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Our supplementary material covers the following topics: 1) lim-
itations of our algorithm, 2) potential negative societal impact of
our algorithm, 3) more details of datasets and implementation, 4)
detailed explanation for selection strategies and rule-based negative
proposals, 5) experimental results for analysis on dataset biases,
reproduced existing methods, and loss balances, and 6) qualitative
comparisons to verify the effectiveness of our negative proposals.

A LIMITATIONS
We observe that some negative proposals overlap with positive
proposals at the late training stage. This means that the positive
proposals are not sufficiently distinguished from the negative pro-
posals. Therefore, further research on contrastive learning for more
efficient discrimination could be future work.

B POTENTIAL NEGATIVE SOCIETAL IMPACT
Our algorithm can automatically localize video segments relevant
to a given natural language. This ability raises concerns about its
potential misuse by an individual or group for malevolent purposes.
For example, our algorithm could be used for automated censorship
of videos, thereby limiting the freedom of expression and open
discourse. To address this concern, we make our algorithm only
available for research purposes.

C DATASETS
Charades-STA For video moment localization tasks, Charades-
STA dataset [13], which originated from [35], provides videos of
daily indoor activities. In the videos, 7,986 videos are used for a
training set and 1,863 videos are used for a testing set. On aver-
age, the videos are 30 seconds long and have 2.4 annotated tem-
poral boundaries corresponding to the sentence queries. The size
of the vocabulary is 1,111. Among 16,128 pairs of a video and a
sentence query, there are 12,408 training data and 3,720 testing
data. Charades-STA dataset includes data from human subjects and
we are not sure if this dataset is approved by an Institutional
Review Board. Nevertheless, this dataset is still available and has
not been withdrawn. Moreover, this dataset is extensively utilized
in various applications, including but not limited to action recog-
nition, video captioning, and video moment localization. In order
to ensure fair comparisons with other weakly supervised moment
localization methods (e.g., [6, 15, 28, 51, 59]), it is imperative to
conduct evaluations using this dataset.
ActivityNet Captions For video captioning and video moment
localization tasks, ActivityNet Captions dataset [23] provides 20k
untrimmed videos from YouTube with 100k sentence queries. In
the videos, 10,009 videos are used for a training set, 4,917 videos
are used for two validation sets (𝑣𝑎𝑙1 and 𝑣𝑎𝑙2), and 5,044 videos are
used for a testing set. On average, the videos are 120 seconds long
and have 3.65 annotated temporal boundaries corresponding to the
sentence queries. The size of the vocabulary is 8,000. Among 71,953
pairs of a video and a sentence query, there are 37,417 training
data, 17,505 validating data (𝑣𝑎𝑙1), and 17,031 validating data (𝑣𝑎𝑙2).
Following [55], we use 𝑣𝑎𝑙2 as a testing set. ActivityNet Captions
dataset includes data from human subjects and we have confirmed
that this dataset is approved by the Stanford Institutional Review
Board.

Negative Proposals

(b) Uniform(a) Random

Selection

(d) Soft(c) Hard

Figure 8: Selection strategies.

TV show Retrieval For a video moment localization task, TV
show Retrieval (TVR) dataset [25] provides 21.8k videos from 6 TV
shows of diverse genres, with 109k sentence queries. Among 109K
pairs of a video and a sentence query, 87.2K pairs are used for a
training set, 10.9K pairs are used for a validation set, and 10.9K
pairs are used for a testing set. Since the testing set is preserved for
the challenge, we evaluate our method on the validation set. Each
video is 76.2 seconds long on average. The size of the vocabulary
is 57,100. TV show Retrieval dataset includes data from human
subjects and we have confirmed that this dataset is approved by
the Institutional Review Board.

D IMPLEMENTATION DETAILS
For both training and inference, the used GPU and OS are GeForce
RTX 4090 and Ubuntu 18.04.06, respectively. Following previous
methods for fair comparisons, we pre-traine the C3D on sport1M [19]
and I3D on Kinetics [7], respectively.

E DETAILS FOR SELECTION STRATEGIES
In the selection network, we use four selection strategies to se-
lect useful proposals for query prediction among multiple negative
proposals. The four selection strategies are depicted in Fig. 8. Our
selection strategies are as follows: ‘None’: select none (no negative
proposal is used), ‘Random’: randomly select one, ‘Uniform’: select
all with the same selection weights, ‘Hard’: select one with the high-
est learnable selection weight, and ‘Soft’: select all with different
learnable selection weights. Among them, the soft selection strategy
and the hard selection strategy have learnable selection weights.
Details of the soft selection strategy are described in Sec. 3.2. For
the hard selection strategy, using the last outputs from the decoder
of the mask-conditioned transformer, we can estimate𝑀 selection
weights for 𝑀 negative proposals by two fully connected layers
followed by Gumbel Softmax [16]. The selection weights can be
written as [𝑠1, 𝑠2, . . . , 𝑠𝑀 ], where 𝑠𝑚 is 0 or 1 for all𝑚.
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Table 6: Analysis on dataset biases and comparisons with fully supervised methods at R@1,IoU=0.5 on Charades-STA and at
R@1,IoU=0.3 on ActivityNet Captions. CD-iid and CD-ood are test sets of re-splitted datasets in [52].

Method Charades-STA ActivityNet Captions
original CD-iid CD-ood original CD-iid CD-ood

Fully Supervised DRN [54] 53.09 41.91 30.43 - 48.92 36.86
SCDM [53] 54.44 47.36 41.60 54.80 46.44 31.56

Weakly Supervised WS-DEC [11] - 14.06 23.67 41.98 26.06 17.00
Ours 52.47 46.83 42.94 59.12 52.86 40.33

(b) Square(a) Random

(c) Reversed Gaussian (d) Gaussian

Figure 9: Rule-based negative proposals.

F DETAILS FOR RULE-BASED NEGATIVE
PROPOSALS

We use rule-based negative proposals for comparisons with our
learning-based negative proposals. In this section, we describe de-
tails of the rule-based negative proposals, which are depicted in
Fig. 9. We define rule-based negative proposals as follows. ‘Ran-
dom’: a proposal having a value of zero at the location of a randomly
chosen area and a value of one otherwise, ‘Rule-based square’: a
proposal having a value of zero at the location of a positive proposal
and a value of one otherwise, ‘Rule-based Gaussian’: two propos-
als of Gaussians whose location is predefined outside both sides
of a positive Gaussian proposal, ‘Rule-based reversed Gaussian’:
a proposal of Gaussian that is reversed upside down by subtract-
ing a positive Gaussian proposal from a value of one, which is
proposed in [58], and ‘Rule-based variable-sized Gaussian’: ‘Rule-
based Gaussian’ whose size and location are controlled slightly by
the current training epoch, which is proposed in CPL [59].

Even though ‘Rule-based variable-sized Gaussian’ uses the cur-
riculum concept, the negative proposals are not learnable and are
always defined to be outside of the positive proposal. Therefore,
these negative proposals do not have the ability to capture var-
ious confusing locations, because confusing locations also exist
inside poorly-generated positive proposals. In contrast, we leverage
learnable negative proposals, which are trained by a dual-signed
cross-entropy loss with a changing cross-entropy weight, to capture
various confusing locations. As the cross-entropy weight changes
from minus to plus ones, our negative proposals are gradually
changed from easy to hard ones. Tab. 4 shows that our learning-
based negative proposal performs much better than the rule-based
ones.

G ANALYSIS ON DATASET BIASES
Yuan et al. [52] find that both ActivityNet-Captions and Charades-
STA datasets have notable moment annotation biases within videos.

In this section, we analyze these dataset biases using re-splitted
datasets (i.e., ActivityNet-CD and Charades-CD datasets) proposed
in [52]. As shown in Tab. 6, our method makes competitive or
higher results than the weakly supervised method [11] and fully
supervised methods [53, 54] on test sets (CD-iid and CD-ood) of
the re-splitted datasets. It means that our method is less affected
by dataset biases. The reason is that our method trains positive
and negative proposals by predicting the original sentence queries
rather than predicting the biased annotation of temporal locations.
Also, our method makes comparable results with fully supervised
methods on original datasets.

H REPRODUCED RESULTS OF EXISTING
METHODS

Even though the existing methods, CNM [58]1, CPL [59]2, and
PPS [20]3 , make impressive results and release their codes, the
results reported in the original papers are not reproduced properly
in our environment. We believe the reason is the different environ-
mental settings, so we adjust hyperparameters of CNM, CPL, and
PPS to reproduce the results in our environment. As a result, we are
able to successfully reproduce the results reported in the original
papers. Tab. 7 shows the results reported in the original papers, the
results reproduced in our environmental setting, and the results
improved by our proposed method. In the results, our method can
boost the performance of existing CNM, CPL, and PPS. This implies
that our negative proposals can contribute to high-quality positive
proposal generation through contrastive learning.

I EXPERIMENTS FOR LOSS BALANCES
To explore the best loss balances, we conduct experiments with
different weights of losses in our method. Tab. 8 provide results of
using different weight value 𝜆1 for the dual-signed cross-entropy
loss. The results show that setting 𝜆1 = 0.03 yields the best results.
High 𝜆1 causes too high cross-entropy losses of negative proposals
in the deconstruction process, resulting in the failure of gradual
negative proposal learning. Low 𝜆1 can not train the negative pro-
posals enough to capture confusing locations. Tab. 9 provide results
of different weight value 𝜆2 for the multi-triplet loss. The results
show that setting 𝜆2 = 1 yields the best results. High 𝜆2 causes too
much distinction between positive and negative proposals and then
the positive proposals only avoid the negative proposals rather than
finding query-relevant temporal location. Low 𝜆2 may deteriorate

1https://github.com/minghangz/cnm.
2https://github.com/minghangz/cpl.
3https://github.com/sunoh-kim/pps.
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Table 7: Performance of the existing methods in the original paper, the existing methods reproduced in our environment, and
the existing methods trained with our method. Bold numbers denote the best results.

Method
Charades-STA ActivityNet Captions

R@1 R@5 R@1 R@5
IoU=0.3 IoU=0.5 IoU=0.7 IoU=0.3 IoU=0.5 IoU=0.7 IoU=0.1 IoU=0.3 IoU=0.5 IoU=0.1 IoU=0.3 IoU=0.5

CNM [58] 60.39 35.43 15.45 - - - 78.13 55.68 33.33 - - -
CPL [59] 66.40 49.24 22.39 96.99 84.71 52.37 82.55 55.73 31.37 87.24 63.05 43.13
PPS [20] 69.06 51.49 26.16 99.18 86.23 53.01 81.84 59.29 31.25 95.28 85.54 71.32

CNM∗ 61.49 34.86 15.04 - - - 78.63 56.36 32.69 - - -
CPL∗ 65.80 49.87 22.36 96.90 83.34 51.14 80.31 52.09 29.68 87.29 62.24 41.69
PPS∗ 69.00 51.49 26.22 99.15 86.04 53.20 81.78 59.17 31.33 95.19 85.56 71.30

CNM+ours∗ 64.98 41.61 19.79 - - - 80.65 59.07 35.79 - - -
CPL+ours∗ 69.25 52.47 26.09 98.58 89.30 53.55 82.64 59.12 33.56 95.41 85.81 71.39
PPS+ours∗ 70.74 53.04 26.69 99.24 90.03 53.86 83.56 59.71 33.48 95.50 86.02 71.63
∗: the results in our environments.

Table 8: Comparisons of different 𝜆1 to balance the dual-signed cross-entropy loss on ActivityNet Captions.

Method 𝜆1
0 0.001 0.01 0.03 0.05 0.1 0.3 0.5 1 3 5

R@1,mIoU 27.15 31.67 33.11 38.49 36.38 36.10 35.45 34.56 33.61 33.19 30.16
R@5,mIoU 49.63 55.73 56.54 61.72 58.48 57.62 56.98 56.14 55.69 55.28 52.27

Table 9: Comparisons of different 𝜆2 to balance the multi-triplet loss on ActivityNet Captions.

Method 𝜆2
0 0.001 0.01 0.03 0.05 0.1 0.3 0.5 1 3 5

R@1,mIoU 25.45 26.52 31.19 29.04 32.33 34.40 33.36 35.53 38.49 31.79 28.75
R@5,mIoU 43.71 51.61 54.50 54.61 55.13 55.72 56.39 59.10 61.72 55.16 42.60

the ability of positive proposals to distinguish themselves from
negative proposals.

J QUALITATIVE COMPARISONS WITH
EXISTING METHODS

For qualitative comparisons, we visualize the predicted temporal
boundaries from the given query and video, as shown in Fig. 10.
Here, we visualize temporal boundaries of ground truth, our pos-
itive proposal, our negative proposals, and positive proposals of
other previous methods (i.e., CPL [59] and PPS [20]). We observe
that our positive proposals find query-relevant temporal locations
closer to the ground truth than other existing methods. Also, our
negative proposals can capture positive proposal that fails to find
a ground truth temporal boundary in upper-left and upper-right
examples of Fig. 10. Our negative proposals can capture a poorly-
generated positive proposal while the rule-based negative proposals
capture none, which is quantitatively shown in Fig. 6. By capturing
various confusing locations including poorly-generated positive
proposals, our learning-based negative proposals have higher qual-
ity than the rule-based ones, which leads to significant performance
improvement as shown in Tab. 4.

Also, we visualize our negative proposals as the training epoch
progresses in Fig. 11. Here, we visualize the ground truth temporal
boundary, the predicted temporal boundary from positive proposals
and negative proposals of our method as the training epoch pro-
gresses. The blue texts describe the events that are not relative to
the given sentence query, which can be regarded as events for the
negative proposals. At the early training stage, our negative propos-
als can capture events for easy negative, such as “Drawing a game
of hopscotch on the ground”. As the training epoch progresses, our
negative proposals can capture events for harder negative, such as
“The older child stands behind the number one and waves to the
camera” and “The lady grabs the rock”. At the late training stage,
our negative proposals can capture events for much harder nega-
tive, such as “The older child hops all the way through the game”.
By capturing confusing locations described by the various events,
our negative proposals can achieve higher performance than the
rule-based ones in Tab. 4.
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Video:

Query: The steamer is shown again steaming the wood floor and then the 

woman again, and she shows different aspects of the steamer bein

g demonstrated.

GT:

Our Pos:

Our Neg:

CPL:

PPS:

Video:

Query: The man runs down the track into a large sand pit.

GT:

Our Pos:

Our Neg:

CPL:

PPS:

Video:

Query: Finally, the little girl throws the rock and takes her turn but she en

ds up jumping pass the game before turning around coming back.

GT:

Our Pos:

Our Neg:

CPL:

PPS:

Video:

Query: A woman is seen standing before a beam and lifts herself up perfo

rming tricks.

GT:

Our Pos:

Our Neg:

CPL:

PPS:

Figure 10: Qualitative results of predicted temporal boundaries. We visualize the ground truth temporal boundary (Green), the
predicted temporal boundary from the positive proposal of our method (Red), the multiple temporal boundaries from multiple
negative proposals of our method (Blue), the predicted temporal boundary from the positive proposal of other methods, i.e.,
CPL (Orange) and PPS (Yellow).

Query: Finally, the little girl throws the rock and takes her turn but she ends up jumping pass the game before turning around coming back.

Video:

GT:

Drawing a game of hopscotch on the ground.   

1 Epoch:

15 Epoch:

30 Epoch:

The older child stands behind the number one and waves to the camera.

NegativeGT Positive

The older child hops all the way through the game.

The lady grabs the rock.

Figure 11: Qualitative results of our negative proposals changing from easy to hard ones. We visualize the ground truth temporal
boundary (Green), positive proposals (Red), and negative proposals (Blue) as the training epoch progresses. The blue texts
describe the events that are not relative to the given sentence query, which can be regarded as events for the negative proposals.
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