
Appendix A. The shape of Swimmer-v2

(a)

(d)

(b)

(e)

(c)

(f)

Figure 1: The graphs represent the change of average episodic discounted reward and average episodic
return of a linear policy actor by the value change of a single parameter in the Swimmer, where the
other parameters were fixed and we evaluated thirty times at different seeds for each policy.

Average Episode Discounted Reward = Eπ(·|s)[
∑∞
t=0 γ

trπt] ≈ 1
30

∑30
n=1

∑999
t=0 γ

trπt

Average Episode Return = Eπ(·|s)[
∑∞
t=0 r

π
t] ≈ 1

30

∑30
n=1

∑999
t=0 r

π
t

where γ = 0.99, and the architecture of the linear policy : [state dim, action dim]→ tanh

To find the reason why the previous state-of-the-art policy gradient methods, such as TRPO, PPO,
SAC, and TD3, were hard to solve the Swimmer in the Mujoco Environment, we performed an
interesting two-steps experiment. In the first step, we sat an actor, following a simple linear policy,
and executed the CEM algorithm to find an optimal policy parameters θ in the Swimmer. When the
Return value of the actor reached over 200, we saved the policy parameters θ200. In the next step,
while changing one parameter value, we evaluated the changed policy thirty times with different
seeds and recorded the all Discounted Rewards (J(S0)) and Returns. We represents the some cases
of the experiment in Figure 1.

As you can find in the Figure 1, we can discover interesting facts: 1) on the graphs (a), (d), and (f)
in Figure 1, we can find wide regions, where the gradients ∇θJ(S0) are near zero; 2) except for (b)
in Figure 1, at particular parameter value, the gradient of J(S0) and Return is steep enough to be
seen as a piece-wise; and 3) on the graphs (c), (d) and (e), the graphs are shaped like valleys neat at
those steep points. We suspected the above facts as the cause of the deceptive gradient problem of
the Swimmer, and raised the question in the Introduction. Finally, by considering those issues, we
propose the combined algorithm with TD3 and CEM.

1

Appendix B. Pseudocode of PGPS Algorithm

Algorithm 1 Coupling Policy Gradient with Population based Search Algorithm

Set hyper-parameters: TD3: lractor, lrcritic, τ, γ, and κ ; CEM: pop-size N , top K, Σinit,Σend,
and τΣ ; Mutual guidance: FTD3→CEM , βinit, and Dtarget ; Q-critic filtering: Tstart−Q and SR ;
Increasing interaction steps: Tmax, Tinit, and Tinterval

1: Initialize the mean µ of the multivariate Gaussian of the CEM
2: Initialize the TD3 actor πTD3 and TD3 critic QTD3

3: initialize replay buffer R
4: total_steps = 0
5: for generation=1:∞ do
6: if total_steps ≥ Tstart−Q then
7: pop← Q-critic Filtering(N, πelite, µ,Σ, QTD3, R)
8: else
9: pop[1]← πelite, pop[2 : N] are sampled from N(µ,Σ)

10: end if
11: if generation mod FTD3→CEM = 0 then
12: pop[N]← πTD3

13: end if

14: T = min(Tinit + 100×mod(total_steps, Tinterval), Tmax)

15: interaction_steps = 0
16: for i=1:pop_size N do
17: Set the current actor π as pop[i].
18: Returni, (st, at, rt, st+1)t=1:tend(tend≤T) ← Evaluate(π, T)
19: Fill replay buffer R with (st, at, rt, st+1)t=1:tend

20: interaction_steps = interaction_steps + tend
21: end for
22: total_steps = total_steps + interaction_steps

23: Update (πelite, µ, Σ) with the top-K Return actors

24: num_update = interaction_steps / 5
25: if generation mod FTD3→CEM = 0 and ReturnN < MEAN(Returns)-STD(Returns) then
26: for i=1:5 do
27: Sampled states 2 (SS2) are drawn from R

28: Update β =

{
β × 2 if Es∼SS2

[||πTD3(s)− πelite(s)||22] > Dtarget × 1.5

β / 2 if Es∼SS2 [||πTD3(s)− πelite(s)||22] < Dtarget / 1.5

29: Train QTD3 for num_update mini-batches from R using a standard TD3 algorithm
30: Train πTD3 for num_update mini-batches from R to minimize LA(πTD3, πelite, β)
31: end for
32: else
33: for i=1:5 do
34: Train QTD3 for num_update mini-batches from R using a standard TD3 algorithm
35: Train πTD3 for num_update mini-batches from R to minimize LO(πTD3)
36: end for
37: end if
38: end for

In contrast to a vanilla TD3[2], performing backpropagation per one step interaction with environment,
our TD3 periodically performs backpropagation alternately with the population based search of CEM.
In one update period, our TD3 carries out backpropagation as many times as the total interaction
steps contained in the former CEM evaluation. For example, if there occurred 10000 steps in CEM
evaluation, after that TD3 update its critic and actor five times, 2000 times each. This update
process is widely used in previous studies in order to stabilize the volatility of the critic [1, 3, 4].

2

In the pseudocode, LO(πTD3) is the loss function of the vanilla TD3, represented in equation
(1). LA(πTD3, πelite, β) is the augmented loss function for guided policy learning, represented in
equation (2).

For exploration, the vanilla TD3 applies action space noise by adding Gaussian noise or Ornstein-
Uhlenbeck[5] noise to the action at. However, Pourchot and Sigaud [4] empirically showed that the
action space noise does not bring performance improvement. We also could not find any improvement
potential when applying it at our TD3. So, we determined not to utilize the action space noise in the
proposed algorithms.

Algorithm 2 Function Q-critic Filtering

1: procedure Q-critic Filtering(N, πelite, µ,Σ, QTD3, R)
2: pop[1]← πelite, pop[2 : N/2] are sampled from N(µ,Σ)
3: πj=1:M(=SR∗N) are sampled from N(µ,Σ)
4: Sampled states 1 (SS1) are drawn from replay buffer R
5: for j=1:M do
6: Pj = Es∼SS1

[QTD3(SS1, πj)]
7: end for
8: pop[N/2 + 1, N]← Select policies (πs) with higher Pj among πj=1:M

9: Return pop
10: end procedure

Algorithm 3 Function Evaluate

1: procedure Evaluate(πelite, T)
2: returns, t, buffer (BF) = 0, 0, []
3: Reset environment and get initial state s0

4: while env is not done and t ≤ T do
5: Select action at = π(st)
6: Execute action at and receive reward rt and next state st+1

7: Fill BF with stat transition (st, at, rt, st+1)
8: returns = returns+ rt and t = t+ 1
9: end while

10: Return returns,BF
11: end procedure

Appendix C. Proof of Proposition 1

In this section, we prove Proposition 1.

Proposition1 If Ea∼πi(·|s)[QTD3(s, a)] ≥ Ea∼πTD3(·|s)[QTD3(s, a)] for all s,
Ea∼πi(·|s)[Qπi

(s, a)] ≥ Ea∼πTD3(·|s)[QTD3(s, a)]

Proof. For arbitrary st
VπTD3

(st)

= Eat∼πTD3(·|st)[QπTD3
(st, at)]

≤ Eat∼πi(·|st)[QπTD3
(st, at)]

= Eat∼πi(·|st)[r
πi
t + γEat+1∼πTD3(·|st+1)[QπTD3

(st+1, at+1)]

≤ Eat∼πTD3(·|st)[r
πi
t + γEat+1∼πi(·|st+1)[QπTD3

(st+1, at+1)]

= Eat∼πi(·|st)[r
πi
t + γrπi

t+1 + γ2Eat+2∼πTD3(·|st+2)[QπTD3
(st+2, at+2)]

≤ Eat∼πi(·|st)[r
πi
t + γrπi

t+1 + γ2Eat+2∼πTD3(·|st+2)[QπTD3
(st+2, at+2)]

. . .

3

≤ Eat∼πi(·|st)[r
πi
t + γrπi

t+1 + γ2rπi
t+2 + · · ·+ γ∞rπi

∞ + · · ·]
∼= Eat∼πi(·|st)[

∑∞
k=t γ

k−trπi

k]

∼= Ea∼πi(·|s)[Qπi
(s, a)]

= Vπi
(st)

From Proposition1, we assumed that having higher Ea∼πi(·|s)[QTD3(s, a)] implies having higher
Ea∼πi(·|s)[Qπi

(s, a)] among policy πi’s, which means policy πi with higher Ea∼πi(·|s)[QTD3(s, a)]
has higher probability to get better performance, compared to other polices with lower
Ea∼πi(·|s)[QTD3(s, a)]. Even we could not prove this assumption in mathematical way, but could
add credibility to it by the numerical experiment, represented in Figure 6 of the main text. Finally,
Referring the assumption, we developed a new sampling method, named Q-critic Filtering.

Appendix D. Detailed Hyperparameters Setting

Table 1 represents the architecture of the neural networks for the actor and critic in our algorithm. Table
2 shows the fixed hyperparameters for all our tasks. Table 3 shows the other varying hyperparameters
for each task.

Table 1: The architecture of the neural networks.
Actor Critic

[state dim, 400]
elu

[400, 300]
elu

[300, action dim]
tanh

[state dim + action dim, 400]
elu

[400, 300]
elu

[300, 1]
-

Table 2: Hyperparameters constant across all tasks.
Hyperparameter Value
Target weight (τ)

TD3 Actor learning rate (lractor)
TD3 Critic learning rate (lrcritic)

Discount factor (γ)
Replay buffer size

Batch size (κ)

0.005
2e-3
1e-3
0.99
1e-6
256

CEM initial covariance (Σinit)
CEM limit covariance (Σlimit)

7.5e-3
1e-5

Initial distance weight (βinit)
Target distance (Dtarget)

Sampled states 2 (SS2) size

1
0.05
512

Q-filtering start step (Tstart−Q)
Multiple sample ratio (SR)
Sampled states 1 (SS1) size

150000
50
64

Max interaction (Tmax)
Initial interaction steps (Tinit)

Interval for increasing step (Tinter)

1000
400

100000

Table 3: Hyperparameters varying across tasks.
Task Swimmer HalfCheetah Hopper Walker2d Ant

Population size (N)
top K

Frequency of TD3 to CEM (FTD3→CEM)
Decaying covariance constant (τΣ)

10
5
3

0.01

10
5
1

0.03

6
3
1

0.03

6
3
1

0.03

6
3
1

0.03

4

References
[1] Achiam, J. (2018). Openai spinning up. GitHub, GitHub repository.

[2] Fujimoto, S., Van Hoof, H., and Meger, D. (2018). Addressing function approximation error in actor-critic
methods. arXiv preprint arXiv:1802.09477.

[3] Hill, A., Raffin, A., Ernestus, M., Gleave, A., Kanervisto, A., Traore, R., Dhariwal, P., Hesse, C., Klimov,
O., Nichol, A., Plappert, M., Radford, A., Schulman, J., Sidor, S., and Wu, Y. (2018). Stable baselines.
https://github.com/hill-a/stable-baselines.

[4] Pourchot, A. and Sigaud, O. (2018). Cem-rl: Combining evolutionary and gradient-based methods for policy
search. arXiv preprint arXiv:1810.01222.

[5] Uhlenbeck, G. E. and Ornstein, L. S. (1930). On the theory of the brownian motion. Physical review,
36(5):823.

5

https://github.com/hill-a/stable-baselines

