every PSD A ∈ Rd, the following holds where ∥ · ∥F denotes the Frobenius norm:
RE2(A) = log

(
1/Tr(AA⊤)

)
= log

(
1/∥A∥2F

)
.

3.3 Relative Rényi Entropy

To measure the relative diversity of a matrix A ∈ Rd×d with respect to another matrix B ∈ Rd×d,
one can use the sandwiched relative Rényi entropy of order α [24] defined as

RREα(A,B) =
1

α− 1
log

(
Tr

((
B

1−α
2α AB

1−α
2α

)α))
.

A widely-used special case is the relative entropy of order α = 1
2 which is commonly called the

Fidelity score in quantum information theory. The definition of the Fidelity score is

RRE1/2(A,B) :=− 2 log
(
Tr

(√
B1/2AB1/2

))
.

We note that the relative Rényi entropy of order α = 2 requires an invertible matrix B which may not
hold in the applications to multi-modal distributions with rank-deficient kernel covariance matrices
as discussed in the next sections.

4 A Diversity Metric for Multi-modal Distributions

4.1 Kernel-based Rényi Entropy Scores

Given the kernel matrix K computed using the data x1, . . . ,xn of random vector X, the empirical
Rényi kernel entropy (RKE) of the observed data can be defined as

R̂KEα(X) := REα(K),

which, as discussed in [14], is a diversity measure of the data. This diversity measurement approach
will be interpreted and justified in the next subsection. Note that if the dimension d of the feature space
is finite, since K = ΦΦ⊤ and empirical covariance matrix Ĉ = Φ⊤Φ share the same eigenvalues,
we have

R̂KEα(X) = REα(Ĉ) = REα

(
1

n

n∑
i=1

ϕ(xi)ϕ(xi)
⊤
)
.

Therefore, we can see that the empirical Rényi kernel entropy R̂KEα(X) is an estimate of the
following quantity about the underlying distribution PX where X is sampled from, which we call the
Rényi kernel entropy of PX :

RKEα(X) := REα(CX).
Here CX denotes the kernel covariance matrix of distribution PX defined as

CX := EPX

[
ϕ(X)ϕ(X)⊤

]
=

∫
PX(x)ϕ(x)ϕ(x)⊤dx.

Similarly, we can use the kernel-based relative Rényi entropy as a measure of joint diversity between
distributions PX , PY of random vectors X,Y. Here, for random vectors X, Y distributed according
to PX , PY , we define the relative Rényi kernel entropy (RRKEα) score as the order-α relative kernel
entropy between their kernel covariance matrices CX , CY :

RRKEα(X,Y) = RREα(CX , CY ).

In order to estimate the above relative entropy score, we can use the empirical RRKE score between
the empirical kernel covariance matrices for samples x1, . . . ,xn from PX and samples y1, . . . ,ym

from PY :

R̂RKEα(X,Y) := RREα

(
1

n

n∑
i=1

ϕ(xi)ϕ(xi)
⊤ ,

1

m

m∑
j=1

ϕ(yj)ϕ(yj)
⊤
)
.

In the rest of this section, we show how the kernel-based Rényi entropy score evaluated under a
Gaussian kernel can relate to the number of modes of multi-modal distributions with sub-Gaussian
components, and subsequently how the relative Rényi entropy score counts the number of joint modes
between two multi-modal distributions with sub-Gaussian modes.
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4.2 RKE as a Measure of the Number of Modes

We consider a multi-modal underlying distribution PX consisting of k distinct modes. Here, our goal
is to show that the order-2 RKE score under the Gaussian kernel can count the number of present
modes in the distribution. To this end, we analyze the order-2 Rényi kernel entropy score of the kernel
covariance matrix CX of mixtures of Gaussian and sub-Gaussian components and theoretically show
that the RKE score reduces to the number of well-separated modes.

First, we derive the closed-form expression of the order-2 Rényi kernel entropy of a Gaussian mixture
model under the Gaussian kernel. Here, we use the following notation to denote a k-component
Gaussian mixture model where the ith component has frequency ωi, mean vector µi and Covariance
matrix Σi: PGMM(ω,µ,Σ) =

∑k
i=1 ωiN (µi,Σi). Also, for a positive definite matrix A ∈ Rd×d, we

use ∥ · ∥A to denote the A-norm defined as ∥x∥A =
√
x⊤Ax.

Theorem 1. Suppose that the distribution of X is given by the Gaussian mixture model PGMM(ω,µ,Σ).
Then, order-2 Rényi kernel score under the Gaussian kernel with bandwidth σ, denoted by Gσ , is

RKEGσ
2 (X) = − log

( k∑
i=1

k∑
j=1

[
ωiωje

−
∥µi−µj∥

2
Ai,j

σ2 det
(
I +

2

σ2
(Σi +Σj)

)− 1
2

])
,

where Ai,j is defined as follows given the d× d identity matrix I:

Ai,j := I −
(
I + 2σ2Σ−1

i − (I + 2σ2Σ−1
j )−1

)−1 −
(
I + 2σ2Σ−1

j − (I + 2σ2Σ−1
i )−1

)−1

+
(
2σ2Σ−1

i + 2σ2Σ−1
j + 4σ4Σ−1

i Σ−1
j

)−1
+

(
2σ2Σ−1

i + 2σ2Σ−1
j + 4σ4Σ−1

j Σ−1
i

)−1
.

Proof. We defer the proof to the Appendix.

Corollary 1. Suppose X ∼ GMM(ω,µ,Σ) follows from a Gaussian mixture model with isotropic

covariance matrices Σi = σ2
i I . Defining the coefficients ai,j := 1+

2(σ2
i+σ2

j )

σ2 , the RKE score will be

RKEGσ
2 (X) = − log

( k∑
i=1

k∑
j=1

ωiωja
− d

2
i,j e−

ai,j∥µi−µj∥
2
2

σ2

)
.

Theorem 1 and Corollary 1 show that if σ ≫ maxi ∥Σi∥sp, i.e. the kernel bandwidth dominates the
spectral norm (maximum eigenvalue) of the component-wise covariance matrices, then Ai,j ≈ I and
ai,j ≈ 1 and the RKE score will approximately be

RKEGσ
2 (X) ≈ − log

( k∑
i=1

k∑
j=1

ωiωje
−

∥µi−µj∥
2
2

σ2

)
.

The next theorem shows the above approximation generalizes to mixtures of sub-Gaussian compo-
nents, e.g. modes with bounded support sets, and also provides an approximation error bound.

Theorem 2. Suppose that X ∈ Rd has a mixture distribution PSGMM =
∑k

i=1 ωiPi where the
kth component occurs with probability ωk and has a sub-Gaussian distribution with parameter σi,
i.e. its moment-generating function (MGF) MPi

satisfies the following for every vector β ∈ Rd

given the mean vector µi for Pi: EPi

[
exp

(
β⊤(X− µi)

)]
≤ exp

(
∥β∥22σ2

i /2
)
. Then, the following

approximation error bound holds where we define α2
i := 1 + 2σ2

i /σ
2:∣∣∣∣ exp(−RKEGσ

2 (X)
)
−

k∑
i=1

k∑
j=1

ωiωje
−

∥µi−µj∥
2
2

σ2

∣∣∣∣ ≤

√√√√ k∑
i=1

8ωi

(
1− α−d

i

)
.

Proof. We defer the proof to the Appendix.

More generally, we show that the RKE under a Gaussian kernel with a small bandwidth provides an
estimate of the differential Rényi entropy, which connects the approach with a smoothed differential
entropy estimator in high-dimensional settings.
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Theorem 3. Suppose that the underlying distribution of X has a continuous probability density
function PX . The order-2 Rényi kernel score under Gaussian kernel with bandwidth σ for this
underlying distribution satisfies

lim
σ→0

(
RKEGσ

2 (X) +
d

2
log(πσ2)

)
= − log

(∫
PX(x)2dx

)
,

where the right hand side is the order-2 Rényi differential entropy of PX .

Proof. We defer the proof to the Appendix.

4.3 RRKE as the Number of Common Modes

In order to measure the joint mode-based diversity, we propose the order- 12 relative Rényi entropy
score. We note that our choice of order 1

2 is due to the existing inverse covariance matrix term in the
relative entropies of orders greater than 1, which is not applicable to rank deficient matrices expected
in the case of well-separated multi-modal distributions. Furthermore, the order 1

2 relative entropy,
well-known as the fidelity score, is a commonly-used and well-analyzed relative entropy case in
quantum information theory.

To interpret the application of the order- 12 relative entropy, we show the following theorem discussing
how the negative RRKE score could approximate the joint diversity between two input multimodal
distributions with sub-Gaussian components.
Theorem 4. Suppose that X,Y ∈ Rd are random vectors with mixture distributions PMM1

=∑k
i=1 ωiPi and PMM2 =

∑k
i=1 ηiQi, respectively, where ωi, ηi denote the frequency of the ith

component. We also assume that Pi and Qi have mean vectors µi and ζi respectively and are both
σi-sub-Gaussian. Then, the following approximation error bound holds for order- 12 relative Rényi
entropy where we define α2

i = 1 + 2σ2
i /σ

2:∣∣∣∣ exp(−RRKEGσ
2 (X,Y)

)
−

k∑
i=1

k∑
j=1

√
ωiηje

−
∥µi−ζj∥

2
2

σ2

∣∣∣∣ ≤ 4

√√√√ k∑
i=1

32
(
ωi + ηi

)(
1− α−d

i

)
Proof. We defer the proof to the Appendix.

The above theorem shows that if the ith mode of mixture distribution Pmm1
and the jth mode of

mixture distribution Pmm2
are sufficiently close, then they add nearly √

ωiηj to the RRKE score.

5 Estimation Procedure and Guarantees

As discussed earlier, the RKE and RRKE scores for a proper kernel function provide measures of the
absolute and relative mode-based diversity of multi-modal distributions. Here, we propose kernel-
based estimators for these entropy scores. Our estimators suggest computationally and statistically
feasible ways for approximating the entropy measures by exploiting the connections between the
kernel similarity values and the Rényi entropy scores. In addition, we provide non-asymptotic
estimation error bounds for the proposed estimators to analyze their sample complexity. Regarding
the RKE score, the following results connect this score with the kernel function k(x,x′).
Theorem 5. Given a random vector X distributed as PX , the order-2 RKE score is the result of the
following equation, where X,X′ are IID draws of PX :

RKE2(X) = − log
(
E
X,X′iid∼PX

[
k2(X,X′)

])
.

Corollary 2. For samples x1, . . . ,xn and KXX = [ 1nk(xi,xj)]n×n being the normalized kernel
matrix for the observed samples, the empirical order-2 Kernel entropy is given by

R̂KE2(X) = − log
(∥∥KXX

∥∥2
F

)
,

Proof. We defer the proof to the Appendix. We note that the result of Corollary 2 for the empirical
RKE score has already been shown and discussed in [14].
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Figure 1: GANs’ generated samples for Gaussian mixtures and the RKE-MC ↑ and RRKE ↓ scores.

As the above results suggest, we can use the normalized Frobenius norm of the kernel matrix to
estimate the RKE score. Therefore, the computation of order-2 RKE only requires the Frobenius
norm of the kernel matrix, which can be computed in O(n2) complexity. We note that for a general
order-α Rényi entropy, one can apply the randomized algorithm in [25] for the computation of the
order-α RKE score. Our next result bounds the estimation error for the empirical RKE score.
Theorem 6. Consider a normalized kernel function satisfying k(x,x) = 1 for every x ∈ X . Then,
for every δ > 0 the following bound will hold with probability at least 1− δ:∣∣∣exp(−R̂KE2(X)

)
− exp

(
−RKE2(X)

)∣∣∣ ≤ O
(√ log n

δ

n

)
Proof. We defer the proof to the Appendix.

As implied by the above results, the order-2 Rényi kernel entropy can be efficiently estimated from
training data and the probability of an ϵ-large error will exponentially diminish with the sample size
n. Next, we discuss the computation approach for the order- 12 RRKE score. The following result
reveals the kernel-based representation of this score in the empirical case.
Theorem 7. Consider empirical samples x1, . . . ,xn drawn from PX and y1, . . . ,ym drawn from
PY . Then, the following identity holds for their empirical order- 12 RRKE score:

R̂RKE 1
2
(X,Y) = − log

(∥∥KXY

∥∥2
∗

)
where KXY =

[
1√
nm

k(xi,yj)
]
n×m

denotes the normalized cross kernel matrix and ∥ · ∥∗ denotes
the nuclear norm, i.e. the sum of a matrix’s singular values.

Proof. We defer the proof to the Appendix.

As implied by the above theorem, the RRKE score can be computed using the singular value
decomposition (SVD) for finding the singular values of KXY . Note that the application of SVD
requires O(min{m2n,mn2}) computations given n,m samples from PX and PY , respectively.
Therefore, computing the RRKE score could be more expensive than the RKE score, since the nuclear
norm is more costly to compute than the Frobenius norm.

6 Numerical Results

We tested the performance of the proposed entropy-based diversity evaluation approach on several
combinations of standard GAN architectures and datasets. Specifically, we used the synthetic 8-
component and 25-component Gaussian mixture datasets in [26] and the following image datasets:

7



Table 1: Evaluated scores for three image datasets. RKE-MC (Mode Count) denotes exp(RKE).

Method IS ↑ FID ↓ Precision ↑ Recall ↑ Density ↑ Coverage ↑ RRKE ↓ RKE-MC ↑

C
IF

A
R

-1
0

Dataset 11.57 - - - - - - 39.58
NVAE 5.85 51.67 0.36 0.50 0.28 0.60 2.01 17.65
VDVAE 10.51 37.51 0.34 0.78 0.23 0.21 1.81 32.49
DCGAN 5.75 54.30 0.59 0.25 0.49 0.23 0.98 10.19
WGAN-WC 2.59 157.26 0.36 0.00 0.18 0.03 2.09 10.64
WGAN-GP 7.51 21.66 0.62 0.56 0.57 0.51 0.74 19.07
SAGAN 8.62 10.17 0.68 0.62 0.73 0.73 0.65 24.46
SNGAN 8.81 9.23 0.70 0.62 0.77 0.74 0.62 25.83
ContraGAN 9.69 4.02 0.75 0.62 0.99 0.86 0.52 29.80

Ti
ny

-I
m

ag
eN

et Dataset 33.99 - - - - - - 155.86
SAGAN 8.21 46.98 0.55 0.49 0.44 0.27 1.42 25.68
SNGAN 8.12 48.96 0.55 0.46 0.40 0.26 1.46 27.18
BigGAN 11.57 27.34 0.60 0.58 0.53 0.43 1.23 39.61
ContraGAN 13.79 21.36 0.54 0.54 0.54 0.45 1.26 56.94

Im
ag

eN
et

Dataset 357.35 - - - - - - 1823.52
SAGAN-256 29.67 44.66 0.57 0.58 0.42 0.35 2.34 105.57
SNGAN-256 31.92 35.75 0.54 0.64 0.41 0.38 2.22 115.62
ContraGAN-256 24.91 34.79 0.67 0.51 0.64 0.33 2.54 152.89
BigGAN-256 28.33 33.48 0.58 0.61 0.49 0.37 2.28 106.07
ReACGAN-256 52.53 15.65 0.74 0.42 0.79 0.41 2.15 119.76
BigGAN-2048 96.42 4.49 0.71 0.58 0.80 0.65 1.83 606.18
StyleGAN-XL 204.73 1.94 0.77 0.61 0.67 0.81 1.50 1375.17
LDM-4-G 242.62 3.60 0.86 0.60 0.69 0.78 1.56 1321.24
ADM-G 188.70 3.86 0.82 0.64 0.66 0.82 1.47 1407.75

CIFAR-10 [27], Tiny-ImageNet [28], MS-COCO [29], AFHQ [30], FFHQ [31] and ImageNet
[32]. We evaluated the performance of the following list of widely-used VAE, GAN and diffusion
model architectures: NVAE [33], Very Deep VAE (VDVAE) [34], Vanilla GAN [1], LSGAN [35],
Wassesrtein GAN with weight clipping (WGAN-WC) [18], Wassesrtein GAN with gradient penalty
(WGAN-GP) [26], DCGAN [36], Self-Attention GAN (SAGAN) [37], Spectrally-Normalized GAN
(SNGAN) [38], ContraGAN [39], ReACGAN [40], BigGAN [3], StyleGAN3 [41], StyleGAN-XL
[42], GigaGAN [43], LDM [44] ADM-G [45] and BK-SDM [46]. To have a fair evaluation of the
models, we downloaded the trained generative models from the StudioGAN repository [47].

In our evaluation of generative models, we compared the performance of order-2 Rényi Kernel
Entropy Mode Count (RKE-MC), defined as exp(RKE2(X)), and order- 12 Relative Rényi Kernel
Entropy (RRKE) with the following standard baselines widely used in the evaluation of generative
models: Inception Score (IS) [9], Fréchet Inception Distance (FID) [7], Kernel Inception Distance
(KID) [8], precision and recall [11], density and coverage [12].

To compute the RKE and RRKE scores for the Gaussian mixture cases, we measured the scores based
on the output of the trained generator. For image datasets, we followed the standard approach in the
literature and evaluated the scores for the representation of the generator’s output characterized by an
Inception-net-V3 model pre-trained on ImageNet. We note that the Inception-net-based evaluation
methodology is consistent with the baseline methods. Also, to select the bandwidth parameter σ
for the Gaussian kernel in the RKE and RRKE scores, we performed cross-validation and chose
the smallest bandwidth σ for which the reported score’s standard deviation across 5,000 validation
samples is below 0.01. Note that if the kernel bandwidth becomes overly small, the RKE score will
grow almost logarithmically with the number of samples, and the standard deviation of its exponential,
i.e. RKE mode count (RKE-MC), will increase almost linearly with the sample size and thus suffer
from a large variance across disjoint sample sets. We provide a more detailed discussion of the
bandwidth parameter’s selection and the resulting variance in the Appendix.

Diversity Evaluation for Synthetic Mixture Datasets. We measured the RKE-MC and RRKE
scores for the 8 and 25 component Gaussian mixture datasets in [26]. Figure 1 shows the real samples
in blue and GANs’ generated samples in red. As the evaluated scores suggest, the RKE-MC scores
managed to count the number of captured modes and the RRKE relative distance increased under a
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(b) RKE Mode Count for StyleGAN generated samples
on AFHQ and FFHQ varying with truncation factor ψ.
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Figure 2: RKE mode count’s behavior under the truncation of the StyleGAN generated samples on
AFHQ and FFHQ datasets.

worse coverage of the underlying Gaussian mixture. The rest of our numerical results on mixtures of
Gaussians are discussed in the Appendix.

Diversity Evaluation for Real Image Datasets. We measured the proposed and baseline scores
on the mentioned image datasets. Table 1 contains the evaluated results. Also, since the IS is a
combination of both diversity and quality factors, we propose the following information-theoretic
decomposition of IS to IS-quality and IS-diversity:

IS(X) := exp
(
I(X; Ŷ )

)
= exp

(
H(Ŷ )

)
exp

(
−H(Ŷ |X)

)
,

where we call exp(H(Ŷ )) IS-diversity and exp(−H(Ŷ |X)) IS-quality. The decomposed Inception
and KID scores are presented in the complete table of our numerical evaluations in the Appendix.

Our numerical results show that the RKE score consistently agrees with the majority of other diversity
scores, and also for all GANs remains lower than the actual dataset’s RKE. Therefore, due to the
estimation guarantee in Theorem 6, our numerical results provide an information-theoretic numerical
proof for the empirical result in [15] that applies the birthday paradox to show GAN models cannot
capture the full diversity of training data. In addition, the recent generative models StyleGAN-XL
and ADM-G achieved the highest RKE, showing their diversity improvement over other generative
model baselines.

Also, while the coverage and IS-diversity scores were able to differentiate between the CIFAR-10-
trained generative models, WGAN-WC had the lowest score for coverage and recall, despite the
Inception score reporting it as the most diverse case. Meanwhile, RKE ranked the absolute diversity
of WGAN-WC to be similar to DCGAN while RRKE score shows that the modes captured by
WGAN-WC are not common with that of the dataset. In the ImageNet experiments, RKE scores
suggested that ContraGAN’s samples are more diverse than SAGAN and SNGAN, while its coverage
and recall scores were lower than those baselines. However, we note that ContraGAN reached a
worse RRKE but its better RKE indicates that it captures a diverse set of modes that could have a
smaller intersection with the actual ImageNet modes. The above evaluation of absolute vs. relative
diversity of generated samples of ContraGAN was not revealed by the other evaluation metrics.
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Figure 3: Comparing convergence of Recall, Coverage, and RKE scores on ImageNet dataset.

To assess the correlation between data diversity and RKE score, we repeated the dataset truncation
experiment of [11, 12] for the RKE-MC measurement over AFHQ and FFHQ datasets. The numerical
results in Figure 2 indicate a significant correlation between the truncation factor and the evaluated
RKE. Also, we observed that the empirical RKE-MC scores manage to converge to the underlying
RKE-MC using relatively few samples. Figure 3 plots the evaluated RKE-MC, recall, and coverage
scores under different sample sizes, which shows RKE-MC can be estimated well with ≈ 2000 data.

Diversity Evaluation for text-to-image generative models. We used the proposed RKE and RRKE
scores to evaluate text-to-image generative models. In our experiments, we evaluated the state-of-
the-art text-to-image generative model GigaGAN and BK-SDM on the MS-COCO dataset. The
numerical results in Table 2 indicate that the GigaGAN model achieves lower RRKE in comparison to
BK-SDM. On the other hand, BK-SDM reaches higher RKE-based absolute mode diversity compared
to GigaGAN.

Table 2: Zero-shot evaluation on 30K images from MSCOCO validation set for text-to-image
generative models. RKE-MC (Mode Count) denotes exp(RKE).

Method IS ↑ FID ↓ RRKE ↓ RKE-MC ↑

C
O

C
O GigaGAN 33.34 9.09 0.39 58.78

BK-SDM (Base) 33.79 15.76 0.44 73.05

7 Conclusion

In this work, we proposed a diversity evaluation method for generative models based on entropy
measures in quantum information theory. The proposed matrix-based Rényi entropy scores were
shown to correlate with the number of modes in a mixture distribution with sub-Gaussian components
and can be estimated from empirical data with theoretical guarantees. Our numerical results suggest
that while state-of-the-art generative models reach a lower entropy-based diversity score than training
data, the recent GAN and diffusion model architectures such as StyleGAN-XL and ADM manage to
significantly improve the diversity factor over earlier geneartive models. A future direction for our
work is to extend the diversity evaluation to non-GAN and non-diffusion models such as variational
autoencoders (VAEs) and flow-based models. Also, studying the effects of the pre-trained Inception
model on RKE and RRKE evaluations and comparing their robustness to the choice of pre-trained
models vs. the baseline scores studied in [48] will be an interesting topic for future exploration.
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A Appendix

A.1 Proof of Proposition 1

The proposition is directly implied by the fact that the eigenvalues of XX⊤ = X2 are λ2
1, . . . , λ

2
d.

Therefore, we have

∥X∥2F = Tr(XX⊤) = Tr(X2) =

d∑
i=1

λ2
i .

The proof is therefore a direct consequence of the definition of order-2 Rényi entropy.

A.2 Proof of Theorem 1

We apply Theorem 5 which reveals that for a Gaussian kernel bandwidth of
√
2σ the following

holds. Note that, without loss of generality and for simplicity of theoretical derivations, we derive the
equations for a bandwidth of

√
2σ:

RKE
G√

2σ

2 (X) = EX,X′∼PX

[
k2√

2σ
(X,X′)

]
=

k∑
i=1

k∑
j=1

ωiωjEX∼N (µi,Σi),X′∼N (µj ,Σj)

[
k2√

2σ
(X,X′)

]
=

k∑
i=1

k∑
j=1

ωiωj

∫ −1√
(2π)2d det(Σi) det(Σj)

× exp
(−1

2

(
∥x− µi∥2Σ−1

i

+ ∥x′ − µj∥2Σ−1
j

+ σ−2∥x− x′∥22
))

dxdx′

=

k∑
i=1

k∑
j=1

ωiωj

∫ −1√
(2π)2d det(Σi) det(Σj)

× exp
(−1

2

(
∥x− µi∥2Σ−1

i

+ ∥x′ − µj∥2Σ−1
j

+ σ−2
∥∥(x− µi

)
−

(
x′ − µj

)
+
(
µi − µj

)∥∥2
2

))
dxdx′

=

k∑
i=1

k∑
j=1

ωiωj

∫
1√

(2π)2d det(ΣiΣj)

× exp
(−1

2

[
x− µi
x′ − µj

]⊤ [
Σ−1

i + σ−2I −σ−2I
−σ−2I Σ−1

j + σ−2I

] [
x− µi
x′ − µj

]
+

[
x− µi
x′ − µj

]⊤ [
1
σ2

(
µj − µi

)
1
σ2

(
µi − µj

)]− 1

2σ2
∥µi − µj∥22
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dxdx′

(a)
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ωiωj
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2
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1

2
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1

2σ2
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dxdx′
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(b) follows from the unit integral of a multivariate Gaussian probability density function with mean
vector bi,j and covariance matrix C−1

i,j . (c) uses the determinant of Block diagonal matrices as
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µi − µj

]
=

1

σ2

(
µi − µj

)⊤
((

I + Fi − (I + Fj)
−1

)−1

+
(
I + Fj − (I + Fi)

−1
)−1 − (Fi + Fj + FiFj)

−1 − (Fi + Fj + FjFi)
−1

)(
µi − µj

)
=

1

σ2

(
µi − µj

)⊤
((

I + σ2Σ−1
i − (I + σ2Σ−1

j )−1
)−1

+
(
I + σ2Σ−1

j − (I + σ2Σ−1
i )−1

)−1
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− (σ2Σ−1
i + σ2Σ−1

j + σ4Σ−1
i Σ−1

j )−1 − (σ2Σ−1
i + σ2Σ−1

j + σ4Σ−1
j Σ−1

i )−1

)(
µi − µj

)
=

1

σ2

(
µi − µj

)⊤(
I −Ai,j

)(
µi − µj

)
In the above, (e) holds because Fi and Fj are positive definite matrices for the supposed invertible
and thus positive definite Σi and Σj . Hence, the matrices I +Fi and I +Fj are both positive definite
and invertible. Also, the Schur complement (I+Fj)− (−I)(I+Fi)

−1(−I) = I+Fj − (I+Fi)
−1

will be a positive definite and invertible matrix because (I + Fi)
−1 ≺ I ≺ I + Fj . Therefore, for the

inverse of the block matrix, we will have[
I + Fi −I
−I I + Fj

]−1

=

[(
I + Fi − (I + Fj)

−1
)−1

(Fi + Fj + FiFj)
−1

(Fi + Fj + FjFi)
−1

(
I + Fj − (I + Fi)

−1
)−1

]
.

The above discussion completes the proof.

A.3 Proof of Theorem 2

Note that according to the definition of the kernel covariance matrix we have

CX −
k∑

i=1

ωiϕ(µi)ϕ(µi)
⊤ =

k∑
i=1

[
ωi

(
E
[
ϕ(µi + Zi)ϕ(µi + Zi)

⊤]− ϕ(µi)ϕ(µi)
⊤
)]

.

Therefore, applying Jensen’s inequality for the convex Frobenius norm-squared function ∥ · ∥2F shows
that ∥∥∥CX −

k∑
i=1

ωiϕ(µi)ϕ(µi)
⊤
∥∥∥2
F

=
∥∥∥ k∑
i=1

[
ωi

(
E
[
ϕ(µi + Zi)ϕ(µi + Zi)

⊤]− ϕ(µi)ϕ(µi)
⊤
)]∥∥∥2

F

≤
k∑

i=1

[
ωi

∥∥∥E[ϕ(µi + Zi)ϕ(µi + Zi)
⊤]− ϕ(µi)ϕ(µi)

⊤
∥∥∥2
F

]

=

k∑
i=1

[
ωi

∥∥∥E[ϕ(µi + Zi)ϕ(µi + Zi)
⊤ − ϕ(µi)ϕ(µi)

⊤]∥∥∥2
F

]

≤
k∑

i=1

ωiE
[∥∥∥ϕ(µi + Zi)ϕ(µi + Zi)

⊤ − ϕ(µi)ϕ(µi)
⊤
∥∥∥2
F

]
=

k∑
i=1

ωiE
[
2− 2

(
ϕ(µi)

⊤ϕ(µi + Zi)
)2]

=

k∑
i=1

2ωiE
[
1− exp

(∥Zi∥22
σ2

)]
≤

k∑
i=1

2ωi

(
1− 1

αd
i

)
.

Note that the inequality before the last holds, since ϕ(µi + Zi)ϕ(µi + Zi)
⊤ − ϕ(µi)ϕ(µi)

⊤ is a
rank two matrix where a = ϕ(µi + Zi) and b = ϕ(µi) have both unit norms. Therefore, for the
Frobenius norm-squared of aa⊤ − bb⊤ will be equal to 2− 2(a⊤b)2. Therefore, we have

∣∣∣∥∥CX

∥∥
F
−
∥∥ k∑
i=1

ωiϕ(µi)ϕ(µi)
⊤∥∥

F

∣∣∣ ≤ ∥∥∥CX −
k∑

i=1

ωiϕ(µi)ϕ(µi)
⊤
∥∥∥
F
≤

√√√√ k∑
i=1

2ωi

(
1− 1

αd
i

)
.
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On the other hand, the special zero-covariance case of Theorem 1 shows that

∥∥ k∑
i=1

ωiϕ(µi)ϕ(µi)
⊤∥∥2

F
=

k∑
i=1

k∑
j=1

ωiωj exp(−
∥µi − µj∥22

σ2
)

Also, we know that the Gaussian kernel is always upper-bounded by 1 and thus
∥∥CX

∥∥
F

+∥∥∑k
i=1 ωiϕ(µi)ϕ(µi)

⊤
∥∥
F
≤ 2. Therefore, knowing that RKEGσ

2 (X) = − log
(
∥CX∥2F

)
shows

∣∣∣exp(−RKEGσ
2 (X)

)
−

k∑
i=1

k∑
j=1

ωiωj exp
(
−∥µi − µj∥22

σ2

)∣∣∣
=
∣∣∣∥∥CX

∥∥2
F
−

k∑
i=1

k∑
j=1

ωiωj exp
(
−∥µi − µj∥22

σ2

)∣∣∣
=
∣∣∣∥∥CX

∥∥2
F
−
∥∥ k∑
i=1

ωiϕ(µi)ϕ(µi)
⊤∥∥2

F

∣∣∣
=
∣∣∣∥∥CX

∥∥
F
+
∥∥ k∑
i=1

ωiϕ(µi)ϕ(µi)
⊤∥∥

F

∣∣∣× ∣∣∣∥∥CX

∥∥
F
−

∥∥ k∑
i=1

ωiϕ(µi)ϕ(µi)
⊤∥∥

F

∣∣∣
≤ 2

∥∥∥CX −
k∑

i=1

ωiϕ(µi)ϕ(µi)
⊤
∥∥∥
F

≤

√√√√ k∑
i=1

8ωi

(
1− 1

αd
i

)
.

The theorem’s proof is hence complete.

A.4 Proof of Theorem 3

By the continuity of PX , we have

lim
σ→0

(
πσ2

)−d/2 E
[
k2σ(X,X ′)

]
= lim

σ→0

(
πσ2

)−d/2 E
[∫

k2σ(X,x′)PX(x′)dx′
]

= lim
σ→0

E
[∫ (

πσ2
)−d/2

exp

(
−∥X − x′∥22

σ2

)
PX(x′)dx′

]
= E

[
lim
σ→0

∫ (
πσ2

)−d/2
exp

(
−∥X − x′∥22

σ2

)
PX(x′)dx′

]
= E [PX(X)]

=

∫
PX(x)2dx.

Therefore,

lim
σ→0

(
RKE2(PX) +

d

2
log(πσ2)

)
= lim

σ→0

(
− log

((
πσ2

)−d/2 E
[
k2σ(X,X ′)

]))
= − log

( ∫
PX(x)2dx

)
.
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A.5 Proof of Theorem 4

Using ∥·∥∗ to denote the nuclear norm, the following holds for every two PSD matrices A,B ∈ Rd×d

[24]:

Tr
(√

A1/2BA1/2
)

= Tr
(√

A1/2B1/2
(
A1/2B1/2

)⊤)
=

∥∥√A
√
B
∥∥
∗. (1)

Therefore, we can write

∣∣∣∣Tr(√√
CXCY

√
CX

)
− Tr

(√√√√√
√√√√ k∑

i=1

ωiϕ(µi)ϕ(µi)
⊤
( k∑
i=1

ηiϕ(ζi)ϕ(ζi)
⊤
)√√√√ k∑

i=1

ωiϕ(µi)ϕ(µi)
⊤
)∣∣∣∣

(a)
=

∣∣∣∣∥∥∥√CX

√
CY

∥∥∥
∗
−
∥∥∥
√√√√ k∑

i=1

ωiϕ(µi)ϕ(µi)
⊤

√√√√ k∑
i=1

ηiϕ(ζi)ϕ(ζi)
⊤
∥∥∥
∗

∣∣∣∣
(b)

≤
∣∣∣∣∥∥∥√CX

√
CY

∥∥∥
∗
−
∥∥∥√CX

√√√√ k∑
i=1

ηiϕ(ζi)ϕ(ζi)
⊤
∥∥∥
∗

∣∣∣∣
+

∣∣∣∣∥∥∥√CX

√√√√ k∑
i=1

ηiϕ(ζi)ϕ(ζi)
⊤
∥∥∥
∗
−

∥∥∥
√√√√ k∑

i=1

ωiϕ(µi)ϕ(µi)
⊤

√√√√ k∑
i=1

ηiϕ(ζi)ϕ(ζi)
⊤
∥∥∥
∗

∣∣∣∣
(c)

≤
∥∥∥∥√CX

(√
CY −

√√√√ k∑
i=1

ηiϕ(ζi)ϕ(ζi)
⊤
)∥∥∥∥

∗

+

∥∥∥∥(√CX −

√√√√ k∑
i=1

ωiϕ(µi)ϕ(µi)
⊤
)√√√√ k∑

i=1

ηiϕ(ζi)ϕ(ζi)
⊤
∥∥∥∥
∗

(d)

≤
∥∥√CX

∥∥
F

∥∥∥√CY −

√√√√ k∑
i=1

ηiϕ(ζi)ϕ(ζi)
⊤
∥∥∥
F

+
∥∥∥√CX −

√√√√ k∑
i=1

ωiϕ(µi)ϕ(µi)
⊤
∥∥∥
F

∥∥∥
√√√√ k∑

i=1

ηiϕ(ζi)ϕ(ζi)
⊤
∥∥∥
F

(e)
=

∥∥∥√CY −

√√√√ k∑
i=1

ηiϕ(ζi)ϕ(ζi)
⊤
∥∥∥
F
+
∥∥∥√CX −

√√√√ k∑
i=1

ωiϕ(µi)ϕ(µi)
⊤
∥∥∥
F

(f)

≤

√√√√∥∥∥CY −
k∑

i=1

ηiϕ(ζi)ϕ(ζi)
⊤
)∥∥∥

∗
+

√√√√∥∥∥CX −
k∑

i=1

ωiϕ(µi)ϕ(µi)
⊤
∥∥∥
∗

In the above, (a) holds due to the identity discussed in (1). (b) and (c) follow from the application
of triangle inequality for the absolute value and nuclear norm functions, respectively. (d) is an
application of Holder’s inequality for Schatten norms where ∥AB∥∗ ≤ ∥A∥F ∥B∥F for every pair

of matrices A,B. (e) holds because all the four matrices
√
CX ,

√
CY ,

√∑k
i=1 ωiϕ(µi)ϕ(µi)

⊤,√∑k
i=1 ηiϕ(ζi)ϕ(ζi)

⊤ have a unit Frobenius norm since the square of their eigenvalues will be the
eigenvalues of a normalized kernel covariance matrix. Finally, (f) is the result of the matrix norm
inequality that ∥

√
A−

√
B∥F ≤

√
∥A−B∥∗ for every pair of PSD matrices A,B.
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To further simplify the above upper-bound Next, we apply the Jensen’s inequality for the convex
nuclear norm-squared function which shows that∥∥∥CX −

k∑
i=1

ωiϕ(µi)ϕ(µi)
⊤
∥∥∥2
∗

=
∥∥∥ k∑
i=1

[
ωi

(
E
[
ϕ(µi + Zi)ϕ(µi + Zi)

⊤]− ϕ(µi)ϕ(µi)
⊤
)]∥∥∥2

∗

≤
k∑

i=1

[
ωi

∥∥∥E[ϕ(µi + Zi)ϕ(µi + Zi)
⊤]− ϕ(µi)ϕ(µi)

⊤
∥∥∥2
∗

]

=

k∑
i=1

[
ωi

∥∥∥E[ϕ(µi + Zi)ϕ(µi + Zi)
⊤ − ϕ(µi)ϕ(µi)

⊤]∥∥∥2
∗

]

≤
k∑

i=1

[
ωiE

[∥∥∥ϕ(µi + Zi)ϕ(µi + Zi)
⊤ − ϕ(µi)ϕ(µi)

⊤
∥∥∥2
∗

]]

≤
k∑

i=1

[
ωiE

[
4− 4

(
ϕ(µi)

⊤ϕ(µi + Zi)
)2]

=

k∑
i=1

4ωiE
[
1− exp

(∥Zi∥22
σ2

)]
≤

k∑
i=1

4ωi

(
1− 1

αd
i

)
.

The inequality before the last holds because ϕ(µi + Zi)ϕ(µi + Zi)
⊤ − ϕ(µi)ϕ(µi)

⊤ is a rank two
matrix with Frobenius norm-squared of 2− 2(ϕ(µi + Zi)

⊤ϕ(µi))
2, and since the matrix’s rank is

bounded by 2, its nuclear norm will be upper-bounded by
√
2 times its Frobenius norm. As a result

of the above inequality, we can write

∣∣∣∣Tr(√√
CXCY

√
CX

)
− Tr

(√√√√√
√√√√ k∑

i=1

ωiϕ(µi)ϕ(µi)
⊤
( k∑
i=1

ηiϕ(ζi)ϕ(ζi)
⊤
)√√√√ k∑

i=1

ωiϕ(µi)ϕ(µi)
⊤
)∣∣∣∣

≤

√√√√∥∥∥CY −
k∑

i=1

ηiϕ(ζi)ϕ(ζi)
⊤
)∥∥∥

∗
+

√√√√∥∥∥CX −
k∑

i=1

ωiϕ(µi)ϕ(µi)
⊤
∥∥∥
∗

≤ 4

√√√√ k∑
i=1

4ωi

(
1− 1

αd
i

)
+ 4

√√√√ k∑
i=1

4ηi
(
1− 1

αd
i

)

≤ 4

√√√√ k∑
i=1

32(ωi + ηi)
(
1− 1

αd
i

)
where the last inequality holds as 4

√
a + 4

√
b ≤ 4

√
8(a+ b) holds for every a, b ≥ 0, which is a

consequence of
√
a+

√
b ≤

√
2(a+ b) for every a, b ≥ 0. The proof is therefore complete.

A.6 Proof of Theorem 5

Note that according to the definition of kernel covariance matrix we have

Tr
(
CXC⊤

X

)
= Tr

(∫
p(x)ϕ(x)ϕ(x)⊤dx

∫
p(x′)ϕ(x′)ϕ(x′)⊤dx′

)
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= Tr

(∫
p(x)p(x′)ϕ(x)ϕ(x)⊤ϕ(x′)ϕ(x′)⊤dxdx′

)
=

∫
p(x)p(x′)Tr

(
ϕ(x)ϕ(x)⊤ϕ(x′)ϕ(x′)⊤

)
dxdx′

=

∫
p(x)p(x′)Tr

(
ϕ(x′)⊤ϕ(x)ϕ(x)⊤ϕ(x′)

)
dxdx′

=

∫
p(x)p(x′)k(x′,x)k(x,x′)dxdx′

=

∫
p(x)p(x′)k(x,x′)2dxdx′

= E
X,X′ iid∼PX

[
k(X,X′)2

]
,

where the last line holds since the joint density function of independent X,X′ will be the product
of the marginal density functions. Given the above result, the theorem is a direct consequence of
Proposition 1.

A.7 Proof of Theorem 6

As shown in Theorem 5, we have

exp
(
−RKE2(X)

)
= E

X,X′iid∼PX

[
k2(X,X′)

]
.

As a result, we obtain the following:

exp
(
−R̂KE2(X)

)
− exp

(
−RKE2(X)

)
=

1

n2

n∑
i=1

n∑
j=1

k(xi,xj)
2 − E

X,X′iid∼PX

[
k2(X,X′)

]
Note that according to the Cauchy-Schwarz inequality, for every x,y ∈ X we have k(x,y)2 ≤
k(x,x)k(y,y) = 1, and therefore for a normalized kernel we will have 0 ≤ k(x,y) ≤ 1 at every
x,y ∈ X . Therefore, if z1, . . . , zn are n IID samples from PX which are also independent from
x1, . . . ,xn, we will have:∣∣∣∣ 1n2

n∑
i=1

k(xi,xi)
2 − 1

n2

n∑
i=1

k(xi, zi)
2

∣∣∣∣ ≤ n

n2
− 0

n2
=

1

n
.

On the other hand, we know a complete graph of size n can be decomposed to r = ⌈n
2 ⌉ matchings

m1, . . . ,mr with [n2 ] edges. We will have the following identity given these matchings

1

n2

∑
i ̸=j

k(xi,xj)
2 =

1

n2

r∑
i=1

[n2 ]∑
t=1

k(xmi(t,0),xmi(t,1)).

As a result, we have∣∣∣∣[ 1

n2

n∑
i=1

n∑
j=1

k(xi,xj)
2
]
−
[ 1

n2

n∑
i=1

k(xi, zi)
2
]
−
[ 1

n2

r∑
i=1

[n2 ]∑
t=1

k(xmi(t,0),xmi(t,1))
]∣∣∣∣ ≤ 1

n

Now, we note that {(xi, zi)
n
i=1} are n independent samples of (X,X′), and an application of the

Hoeffding’s inequality implies that with probability 1− δ/n we have the following∣∣∣ 1
n

n∑
i=1

k(xi, zi)
2 − E

X,X′iid∼PX

[
k2(X,X′)

]∣∣∣ ≤ √
2 log(n/δ)

n
.

Similarly, every matching mt provides [n2 ] independent sample pairs of (X,X′), which implies that
with probability 1− δ/n∣∣∣ 1

[n/2]

[n/2]∑
i=1

k(xmt(i,0),xmt(i,1))
2 − E

X,X′iid∼PX

[
k2(X,X′)

]∣∣∣ ≤ √
4 log(n/δ)

n
.
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Given the above bounds, an application of the union bound shows that with probability at least
1− n× δ

n = 1− δ, we will have the following∣∣∣∣EX,X′iid∼PX

[
k2(X,X′)

]
−
[ 1

n2

n∑
i=1

k(xi, zi)
2
]
−
[ 1

n2

r∑
i=1

[n2 ]∑
t=1

k(xei(t,0),xei(t,1))
]∣∣∣∣ ≤ O

(√ log(n/δ)

n

)
,

which can be combined with the mentioned upper-bound to show that with probability at least 1− δ
the following holds∣∣∣ 1

n2

n∑
i=1

n∑
j=1

k(xi,xj)
2 − E

X,X′iid∼PX

[
k2(X,X′)

]∣∣∣ ≤ O
(√ log(n/δ)

n
+

1

n

)
= O

(√ log(n/δ)

n

)
.

Therefore, the proof is complete.

A.8 Proof of Theorem 7

Note that according to our definition, we will have

KXY = ΦXΦ⊤
Y .

We consider the SVD decomposition of matrices ΦX = UXSXV ⊤
X and ΦY = UY SY V

⊤
Y where

UX , UY are unitary matrices in Rn×n, VX , VY are unitary matrices in Rd×d, and SX , SY are semi-
diagonal matrices in Rn×d. Then, we will have

KXY = UXSXV ⊤
X VY SY U

⊤
Y .

Also, we can obtain that

CX = Φ⊤
XΦX = VXS⊤

XSXV ⊤
X , CY = Φ⊤

Y ΦY = VY S
⊤
Y SY V

⊤
Y .

As a result, we will have the following√
CX

√
CY = VX

√
S⊤
XSXV ⊤

X VY

√
S⊤
Y SY V

⊤
Y

However, since SX , SY are semi-diagonal and UX , UY are unitary matrices, we will have the same
set of non-zero singular-values for the following two matrices

singular.values
(
VX

√
S⊤
XSXV ⊤

X VY

√
S⊤
Y SY V

⊤
Y

)
= singular.values

(
UXSXV ⊤

X VY SY U
⊤
Y

)
Therefore, KXY shares the same singular values with

√
CX

√
CY . Therefore, we will have

Tr(

√√
CXCY

√
CX) =

d∑
i=1

si(
√

CX

√
CY ) =

d∑
i=1

si(KXY ) = ∥KXY ∥∗,

which due to the definition of order- 12 RRKE score completes the proof.

A.9 Additional Experimental Results

A.9.1 Effect of bandwidth on RKE

We show the effect of different bandwidths on CIFAR10, Tiny-ImageNet, and ImageNet datasets in
Figure 4. This plot indicates that the ranking of the models remains consistent for different bandwidth
parameters in the range σ ∈ [0.1, 0.5]. It is important to note that for bandwidth values σ > 0.5, the
Gaussian kernel assigns near-zero values to almost every pair of input samples, and therefore all the
RKE mode count values are close to 1. On the other hand, for smaller σ ≈ 0 bandwidth values, every
data point would be counted as a separate mode (high sensitivity to between samples distances). We
also experimented the effect of different bandwidths on StyleGAN3 with different truncation factors
in Figure 5.
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Figure 4: Effect of the bandwidth σ on the numerical evaluation
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(a) AFHQ generated samples with different ψ.
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(b) FFHQ generated samples with different ψ.

Figure 5: Effect of the bandwidth σ on StyleGAN3 with different truncation factor on AFHQ and
FFHQ dataset.

A.9.2 Can existing metrics count the number of modes?

In our experiment on Gaussian distributions, we observed that existing metrics like Recall and
Coverage are unable to quantify the number of modes. As shown in Figure 6, we have two generated
data, one with a single mode and the other with two Gaussian modes. Recall and Coverage yielded
the same results for both datasets. However, RKE-MC demonstrated the capability to count the
number of modes in this experiment accurately.

A.9.3 Different orders of Rényi entropy scores in applications of the RKE evaluation

We evaluated the matrix-based Rényi entropy score of different orders and summarized the numerical
results in Figure 7. As shown in this figure, order-2 Renyi entropy can successfully distinguish the
diversity performance of BigGAN-2048 and SAGAN.

A.9.4 Comparison between our proposed algorithms for computing the RKE score and other
algorithms

In our numerical evaluation of the RKE score, we focused on order-2 matrix-based Renyi entropy
which reduces to the Frobenius norm of the kernel matrix. This algorithm will require computation
for samples of dimension. In addition, Theorem 5 implies a randomized algorithm estimating the
expected value using empirical samples which requires computation for pairs of fresh empirical
samples. On the other hand, Dong et al. [25]’s computation method applies to a general order-α
matrix-based Renyi entropy.
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(a) Recall: 0.77, Coverage: 0.42 (b) Recall: 0.74, Coverage: 0.42

Figure 6: Recall and Coverage can not count the number of modes.
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Figure 7: Effect of different Renyi entropy orders in RKE-MC in application to ImageNet data

The table 3 shows the time (in seconds) taken by the three algorithms in performing the computation
of order-2 Renyi entropy. The results in the table indicate that Dong et al.’s method and the Frobenius
norm-based approach result in similar time complexity, while the randomized algorithm based on
empirical expected value can significantly reduce the computation time.

A.9.5 RKE-MC During Training

We trained the ContraGAN and SNGAN on CIFAR-10 data and recorded the evaluation scores every
2,000 generator iterations. As shown in Figure 8, RKE increased during the training. In Figure 9,
we can see the diversity of generated samples for 10 classes of CIFAR10 during the training of
ContraGAN.

Table 3: Comparison between algorithms for computing the RKE score

Algorithms 1000 samples 2000 samples 3000 samples

Frobenius norm (Ours) 9.12 36.35 81.85
Empirical expected value (Ours) 2.19 3.25 5.10

Dong et al. (Hutch++ based) 8.97 35.9 82.08

23



2 4 6 8 10 12 14 16 18 20

Iteration (103)

10

15

20

25

R
K

E
-M

C

ContraGAN
SNGAN

Figure 8: RKE Mode Count during training of ContraGAN and SNGAN on CIFAR10 dataset.

Figure 9: RKE Mode Count during training of Contra-GAN on CIFAR10 dataset with generated
samples from 10 classes.
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Table 4: Absolute evaluation for three image datasets. IS-diversity & IS-quality report 103 exp(H(Y ))
and 10 exp(−H(Y |X)) and RKE-MC (Mode Count) denotes exp(RKE).

Separated Inception Score

Method IS ↑ IS-diversity ↑ IS-quality ↑ FID ↓ KID ↓ RKE-MC ↑
C

IF
A

R
-1

0

Dataset 11.57 39.87 29.01 - - 39.58
NVAE 5.85 25.05 23.36 51.67 0.0502 17.65
VDVAE 10.51 38.40 27.37 37.51 0.0247 32.49
DCGAN 5.75 16.41 34.89 54.30 0.0536 10.19
WGAN-WC 2.59 35.25 7.37 157.26 0.0914 10.64
WGAN-GP 7.51 25.82 28.85 21.66 0.0106 19.07
SAGAN 8.62 28.33 30.13 10.17 0.0077 24.46
SNGAN 8.81 30.08 29.31 9.23 0.0051 25.83
ContraGAN 9.69 35.70 27.14 4.02 0.0023 29.80

Ti
ny

-I
m

ag
eN

et Dataset 33.99 60.56 56.12 - - 155.86
SAGAN 8.21 18.34 44.75 46.98 0.0531 25.68
SNGAN 8.12 18.74 43.34 48.96 0.0567 27.18
BigGAN 11.57 25.08 46.17 27.34 0.0262 39.61
ContraGAN 13.79 28.96 47.62 21.36 0.0175 56.94

Im
ag

eN
et

Dataset 357.35 370.78 96.37 - - 1823.52
SAGAN-256 29.67 35.66 83.22 44.66 0.0372 105.57
SNGAN-256 31.92 35.70 89.41 35.75 0.0391 115.62
ContraGAN-256 24.91 30.21 82.46 34.79 0.0403 152.89
BigGAN-256 28.33 31.68 89.43 33.48 0.0440 106.07
ReACGAN-256 52.53 62.24 75.05 15.65 0.0382 119.76
BigGAN-2048 96.42 104.24 92.49 0.89 0.0038 606.18
StyleGAN-XL 204.73 292.50 69.99 1.94 0.0035 1375.17
LDM-4-G 242.62 252.43 94.65 3.60 0.0036 1321.24
ADM-G 188.70 216.23 92.34 3.86 0.0036 1407.75

A.9.6 Datasets Results

We have divided the scores into absolute (Table 4) and relative scores (Table 5) where absolutes
scores reports only based on the input samples but relative scores are based on the dataset and the
generated samples.

A.9.7 The effect of standard deviation in RKE

In this experiment, we investigate the impact of standard deviation over σ. The real distribution is
two Gaussian mixtures with (−5, 0), (5, 0) as their centers with varying component std. The data and
the first 10 eigenvalues of the kernel are shown in Figure 10. RKEs with different hyperparameter p’s
are shown in Table 6.
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Table 5: Relative evaluation scores for CIFAR-10. A lower RRKE implies higher joint diversity.

Method Precision ↑ Recall ↑ Density ↑ Coverage ↑ RRKE ↓
C

IF
A

R
-1

0
NVAE 0.36 0.50 0.28 0.60 2.01
VDVAE 0.34 0.78 0.23 0.21 1.81
DCGAN 0.59 0.25 0.49 0.23 0.98
WGAN-WC 0.36 0.00 0.18 0.03 2.09
WGAN-GP 0.62 0.56 0.57 0.51 0.74
SAGAN 0.68 0.62 0.73 0.73 0.65
SNGAN 0.70 0.62 0.77 0.74 0.62
ContraGAN 0.75 0.62 0.99 0.86 0.52

Ti
ny

-I
m

ag
eN

et SAGAN 0.55 0.49 0.44 0.27 1.42
SNGAN 0.55 0.46 0.40 0.26 1.46
BigGAN 0.60 0.58 0.53 0.43 1.23
ContraGAN 0.62 0.54 0.54 0.45 1.26

Im
ag

eN
et

SAGAN 0.57 0.58 0.42 0.35 2.34
SNGAN 0.54 0.64 0.41 0.38 2.22
ContraGAN 0.67 0.51 0.64 0.33 2.54
BigGAN256 0.58 0.61 0.49 0.37 2.28
ReACGAN-256 0.74 0.42 0.79 0.73 2.20
BigGAN2048 0.71 0.58 0.80 0.65 1.83
StyleGAN-XL 0.77 0.61 0.67 0.81 1.50
LDM-4-G 0.86 0.60 0.69 0.78 1.56
ADM-G 0.82 0.64 0.66 0.82 1.47

Figure 10: 500 samples from 2D Gaussian distribution with (-5, 0) and (5, 0) as their centers and
their eigenvalue in the second row.

Table 6: RKE-MC result with different hyperparameter σ for Figure 10 samples.

σ std = 0.1 std = 0.5 std = 1 std = 1.5 std = 2

0.1 9.69 139.95 295.92 380.01 423.77
0.5 2.31 9.69 31.26 63.07 100.57
1 2.07 3.94 9.69 18.95 31.19
2 2.01 2.48 3.94 6.35 9.64
5 1.96 2.03 2.24 2.56 2.99
10 1.46 1.47 1.50 1.55 1.62
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