А **ORGANIZATION OF THE SUPPLEMENTARY MATERIAL**

In Section **B**, we describe in details the training and sampling procedures for DMMD. In Section **C**, we describe more details for the 2d experiments. In Section E, we provide more details about DKALE-Flow method. In Section F, we provide experimental details for the image datasets. In Section \mathbf{H} we provide proof for the theoretical results described in Section $\mathbf{3}$ from the main section of the paper. Finally, in Section I we present the samples from DMMD on different image datasets.

В DMMD TRAINING AND SAMPLING

B.1 MMD DISCRIMINATOR

Let $\mathcal{X} \subset \mathbb{R}^D$ and $\mathcal{P}(\mathcal{X})$ be the set of probability distributions defined on \mathcal{X} . Let $P \in \mathcal{P}(\mathcal{X})$ be the *target* or data distribution and $Q_{\psi} \in \mathcal{P}(\mathcal{X})$ be a distribution associated with a *generator* parameterized by $\psi \in \mathbb{R}^L$. Let \mathcal{H} be Reproducing Kernel Hilbert Space (RKHS), see (Schölkopf & Smola, 2018) for details, for some kernel $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$. Maximum Mean Discrepancy (MMD) (Gretton et al.) 2012) between Q_{ψ} and P is defined as $MMD(Q_{\psi}, P) = \sup_{f \in \mathcal{H}} \{\mathbb{E}_{Q_{\psi}}[f(X)] - \mathbb{E}_{P}[f(X)]\}$. Given $\overline{X^N} = \{x_i\}_{i=1}^N \sim Q_{\psi}^{\otimes N}$ and $Y^M = \{y_i\}_{i=1}^M \sim P^{\otimes M}$, an unbiased estimate of MMD² (Gretton et al., 2012) is given by

$$MMD_{u}^{2}[X^{N}, Y^{M}] = \frac{1}{N(N-1)} \sum_{i \neq j}^{N} k(x_{i}, x_{j}) +$$
(14)

$$\frac{1}{M(M-1)} \sum_{i \neq j}^{M} k(y_i, y_j) - \frac{2}{NM} \sum_{i=1}^{N} \sum_{j=1}^{M} k(x_i, y_j)$$

In MMD GAN (Bińkowski et al., 2021; Li et al., 2017), the kernel in the objective (14) is given as

$$k(x, y) = k_{\text{base}}(\phi(x; \theta), \phi(y; \theta)), \qquad (15)$$

where k_{base} is a base kernel and $\phi(\cdot; \theta) : \mathcal{X} \to \mathbb{R}^K$ are neural networks *discriminator* features with parameters $\theta \in \mathbb{R}^{H}$. We use the modified notation of $MMD_{u}^{2}[X^{N}, Y^{M}; \theta]$ for equation (14) to highlight the functional dependence on the discriminator parameters. MMD is an instance of Integral Probability Metric (IPM) (see (Arjovsky et al., 2017)) which is well defined on distributions with disjoint support unlike f-divergences (Nowozin et al., 2016). An advantage of using MMD over other IPMs (see for example, Wasserstein GAN (Arjovsky et al., 2017)) is the flexibility to choose a kernel k. Another form of MMD is expressed as a norm of a witness function

$$\mathrm{MMD}(Q_{\psi}, P) = \sup_{f \in \mathcal{H}} \{ \mathbb{E}_{Q_{\psi}}[f(X)] - \mathbb{E}_{P}[f(X)] \} = \| f_{Q_{\psi}, P} \|_{\mathcal{H}},$$

where the witness function $f_{Q_{\psi},P}$ is given as

$$f_{Q_{\psi},P}(z) = \int k(x,z)dQ_{\psi} - \int k(y,z)dP(y)$$

Given two sets of samples $X^N = \{x_i\}_{i=1}^N \sim Q_{\psi}^{\otimes N}$ and $Y^M = \{y_i\}_{i=1}^M \sim P^{\otimes M}$, and the kernel (15), the empirical witness function is given as

$$\hat{f}_{Q_{\psi},P}(z) = \frac{1}{N} \sum_{i=1}^{N} k_{\text{base}}(\phi(x_i;\theta),\phi(z;\theta)) - \frac{1}{M} \sum_{j=1}^{M} k_{\text{base}}(\phi(y_j;\theta),\phi(z;\theta))$$

The ℓ_2 penalty (Bińkowski et al.) 2021) is defined as

$$\mathcal{L}_{\ell_2}(\theta) = \frac{1}{N} \sum_{i=1}^N \|\phi(x_i;\theta)\|_2^2 + \frac{1}{N} \sum_{i=1}^N \|\phi(y_i;\theta)\|_2^2$$

Assuming that M = N and following (Bińkowski et al., 2021; Gulrajani et al., 2017), for $\alpha_i \sim$ U[0,1], where U[0,1] is a uniform distribution on [0,1], we construct $z_i = x_i \alpha_i + (1-\alpha)y_i$ for all $i = 1, \ldots, N$. Then, the gradient penalty (Bińkowski et al., 2021; Gulrajani et al., 2017) is defined as

$$\mathcal{L}_{\nabla}(\theta) = \frac{1}{N} \sum_{i=1}^{N} (\|\nabla \hat{f}_{Q_{\psi}, P}(z_i)\|_2 - 1)^2$$

810 We denote by $\mathcal{L}(\theta)$ the MMD discriminator loss given as

$$\mathcal{L}(\theta) = -\mathrm{MMD}_{u}^{2}[X^{N}, Y^{M}; \theta] = \frac{1}{N(N-1)} \sum_{i \neq j}^{N} k_{\mathrm{base}}(\phi(x_{i}; \theta), \phi(x_{j}; \theta)) + \frac{1}{M(M-1)} \sum_{i \neq j}^{M} k_{\mathrm{base}}(\phi(y_{i}; \theta), \phi(y_{j}; \theta)) - \frac{2}{NM} \sum_{i=1}^{N} \sum_{j=1}^{M} k_{\mathrm{base}}(\phi(x_{i}; \theta), \phi(y_{j}; \theta))$$

Then, the total loss for the discriminator on the two samples of data assuming that N = M is given as

$$\mathcal{L}_{\text{tot}}(\theta) = \mathcal{L}(\theta) + \lambda_{\nabla} \mathcal{L}_{\nabla}(\theta) + \lambda_{\ell_2} \mathcal{L}_{\ell_2}(\theta),$$

for some constants $\lambda_{\nabla} \ge 0$ and $\lambda_{\ell_2} \ge 0$.

B.2 NOISE-DEPENDENT MMD

In Section 4 we describe the approach to train MMD discriminator from forward diffusion using noise-dependent discriminators. For that, we assume that we are given a noise level $t \sim U[0, 1]$ where U[0, 1] is a uniform distribution on [0, 1], and a set of clean data $X^N = \{x^i\}_{i=1}^N \sim P^{\otimes N}$. Then we produce a set of noisy samples x_t^i using forward diffusion process (6). We denote these samples by $X_t^N = \{x_t^i\}_{i=1}^N$. We define noise conditional kernel

$$k(x, y; t, \theta) = k_{\text{base}}(\phi(x, t; \theta), \phi(y, t; \theta))$$

with noise conditional features $\phi(x, t; \theta)$. This allows us to define the noise conditional discriminator loss

$$\mathcal{L}(\theta, t) = -\text{MMD}_{u}^{2}[X^{N}, X_{t}^{N}, t, \theta] = \frac{1}{N(N-1)} \sum_{i \neq j}^{N} k_{\text{base}}(\phi(x_{t}^{i}; t, \theta), \phi(x_{t}^{j}; t, \theta)) + (16)$$

$$\frac{1}{N(N-1)} \sum_{i \neq j}^{N} k_{\text{base}}(\phi(x^{i}; t, \theta), \phi(x^{j}; t, \theta))$$

$$-\frac{2}{N^{2}} \sum_{i=1}^{N} \sum_{j=1}^{N} k_{\text{base}}(\phi(x^{i}; t, \theta), \phi(x_{t}^{j}; t, \theta))$$

The noise conditional ℓ_2 penalty is given as

$$\mathcal{L}_{\ell_2}(\theta, t) = \frac{1}{N} \sum_{i=1}^N \|\phi(x_t^i; t, \theta)\|_2^2 + \frac{1}{N} \sum_{i=1}^N \|\phi(x^i; t, \theta)\|_2^2$$

The noise conditional gradient penalty is given as

$$\mathcal{L}_{\nabla}(\theta, t) = \frac{1}{N} \sum_{i=1}^{N} (\|\nabla \hat{f}_{P,t}(z_i)\|_2 - 1)^2,$$

where $z_i = \alpha_i x_t^i + (1 - \alpha_i) x^i$ for $\alpha_i \sim U[0, 1]$ and the noise conditional witness function

$$\hat{f}_{P,t}(z) = \frac{1}{N} \sum_{i=1}^{N} k_{\text{base}}(\phi(x_i^t; t, \theta), \phi(z; \theta)) - \frac{1}{N} \sum_{j=1}^{N} k_{\text{base}}(\phi(x_i; t, \theta), \phi(z; \theta))$$
(17)

Therefore, the total noise conditional loss is given as

$$\mathcal{L}_{\text{tot}}(\theta, t) = \mathcal{L}(\theta, t) + \lambda_{\nabla} \mathcal{L}_{\nabla}(\theta, t) + \lambda_{\ell_2} \mathcal{L}_{\ell_2}(\theta, t),$$
(18)

for some constants $\lambda_{\nabla} \ge 0$ and $\lambda_{\ell_2} \ge 0$.

B.3 LINEAR KERNEL FOR SCALABLE MMD

Computational complexity of (18) is $O(N^2)$. Here, we assume that the base kernel is linear, i.e.

$$k_{\text{base}}(x, y) = \langle x, y \rangle$$

This allows us to simplify the MMD computation (16) as

$$MMD_{u}^{2}[X^{N}, X_{t}^{N}, t, \theta] = \frac{1}{N(N-1)} \left(\bar{\phi_{t}}(X_{t}^{N})^{T} \bar{\phi_{t}}(X_{t}^{N}) - \|\bar{\phi_{t}}\|^{2^{N}}(X_{t}) \right) + \frac{1}{N(N-1)} \left(\bar{\phi_{t}}(X^{N})^{T} \bar{\phi_{t}}(X^{N}) - \|\bar{\phi_{t}}\|^{2^{N}}(Y) \right) - \frac{2}{NN} (\bar{\phi_{t}}(X_{t}^{N}))^{T} \bar{\phi_{t}}(X^{N}), \quad (19)$$

where

$$\bar{\phi}_{t}(X_{t}^{N}) = \sum_{i=1}^{N} \phi(x_{t}^{i};\theta_{t})$$

$$\bar{\phi}_{t}(X_{t}^{N}) = \sum_{i=1}^{N} \phi(x_{t}^{i};\theta_{t})$$

$$\bar{\phi}_{t}(X^{N}) = \sum_{j=1}^{N} \phi(x_{t}^{i};\theta_{t})$$

$$\|\bar{\phi}_{t}\|^{2}(X_{t}^{N}) = \sum_{i=1}^{N} \|\phi(x_{t}^{i};\theta_{t})\|^{2}$$

$$\|\bar{\phi}_{t}\|^{2}(X^{N}) = \sum_{i=1}^{N} \|\phi(x^{i};\theta_{t})\|^{2}$$

$$\|\bar{\phi}_{t}\|^{2}(X^{N}) = \sum_{i=1}^{N} \|\phi(x^{i};\theta_{t})\|^{2}$$

$$\|\bar{\phi}_{t}\|^{2}(X^{N}) = \sum_{i=1}^{N} \|\phi(x^{i};\theta_{t})\|^{2}$$

885 886

894 895

896

897 898

899 900

901

902 903 904

871 872

873

Therefore we can pre-compute quantities $\bar{\phi}_t(X_t^N), \bar{\phi}_t(X^N), \|\bar{\phi}_t\|^2(X_t^N), \|\bar{\phi}_t\|^2(X^N)$ which takes O(N) and compute $\mathrm{MMD}_u^2[X^N, X_t^N, t, \theta]$ in O(1) time. This also leads O(1) computation complexity for \mathcal{L}_{ℓ_2} and O(N) complexity for \mathcal{L}_{∇} . This means that we simplify the computational complexity to O(N) from $O(N^2)$.

At sampling, following (9) requires to compute the witness function (17) for each particle, which for a general kernel takes $O(N^2)$ in total. Using the linear kernel above, simplifies the complexity of the witness as follows

$$\hat{f}_{P,t}(z) = \langle \bar{\phi}_t(Z^N) - \bar{\phi}_t(X^N), \phi(z;\theta) \rangle,$$

where Z^N is a set of N noisy particles. We can precompute $\overline{\phi}_t(Z^N)$ in O(N) time. Therefore one iteration of a witness function will take O(1) time and for N noisy particles it makes O(N).

B.4 APPROXIMATE SAMPLING PROCEDURE

In this section we provide an algorithm for the approximate sampling procedure. The only change with the original Algorithm 2 is the approximate witness function

$$\hat{f}_{P_t,P}^{\star}(z) = \langle \phi(z,t;\theta^{\star}), \bar{\phi}(X_t,t,\theta^{\star}) - \bar{\phi}(X_0,t,\theta^{\star}) \rangle,$$

N 7

where

905 906 907

$$\bar{\phi}(X_0, t, \theta^* = \frac{1}{N} \sum_{i=1}^N \phi(x_0^i, t; \theta^*)$$

$$\bar{\phi}(X_t, t, \theta^* = \frac{1}{N} \sum_{i=1}^N \phi(x_t^i, t; \theta^*)$$
(20)

Here x_0^i , i = 1, ..., N correspond to the whole training set of clean samples and x_t^i , i = 1, ...,correspond to the noisy version of these clean samples produced by the forward diffusion process of for a given noise level t. These features can be precomputed once for every noise level t. The resulting algorithm is given in Algorithm (3). Another crucial difference with the original algorithm is the ability to run it for each particle Z independently.

Algorithm 3 Approximate noise-adaptive MMD gradient flow for a single particle
Inputs: T is the number of noise levels
$t_{\rm max}, t_{\rm min}$ are maximum and minimum noise levels
$N_{\rm s}$ is the number of gradient flow steps per noise level
$\eta > 0$ is the gradient flow learning rate
$\bar{\phi}(X_0, t, \theta^{\star})$ - precomputed clean features for all $t = 1, \dots, T$ with (20)
$\overline{\phi}(X_t, t, \theta^{\star})$ - precomputed noisy features for all $t = 1, \dots, T$ with (20)
Steps: Sample initial noisy particle $Z \sim N(0, Id)$
for $i = T$ to 0 do
Set the noise level $t = i\Delta t$ and $Z_0^t = Z$
for $n = 0$ to $N_{\rm s} - 1$ do
$Z_{n+1}^t = Z_n^t - \eta \langle \nabla_z \phi(Z_n^t, t; \theta^\star), \phi(X_t, t, \theta^\star) - \phi(X_0, t, \theta^\star) \rangle$
end for
Set $Z = Z_N^t$
end for
Output Z

С **TOY 2-D DATASETS EXPERIMENTS**

937 For the 2-D experiments, we train DMMD using Algorithm (1) for $N_{\text{iter}} = 50000$ steps with a batch 938 size of B = 256 and a number of noise levels per batch equal to $N_{\text{noise}} = 128$. The Gradient penalty 939 constant $\lambda_{\nabla} = 0.1$ whereas the ℓ_2 penalty is not used. To learn noise-conditional MMD for DMMD, 940 we use a 4-layers MLP $q(t;\theta)$ with ReLU activation to encode $\sigma(t;\theta) = \sigma_{\min} + \text{ReLU}(q(t;\theta))$ with 941 $\sigma_{\min} = 0.001$, which ensures $\sigma(t; \theta) > 0$. The MLP layers have the architecture of [64, 32, 16, 1]. Before passing the noise level $t \in [0, 1]$ to the MLP, we use sinusoidal embedding similar to the one 942 used in (Ho et al., 2020), which produces a feature vector of size 1024. The forward diffusion process 943 from (Ho et al., 2020) have modified parameters such that corresponding $\beta_1 = 10^{-4}$, $\beta_T = 0.0002$. 944 On top of that, we discretize the corresponding process using only 1000 possible noise levels, with 945 $t_{\min} = 0.05$ and $t_{\max} = 1.0$. At sampling time for the algorithm 2, we use $t_{\min} = 0.05, t_{\max} = 1.0$, 946 $N_{\rm s} = 10$ and T = 100. The learning rate $\eta = 1.0$. As baselines, we consider MMD-GAN with a 947 generator parameterised by a 3-layer MLP with ELU activations. The architecture of the MLP is 948 [256, 256, 2]. The initial noise for the generator is produced from a uniform distribution U[-1, 1]949 with a dimensionality of 128. The gradient penalty coefficient equals to 0.1. As for the discriminator, 950 the only learnable parameter is σ . We train MMD-GAN for 250000 iterations with a batch size of 951 B = 256. Other variants of MMD gradient flow use the same sampling parameters as DMMD.

952 We used 1 a100 GPU with 40GB of memory to run these experiments. In total, all the experiments 953 took less than 2 hours. 954

D **F-DIVERGENCES**

956 957 958

959

960

961

963

964

965

966

967

955

934 935

936

The approach described in Section 4 can be applied to any divergence which has a well defined Wasserstein Gradient Flow described by a gradient of the associated witness function. Such divergences include the variational lower bounds on f-divergences, as described by (Nowozin et al., 2016), which are popular in GAN training, and were indeed the basis of the original GAN discriminator (Goodfellow et al., 2014). One such f-divergence is the KL Approximate Lower bound Estimator 962 (KALE, Glaser et al., 2021). Unlike the original KL divergence, which requires a density ratio, the KALE remains well defined for distributions with non-overlapping support. Similarly to MMD, the Wasserstein Gradient of KALE is given by the gradient of a learned witness function. Thus, we train noise-conditional KALE discriminator and use corresponding noise-conditional Wasserstein gradient flow, as with DMMD. We call this method Diffusion KALE flow (D-KALE-Flow). This approach is described in Appendix E. We found this approach to lead to reasonable empirical results, but unlike with DMMD, it achieved worse performance than a corresponding GAN, see Appendix G.1

- 968 969
- 970

972 E D-KALE-FLOW

In this section, we describe the DKALE-flow algorithm mentioned in Section D Let $\mathcal{X} \subset \mathbb{R}^D$ and $\mathcal{P}(\mathcal{X})$ be the set of probability distributions defined on \mathcal{X} . Let $P \in \mathcal{P}(\mathcal{X})$ be the *target* or data distribution and $Q \in \mathcal{P}(\mathcal{X})$ be some distribution. The KALE objective (see (Glaser et al., 2021)) is defined as

$$KALE(Q, P|\lambda) = (1+\lambda) \max_{h \in \mathcal{H}} \{1 + \int h dQ - \int e^h dP - \frac{\lambda}{2} ||h||_{\mathcal{H}}^2 \},$$
(21)

where $\lambda \ge 0$ is a positive constant and \mathcal{H} is the RKHS with a kernel k. In practice, KALE divergence (21) can be replaced by a corresponding parametric objective

$$KALE(Q, P|\lambda, \theta, \alpha) = (1+\lambda) \left(\int h(X; \theta, \alpha) dQ(X) - \int e^{h(Y; \theta, \alpha)} dP(Y) - \frac{\lambda}{2} ||\alpha||_2^2 \right),$$
(22)

where

$$h(X;\theta,\alpha) = \phi(X;\theta)^T \alpha,$$

with $\phi(X; \theta) \in \mathbb{R}^D$ and $\alpha \in \mathbb{R}^D$. The objective function (22) can then be maximized with respect to θ and α for given Q and P. Similar to DMMD, we consider a noise-conditional witness function

 $h(x;t,\theta,\alpha,\psi) = \phi(x;t,\theta)^T \alpha(t;\psi)$

From here, the noise-conditional KALE objective is given as

$$\mathcal{L}(\theta, \psi, t | \lambda) = KALE(P_t, P | \lambda, \theta, \alpha),$$

where P_t is the distribution corresponding to a forward diffusion process, see Section 4. Then, the total noise-conditional objective is given as

$$\mathcal{L}_{\text{tot}}(\theta, \psi, t | \lambda) = \mathcal{L}(\theta, \psi, t | \lambda) + \lambda_{\nabla} \mathcal{L}_{\nabla}(\theta, \psi, t) + \lambda_{\ell_2} \mathcal{L}_{\ell_2}(\theta, t),$$

where gradient penalty has similar form to WGAN-GP (Gulrajani et al., 2017)

$$\mathcal{L}_{\nabla}(\theta, \psi, t) = \mathbb{E}_{Z}(||\nabla_{Z}h(Z; t, \theta, \alpha, \psi)||_{2} - 1)^{2},$$

where $Z = \beta X + (1 - \beta)Y$, $\beta \sim U[0, 1]$, $X \sim P(X)$ and $Y \sim P(Y)$. The l2 penalty is given as

$$\mathcal{L}_{\ell_2}(\theta, t) = \frac{1}{2} \left(\mathbb{E}_{X \sim P(X)} ||\phi(X; t, \theta)||^2 + \mathbb{E}_{Y \sim P(Y)} ||\phi(Y; t, \theta)||^2 \right)$$

1005 Therefore, the final objective function to train the discriminator is

$$\mathcal{L}_{\text{tot}}(\theta, \psi | \lambda) = \mathbb{E}_{t \sim U[0,1]} \left[\mathcal{L}_{\text{tot}}(\theta, \psi, t | \lambda) \right]$$

This objective function depends on RKHS regularization λ , on gradient penalty regularization λ_{∇} and on 12-penalty regularization λ_{ℓ_2} . Unlike in DMMD, we do not use an explicit form for the witness function and do not use the RKHS parameterisation. On one hand, this allows us to have a more scalable approach, since we can compute KALE and the witness function for each individual particle. On the other hand, the explicit form of the witness function in DMMD introduces beneficial inductive bias. In DMMD, when we train the discriminator, we only learn the kernel features, i.e. corresponding RKHS. In D-KALE, we need to learn both, the kernel features $\phi(x; t, \theta)$ as well as the RKHS projections $\alpha(t; \psi)$. This makes the learning problem for D-KALE more complex. The corresponding noise adaptive gradient flow for KALE divergence is described in Algorithm $\overline{4}$. An advantage over original DMMD gradient flow is the ability to run this flow individually for each particle.

F IMAGE GENERATION EXPERIMENTS

For the image experiments, we use CIFAR10 (Krizhevsky et al., 2009) dataset. We use the same forward diffusion process as in (Ho et al., 2020). As a Neural Network backbone, we use U-

Net (Ronneberger et al., 2015) with a slightly modified architecture from (Ho et al., 2020). Our neural network architecture follows the backbone used in (Ho et al., 2020). On top of that we output the intermediate features at four levels – before down sampling, after down-sampling, before upsampling and a final layer. Each of these feature vectors is processed by a group normalization, the

1000	
1020	Algorithm 4 Noise-adaptive KALE flow for single particle
1027	Inputs: T is the number of noise levels
1028	$t_{\rm max}, t_{\rm min}$ are maximum and minimum noise levels
1029	$N_{\rm s}$ is the number of gradient flow steps per noise level
1030	$\eta > 0$ is the gradient flow learning rate
1031	Trained witness function $h(\cdot; t, \theta^{\star}, \psi^{\star})$
1032	Steps: Sample initial noisy particle $Z \sim N(0, Id)$
1033	Set $\Delta t = (t_{\max} - t_{\min})/T$
1034	for $i = T$ to 0 do
1035	Set the noise level $t = t_{\min} + i\Delta t$ and $Z_0^t = Z$
1036	for $n = 0$ to $N_{\rm s} - 1$ do
1037	$Z_{n+1}^t = Z_n^t - \eta \nabla h(Z_n^t; t, \theta^\star, \psi^\star)$
1038	end for
1030	Set $Z = Z_N^t$
1039	end for
1040	Output Z
1041	

10/2

1043 activation function and a linear layer producing an output vector of size 32. To produce the output of a discriminator features, these four feature vectors are concatenated to produce a final output feature 1045 vector of size 128. The noise level time is processed via sinusoidal time embedding similar to (Ho et al., 2020). We use a dropout of 0.2. DMMD is trained for $N_{\text{iter}} = 250000$ iterations with a batch 1046 1047 size B = 64 with number $N_{\text{noise}} = 16$ of noise levels per batch. We use a gradient penalty $\lambda_{\nabla} = 1.0$ and ℓ_2 regularisation strength $\lambda_{\ell_2} = 0.1$. As evaluation metrics, we use FID (Heusel et al.) 2018) and 1048 Inception Score (Salimans et al., 2016) using the same evaluation regime as in (Ho et al., 2020). To 1049 select hyperparameters and track performance during training, we use FID evaluated on a subset of 1050 1024 images from a training set of CIFAR10. 1051

1052 For CIFAR10, we use random flip data augmentation.

1053 In DMMD we have two sets of hyperparameters, one is used for training in Algorithm \mathbf{I} and 1054 one is used for sampling in Algorithm 2. During training, we fix the sampling parameters and 1055 always use these to select the best set of training time hyperparameters. We use $\eta = 0.1$ gra-1056 dient flow learning rate, T = 10 number of noise levels, $N_p = 200$ number of noisy particles, 1057 $N_{\rm s}=5$ number of gradient flow steps per noise level, $t_{\rm min}=0.001$ and $t_{\rm max}=1-0.001$. We 1058 use a batch of 400 clean particles during training. For hyperparameters, we do a grid search for $\lambda_{\nabla} \in \{0, 0.001, 0.01, 0.1, 1.0, 10.0\}$, for $\lambda_{\ell_2} \in \{0, 0.001, 0.01, 0.1, 1.0, 10.0\}$, for dropout rate $\{0, 0.1, 0.2, 0.3\}$, for batch size $\{16, 32, 64\}$. To train the model, we use the same optimization 1059 procedure as in (Ho et al.) (2020), notably Adam (Kingma & Ba) (2017) optimizer with a learning rate 1061 0.0001. We also swept over the dimensionality of the output layer 32, 64, 128, such that each 1062 of four feature vectors got the equal dimension. Moreover, we swept over the number of channels 1063 for U-Net $\{32, 64, 128\}$ (the original one was 32) and we found that 128 gave us the best empirical 1064 results.

After having selected the training-time hyperparameters and having trained the model, we run a sweep for the sampling time hyperparameters over $\eta \in \{1, 0.5, 0.1, 0.04, 0.01\}, T \in \{1, 5, 10, 50\},$ $N_{\rm s} \in \{1, 5, 10, 50\}, t_{\rm min} \in \{0.001, 0.01, 0.1, 0.2\}, t_{\rm max} \in \{0.9, 1 - 0.001\}$. We found that the best hyperparameters for DMMD were $\eta = 0.1, N_{\rm s} = 10, T = 10, t_{\rm min} = 0.1$ and $t_{\rm max} = 0.9$. On top of that, we ran a variant for DMMD with T = 50 and $N_{\rm s} = 5$.

For *a*-DMMD method, we used the same pretrained discriminator as for DMMD but we did an additional sweep over sampling time hyperparameters, because in principle these could be different. We found that the best hyperparameters for *a*-DMMD are $\eta = 0.04$, $t_{\min} = 0.2$, $t_{\max} = 0.9$, T = 5, $N_s = 10$.

For the denoising step, see Table 2, for DMMD-*e*, we used 2 steps of DMMD gradient flow with a higher learning rate $\eta^* = 0.5$ with $t_{max} = 0.1$ and $t_{min} = 0.001$. For *a*-DMMD-*e*, we used 2 steps of DMMD gradient flow with a higher learning rate of $\eta^* = 0.5$ with $t_{max} = 0.2$ and $t_{min} = 0.001$. For *a*-DMMD-*e*, we used 2 steps of DMMD gradient flow with a higher learning rate of $\eta^* = 0.1$ with 1079 1080 $t_{\text{max}} = 0.2$ and $t_{\text{min}} = 0.001$. The only parameter we swept over in this experiment was this higher learning rate η^* .

After having found the best hyperparameters for sampling, we run the evaluation to compute FID on the whole CIFAR10 dataset using the same regime as described in (Ho et al., 2020).

For MMD-GAN experiment, we use the same discriminator as for DMMD but on top of that we train a generator using the same U-net architecture as for DMMD with an exception that we do not use the 4 levels of features. We use a higher gradient penalty of $\lambda_{\nabla} = 10$ and the same ℓ_2 penalty $\lambda_{\ell_2} = 0.1$. We use a batch size of B = 64 and the same learning rate as for DMMD. We use a dropout of 0.2. We train MMD-GAN for 250000 iterations. For each generator update, we do 5 discriminator updates, following (Brock et al.) [2019).

For MMD-GAN-Flow experiment, we take the pretrained discriminator from MMD-GAN and run a gradient flow of type (4) on it, starting from a random noise sampled from a Gaussian. We swept over different parameters such as learning rate η and number of iterations N_{iter} . We found that none of our parameters led to any reasonable performance. The results in Table 1 are reported using $\eta = 0.1$ and $N_{\text{iter}} = 100$.

- 1096
- 097 F.1 ADDITIONAL DATASETS

We study performance of DMMD on additional datasets, MNIST (Lecun et al., 1998), on CELEB-A 1099 (64x64 (Liu et al.) 2015) and on LSUN-Church (64x64) (Yu et al., 2016). For MNIST and CELEB-A, 1100 we use the same training/test split as well as the evaluation protocol as in (Franceschi et al., 2023). 1101 For LSUN-Church, For LSUN Church, we compute FID on 50000 samples similar to DDPM (Ho 1102 et al., 2020). For MNIST, we used the same hyperparameters during training and sampling as 1103 for CIFAR-10 with NFE=100, see Appendix F For CELEB-A and LSUN, we ran a sweep over $\lambda_{\ell_2} \in \{0, 0.001, 0.01, 0.1, 1.0, 10.0\}$ and found that $\ell_2 = 0.001$ led to the best results. For sampling, 1104 we used the same parameters as for CIFAR-10 with NFE=100. The reported results in Table 4 are 1105 given with NFE=100. 1106

1107

1108 F.1.1 RESULTS ON CELEB-A, LSUN-CHURCH AND MNIST

1109 Besides CIFAR-10, we study the performance of DMMD on MNIST (Lecun et al., 1998), CELEB-A 1110 (64x64 (Liu et al., 2015) and LSUN-Church (64x64) (Yu et al., 2016). For MNIST and CELEB-1111 A, we consider the same splits and evaluation regime as in (Franceschi et al., 2023). For LSUN 1112 Church, the splits and the evaluation regime are taken from (Ho et al., 2020). For more details, see Appendix F.1. The results are provided in Table 4. In addition to DMMD, we report the 1113 performance of *Discriminator flow* baseline from (Franceschi et al., 2023) with numbers taken from 1114 the corresponding paper. We see that DMMD performance is significantly better compared to the 1115 discriminator flow, which is consistent with our findings on CIFAR-10. The corresponding samples 1116 are provided in Appendix I.2. 1117

1118

 1119
 Table 4: Unconditional image generation on additional datasets. The metric used is FID. The number of gradient flow steps for DMMD is 100.

 1121
 Description

 1121
 Description

Dataset	MMD-GAN	DDPM	DMMD	Disc. flow (Franceschi et al., 2023)
MNIST	7.0	1.94	3.0	4.0
CELEB-A 12.1	6.72	8.3	41.0	
LSUN	8.4	3.84	6.1	-

1124 1125 1126

1128

1122 1123

1127 F.2 D-KALE-FLOW DETAILS

We study performance of D-KALE-flow on CIFAR10. We use the same architectural setting as in DMMD with the only difference of adding an additional mapping $\alpha(t;\psi)$ from noise level to D dimensional feature vector, which is represented by a 2 layer MLP with hidden dimensionality of 64 and GELU activation function. We use batch size B = 256, dropout rate equal to 0.3. For sampling time parameters during training, we use $\eta = 0.5$, total number of noise levels T = 20, and number of steps per noise level $N_s = 5$. At training, we 1134 sweep over RKHS regularization $\lambda \in \{0, 1, 10, 100, 500, 1000, 2000\}$, gradient penalty $\lambda_{\nabla} \in \{0, 0.1, 1.0, 10.0, 50.0, 100.0, 250.0, 500.0, 1000.0\}$, l2 penalty in $\{0, 0.1, 0.01, 0.001\}$.

1137 F.3 NUMBER OF PARTICLES ABLATION

Number of particles. In Table 5 we report performance of DMMD depending on the number of particles N_p at sampling time. As expected as the number of particles increases, the FID score decreases, but the overall performance is sensitive to the number of particles. This motivates the approximate sampling procedure from Section 5.

Table 5: Number of particles ablation, FIDs on CIFAR10.

 $\frac{N_{\rm p} = 50}{9.76} \quad \frac{N_{\rm p} = 100}{8.55} \quad \frac{N_{\rm p} = 200}{8.31}$

1143 1144

1145

1146

1147 1148

1149 1150

1151

G PERFORMANCE VS. NUMBER OF GRADIENT FLOW STEPS TRADE-OFF

1152 Here, we provide a table showing the dependence of the performance of DMMD on number of 1153 total DMMD gradient flow steps, which we call NFE. The NFE is the total number of gradient flow 1154 iterations, which equals to $N_s T$, where N_s is the number of steps per noise level and T is the number of noise levels. By default, we use the gradient flow learning rate $\eta = 0.1$, see (9). We also found 1155 that as we increase the number of total gradient flow steps, it was sometimes beneficial to use a 1156 smaller learning rate, $\eta = 0.05$. Results are given in Table 6. We see that as we increase NFE, the 1157 FID improves up to a point (NFE = 250). After NFE=250, we do not see a further improvement. 1158 Moreover, as we noticed in our experiments, increasing the total compute at sampling time might 1159 require readjusting the gradient flow learning rate. 1160

1161

1162Table 6: Dependence of the FID on CIFAR-10 on the total number of gradient flow steps (NFE). η is1163the gradient flow learning rate, see (9).

1164	Total number of steps (NFE)	FID
1165	$10(\eta = 0.1)$	377.5
1167	$50(\eta = 0.1)$	36.4
1168	$100(\eta = 0.1)$	8.5
1169	$250(\eta = 0.1)$	12.1
1170	$250(\eta = 0.05)$	7.74
1172	$500(\eta = 0.05)$	8.6
1173	$1000(\eta = 0.05)$	9.1

1174 1175

1176 G.1 RESULTS WITH F-DIVERGENCE

We study performance of D-KALE-Flow described in Section D and Appendix E, in the setting of unconditional image generation for CIFAR-10. We compare against a GAN baseline which uses the KALE divergence in the discriminator, but has adversarially trained generator. More details are described in Appendix E and Appendix F.2. The results are given in Table 7. We see that unlike with DMMD, D-KALE-Flow achieves worse performance than corresponding KALE-GAN - indicating that the inductive bias provided by the generator may be more helpful in this case - this is a topic for future study.

1184

1186

1185 G.2 COMPUTE RESOURCES FOR IMAGE EXPERIMENTS

For all the experiments, we used A100 GPUs with 40 GB of memory. To train DMMD for 250k steps, we needed to run training for around 24 hours. The total hyperparameter sweep for DMMD

1190	gradient flow steps is 100.	ge generation on	UIII		The number of		
1191	0 1	Method	FID	Inception score			
1192		D-KALE-Flow	15.8	8.5			
1193		KALE-GAN	12.7	8.7			
1194							
1195							
1196	required 36 runs to figure ou	t regularization co	onstant	s, 12 runs to figure out batch s	ize and dropout		
1197	rate and then 3 runs to figur	e out the dimensi	onality	of the U-Net and the same 3	runs where the		
1198	leatures of the O-Net were co	oning only from	ine last	layer. This required 54 runs in	total.		
1199	Running inference on small s	ubset of CIFAR-1	0 requi	red around 2 minutes of GPU t	ime, and we ran		
1200	full grid search to select bes	t sampling time p		ers, which is around 1080 values and different event	les. We did this		
1201	rate at the second stage which	h required 5 more	nins F	pr $a = DMMD = e$ and $a = T$	MMD - a we		
1202	swept over learning rates at s	second stage whic	h requi	red 10 more runs. After having	g found the best		
1203	parameters, we run sampling with the best parameters on full CIFAR-10 which takes about 1 hour for						
1204	NFE = 100.						
1206	For additional datasets, for	MNIST we used	d the sa	me best parameters as for CI	FAR-10, which		
1207	required one run only since w	ve saw very good p	perform	ance out of the box. For CELE	B-A and LSUN,		
1208	we ran an additional sweep	over regularizatio	n streng	gth which required 6 training	runs per dataset		
1209	and 2 additional runs for sam	pling the whole d	latasets				
1210	For $MMD - GAN$, the train	ing runs were fast	er, by a	round 2-x factor. We did a grid	l search over the		
1211	regularization strengths which	h took 36 training	runs ar	d 12 runs to figure out batch si	ze and drop-out		
1212	rate.						
1213	For DKALE-flow, the expen	riment was as fast	as MN	ID - GAN and we ran a grid	l search with 67		
1214	runs for regularization and 4	runs for dropout.	The sa	me was done for $DKALE - C$	AN.		
1215							
1210	H OPTIMAL KERNEL	WITH GAUSS	ian M	MD			
1218			_				
1219	In this section, we prove the	results of Section	3. We (consider the following unnorm	alized Gaussian		
1220	Kerner	$k(x,y) = \alpha^{-d} q$	evn[_	$x = y \ ^2 / (2\alpha^2)$			
1221	For any $\mu \in \mathbb{R}^d$ and $\sigma > 0$	$m_{\alpha}(x, y) = \alpha$ the set of π is the set of \pi is the set of π is the set of π is the set of π is the set of \pi is the set of π is the set of \pi is the set of π is the set of \pi is the set of π is the set of \pi is the set of π is the set of \pi is the set of		$g_{\parallel} / (2\alpha)_{\parallel}$	and covariance		
1222	Tor any $\mu \in \mathbb{R}$ and $0 > 0$ matrix $\sigma^2 Id$. We denote MM	D^2 the MMD ² as	c Gaus	I with k More precisely for a	and covariance \mathbb{R}^d		
1223	and $\sigma_1, \sigma_2 > 0$ we have	D_{α} the MIMID as	sociate	with κ_{α} . More precisely for a	my $\mu_1, \mu_2 \in \mathbb{R}$		
1224		т э	[1 (V	\mathbf{Y}	$\mathbf{v} \mathbf{v}$		
1225	$\mathrm{MMD}_{\alpha}(\pi_{\mu_1,\sigma_1},\pi_{\mu_2,\sigma_2}) =$	$= \mathbb{E}_{\pi_{\mu_1,\sigma_1} \otimes \pi_{\mu_1,\sigma_1}}$	$[\kappa_{\alpha}(X,$	$X] = 2\mathbb{E}_{\pi_{\mu_1,\sigma_1}\otimes\pi_{\mu_2,\sigma_2}} [\kappa_{\alpha}(z)]$	(X, Y)] + (23)		
1220				$\mathbb{E}_{\pi_{\mu_2,\sigma_2}\otimes\pi_{\mu_2,\sigma_2}}[k_lpha($	[Y,Y')] .		
1227	In this section we prove the f	following result.					
1229	Proposition H.1. For any μ	$\sigma \in \mathbb{R}^d \text{ and } \sigma > 0$). let α^*	he given by			
1230	- *	· · · · · · · · · · · · · · · · · · ·		$\mathbf{D}^2()$			
1231	α	$= \arg \max_{\alpha \ge 0} \ $	$V \mu_0 WIP$	$\ \mathbf{D}_{\alpha}(\pi_{0,\sigma},\pi_{\mu_{0},\sigma})\ $.			
1232	Then, we have that	+ D I I ///	119//1	(2) (2) (2) $(1/2)$			
1233		$\alpha^{\star} = \operatorname{ReLU}(\ \mu_0$	$\ d^{2}/(d$	$(+2) - 2\sigma^2)^{1/2}$.	(24)		
1234	Before proving Proposition	H.1, let us pro	ovide s	ome insights on the result.	The quantity		
1235	$\ \nabla_{\mu_0} \text{MMD}^2_{\alpha}(\pi_{0,\sigma},\pi_{\mu_0,\sigma})\ $	represents how r	nuch th	e mean of the Gaussian π_{μ}	σ_{σ} is displaced		
1236	when considering a flow or	the mean of the	e Gaus	sian w.r.t. MMD_{α}^2 . Intuitive	ly, we aim for		
1237	$\ \nabla_{\mu_0} \mathrm{MMD}^2_{\alpha}(\pi_{0,\sigma},\pi_{\mu_0,\sigma})\ $	to be as large as p	ossible	as this represents the maximu	m displacement		
1238				0			

1188 Table 7: Unconditional image generation on CIFAR-10 with KALE-divergence. The number of 1189

1240 We show that the optimal width α^* has a closed form given by (24). It is notable that, assuming that 1241 $\sigma > 0$ is fixed, this quantity depends on $\|\mu_0\|$, i.e. how far the modes of the two distributions are.

1238

1239

width parameter α .

possible. Hence, this justifies our goal of maximizing $\|\nabla_{\mu_0} \text{MMD}_{\alpha}^2(\pi_{0,\sigma}, \pi_{\mu_0,\sigma})\|$ with respect to the

1242

This observation justifies our approach of following an *adaptive* MMD flow at inference time. Finally, 1243 we observe that there exists a threshold, i.e. $\|\mu_0\|^2/(d+2) = 2\sigma^2$ for which lower values of $\|\mu_0\|$ 1244 still yield $\alpha^{\star} = 0$. This phase transition behavior is also observed in our experiments. 1245 We define $D(\alpha, \sigma, \mu_0, \mu_1)$ for any $\alpha, \sigma > 0$ and $\mu_0, \mu_1 \in \mathbb{R}^d$ given by 1246 $D(\alpha, \sigma, \mu_0, \mu_1) = \int_{\mathbb{R}^d \times \mathbb{R}^d} k_\alpha(x, y) d\pi_{\mu_0, \sigma}(x) d\pi_{\mu_1, \sigma}(y).$ 1247 1248 **Proposition H.2.** For any $\alpha, \sigma > 0$ and $\mu_0, \mu_1 \in \mathbb{R}^d$ we have 1249 1250 $D(\alpha, \sigma, \mu_0, \mu_1) = [\alpha^2 \sigma^2 (1/\kappa^2 + 1/\alpha^2)]^{-d/2} \exp[\|\hat{\mu}_0\|^2 / (2\kappa^2) + \|\hat{\mu}_1\|^2 / (2\kappa^2)]^{-d/2}$ 1251 $-\langle \hat{\mu}_0, \hat{\mu}_1 \rangle / \alpha^2 - \|\mu_0\|^2 / (2\sigma^2) - \|\mu_1\|^2 / (2\sigma^2)].$ 1252 with 1253 1254 $\hat{\mu}_1 = (\alpha^2 \mu_1 + \kappa^2 \mu_0) / (\kappa^2 + \alpha^2),$ 1255 $\hat{\mu}_0 = (\alpha^2 \mu_0 + \kappa^2 \mu_1) / (\kappa^2 + \alpha^2),$ 1256 1257 where $\kappa = (1/\sigma^2 + 1/\alpha^2)^{-1/2}$. 1258 1259 *Proof.* In what follows, we start by computing $D(\alpha, \sigma, \mu_0, \mu_1)$ for any $\alpha, \sigma > 0$ and $\mu_0, \mu_1 \in \mathbb{R}^d$ 1260 given by 1261 $D(\alpha, \sigma, \mu_0, \mu_1) = \int_{\mathbb{R}^d \times \mathbb{R}^d} k_\alpha(x, y) d\pi_{\mu_0, \sigma}(x) d\pi_{\mu_1, \sigma}(y)$ 1262 $= 1/(2\pi\sigma^2\alpha)^d \int_{\mathbb{D}^d \times \mathbb{D}^d} \exp[-\|x-y\|^2/(2\alpha^2)] \exp[-\|x-\mu_0\|^2/(2\sigma^2)] \exp[-\|y-\mu_1\|^2/(2\sigma^2)] dxdy$ 1263 1264 $= 1/(2\pi\sigma^2\alpha)^d \int_{\mathbb{R}^d \times \mathbb{R}^d} \exp[-\|x-y\|^2/(2\alpha^2) - \|x-\mu_0\|^2/(2\sigma^2) - \|y-\mu_1\|^2/(2\sigma^2)] dxdy.$ 1265 In what follows, we denote $\kappa = (1/\sigma^2 + 1/\alpha^2)^{-1/2}$. We have 1266 1267 $\mathbf{D}(\alpha,\sigma,\mu_0,\mu_1) = C(\mu_0,\mu_1) \int_{\mathbb{R}^d \times \mathbb{R}^d} \exp[-\|x\|^2/(2\kappa^2) - \|y\|^2/(2\kappa^2) + \langle x,y \rangle/\alpha^2 + \langle x,\mu_0 \rangle/\sigma^2 + \langle y,\mu_1 \rangle/\sigma^2] \mathrm{d}x \mathrm{d}y,$ 1268 1269 with $C(\mu_0, \mu_1) = 1/(2\pi\sigma^2 \alpha)^d \exp[-\|\mu_0\|^2/(2\sigma^2) - \|\mu_1\|^2/(2\sigma^2)]$. In what follows, we denote 1270 P(x, y) the second-order polynomial given by 1271 $P(x,y) = \|x\|^2 / (2\kappa^2) + \|y\|^2 / (2\kappa^2) - \langle x, y \rangle / \alpha^2 - \langle x, \mu_0 \rangle / \sigma^2 - \langle y, \mu_1 \rangle / \sigma^2.$ 1272 1273 Note that we have 1274 $D(\alpha, \sigma, \mu_0, \mu_1) = C(\mu_0, \mu_1) \int_{\mathbb{D}^d \times \mathbb{D}^d} \exp[-P(x, y)] dx dy.$ (25)1275 1276 Next, for any $\hat{\mu}_0, \hat{\mu}_1 \in \mathbb{R}^d$, we consider Q(x, y) given by 1277 $Q(x,y) = \|x - \hat{\mu}_0\|^2 / (2\kappa^2) + \|y - \hat{\mu}_1\|^2 / (2\kappa^2) - \langle x - \hat{\mu}_0, y - \hat{\mu}_1 \rangle / \alpha^2$ 1278 $= \|x\|^{2}/(2\kappa^{2}) + \|\hat{\mu}_{0}\|^{2}/(2\kappa^{2}) + \|y\|^{2}/(2\kappa^{2}) + \|\hat{\mu}_{1}\|^{2}/(2\kappa^{2}) - \langle x, \hat{\mu}_{0} \rangle/\kappa^{2} - \langle y, \hat{\mu}_{1} \rangle/\kappa^{2} - \langle x - \hat{\mu}_{0}, y - \hat{\mu}_{1} \rangle/\alpha^{2}$ 1279 1280 $= \|x\|^{2}/(2\kappa^{2}) + \|\hat{\mu}_{0}\|^{2}/(2\kappa^{2}) + \|y\|^{2}/(2\kappa^{2}) + \|\hat{\mu}_{1}\|^{2}/(2\kappa^{2}) - \langle x, \hat{\mu}_{0} \rangle/\kappa^{2} - \langle y, \hat{\mu}_{1} \rangle/\kappa^{2}$ 1281 $-\langle x,y\rangle/\alpha^2 - \langle \hat{\mu}_0, \hat{\mu}_1\rangle/\alpha^2 + \langle y, \hat{\mu}_0\rangle/\alpha^2 + \langle x, \hat{\mu}_1\rangle/\alpha^2$ 1282 $= P(x,y) + \|\hat{\mu}_0\|^2 / (2\kappa^2) + \|\hat{\mu}_1\|^2 / (2\kappa^2) - \langle x, \hat{\mu}_0 \rangle / \kappa^2 - \langle y, \hat{\mu}_1 \rangle / \kappa^2 + \langle x, \mu_0 \rangle / \sigma^2 + \langle y, \mu_1 \rangle / \sigma^2$ 1283 1284 $-\langle \hat{\mu}_0, \hat{\mu}_1 \rangle / \alpha^2 + \langle y, \hat{\mu}_0 \rangle / \alpha^2 + \langle x, \hat{\mu}_1 \rangle / \alpha^2$ 1285 $= P(x, y) + \|\hat{\mu}_0\|^2 / (2\kappa^2) + \|\hat{\mu}_1\|^2 / (2\kappa^2) - \langle \hat{\mu}_0, \hat{\mu}_1 \rangle / \alpha^2$ 1286 $+ \langle x, \mu_0/\sigma^2 - \hat{\mu}_0/\kappa^2 + \hat{\mu}_1/\alpha^2 \rangle + \langle y, \mu_1/\sigma^2 - \hat{\mu}_1/\kappa^2 + \hat{\mu}_0/\alpha^2 \rangle.$ 1287 1288 In what follows, we set $\hat{\mu}_0, \hat{\mu}_1$ such that 1289 $\mu_1 / \sigma^2 = \hat{\mu}_1 / \kappa^2 - \hat{\mu}_0 / \alpha^2$ 1290 1291 $\mu_0 / \sigma^2 = \hat{\mu}_0 / \kappa^2 - \hat{\mu}_1 / \alpha^2.$ 1292 We get that 1293 $\hat{\mu}_1 = (\mu_1 / (\sigma^2 \kappa^2) + \mu_0 / (\sigma^2 \alpha^2)) / (1 / \kappa^4 - 1 / \alpha^4),$ 1294 1295 $\hat{\mu}_0 = (\mu_0 / (\sigma^2 \kappa^2) + \mu_1 / (\sigma^2 \alpha^2)) / (1 / \kappa^4 - 1 / \alpha^4).$

296	We have that	
297 298	$\sigma^2(1/\kappa^4 - 1/\alpha^4) = \sigma^2(1/\sigma^4 + 2/(\sigma^2\alpha^2)) = 1/\sigma^2 + 2/\alpha^2 = 1/\kappa^2 + 1/\alpha^2.$	(26)
299	Therefore we get that	
300	$\hat{a} = (1 + 1)^2 + (1 + 2)^2 (1 + 2)^2$	
301	$\mu_1 = (\mu_1/\kappa + \mu_0/\alpha)/(1/\kappa + 1/\alpha),$	
302	$\hat{\mu}_0 = (\mu_0/\kappa^2 + \mu_1/\alpha^2)/(1/\kappa^2 + 1/\alpha^2).$	
303	Finally, we get that	
305	$\hat{\mu}_1 = (\alpha^2 \mu_1 + \kappa^2 \mu_0) / (\kappa^2 + \alpha^2),$	
306	$\hat{\mu}_0 = (\alpha^2 \mu_0 + \kappa^2 \mu_1)/(\kappa^2 + \alpha^2).$	
307	With this choice we get that	
308	$D(x,y) = O(x,y) = \ \hat{x}\ ^2 / (2y^2) = \ \hat{x}\ ^2 / (2y^2) + \langle \hat{x}, \hat{y} \rangle / (2y^2)$	(27)
310	$P(x,y) = Q(x,y) - \ \mu_0\ / (2\kappa) - \ \mu_1\ / (2\kappa) + \langle\mu_0,\mu_1\rangle / \alpha$	(27)
311	We also have that for any $x, y \in \mathbb{R}^d$	
312	$(1, \alpha) = (1, \alpha) \left(x - \hat{\mu}_0 \right)^\top \left(\text{Id}/\kappa^2 - \text{Id}/\alpha^2 \right) \left(x - \hat{\mu}_0 \right)$	
313	$Q(x,y) = (1/2) \begin{pmatrix} y - \hat{\mu}_1 \end{pmatrix} \begin{pmatrix} -\operatorname{Id}/\alpha^2 & \operatorname{Id}/\kappa^2 \end{pmatrix} \begin{pmatrix} y - \hat{\mu}_1 \end{pmatrix}$	
314	Using this result we have that	
315	$\int \operatorname{com}[O(m, x)] = (2\pi)^d \operatorname{det}(\Sigma^{-1})^{-1/2}$	(29)
317	$\int_{\mathbb{R}^d \times \mathbb{R}^d} \exp[-Q(x, y)] = (2\pi)^u \det(2^{-1})^{-1/2},$	(28)
318	with $(11/2)$	
19	$\Sigma^{-1} = \begin{pmatrix} \operatorname{Id}/\kappa^{-} & -\operatorname{Id}/\alpha^{-} \\ -\operatorname{Id}/\alpha^{2} & \operatorname{Id}/\kappa^{2} \end{pmatrix}.$	
320	Using (26) we get that	
22	$\det(\Sigma^{-1}) = [(1/\sigma^2)(1/\kappa^2 + 1/\alpha^2)]^d.$	
323	Combining this result and (28) we get that	
324	$\int \exp[-O(x,y)] = (2\pi)^d [(1/\sigma^2)(1/v^2 + 1/\sigma^2)]^{-d/2}$	
325	$\int_{\mathbb{R}^d \times \mathbb{R}^d} \exp[-\mathbb{Q}(x, y)] = (2\pi) \left[(1/\delta_{-})(1/\kappa_{-} + 1/\alpha_{-}) \right]^{-1} \cdot 1$	
326	Combining this result, (27) and (25) we get that	
28	$D(\alpha, \sigma, \mu_0, \mu_1) = C(\mu_0, \mu_1) \exp[\ \hat{\mu}_0\ ^2 / (2\kappa^2) + \ \hat{\mu}_1\ ^2 / (2\kappa^2) - \langle\hat{\mu}_0, \hat{\mu}_1\rangle / \alpha^2] (2\pi)^d [(1/\sigma^2)(1/\sigma^2) + \ \hat{\mu}_1\ ^2 / (2\kappa^2) - \langle\hat{\mu}_0, \hat{\mu}_1\rangle / \alpha^2] (2\pi)^d [(1/\sigma^2)(1/\sigma^2) + \ \hat{\mu}_1\ ^2 / (2\kappa^2) - \langle\hat{\mu}_0, \hat{\mu}_1\rangle / \alpha^2] (2\pi)^d [(1/\sigma^2)(1/\sigma^2) + \ \hat{\mu}_1\ ^2 / (2\kappa^2) - \langle\hat{\mu}_0, \hat{\mu}_1\rangle / \alpha^2] (2\pi)^d [(1/\sigma^2)(1/\sigma^2) + \ \hat{\mu}_1\ ^2 / (2\kappa^2) - \langle\hat{\mu}_0, \hat{\mu}_1\rangle / \alpha^2] (2\pi)^d [(1/\sigma^2)(1/\sigma^2) + \ \hat{\mu}_1\ ^2 / (2\kappa^2) - \langle\hat{\mu}_0, \hat{\mu}_1\rangle / \alpha^2] (2\pi)^d [(1/\sigma^2)(1/\sigma^2) + \ \hat{\mu}_1\ ^2 / (2\kappa^2) - \langle\hat{\mu}_0, \hat{\mu}_1\rangle / \alpha^2] (2\pi)^d [(1/\sigma^2)(1/\sigma^2) + \ \hat{\mu}_1\ ^2 / (2\kappa^2) - \langle\hat{\mu}_0, \hat{\mu}_1\rangle / \alpha^2] (2\pi)^d [(1/\sigma^2)(1/\sigma^2) + \ \hat{\mu}_1\ ^2 / (2\kappa^2) - \langle\hat{\mu}_0, \hat{\mu}_1\rangle / \alpha^2] (2\pi)^d [(1/\sigma^2)(1/\sigma^2) + \ \hat{\mu}_1\ ^2 / (2\kappa^2) - \langle\hat{\mu}_0, \hat{\mu}_1\rangle / \alpha^2] (2\pi)^d [(1/\sigma^2)(1/\sigma^2) + \ \hat{\mu}_1\ ^2 / (2\kappa^2) - \langle\hat{\mu}_0, \hat{\mu}_1\rangle / \alpha^2] (2\pi)^d [(1/\sigma^2)(1/\sigma^2) + \ \hat{\mu}_1\ ^2 / \alpha^2)]$	$\kappa^2 + 1/\alpha^2)]^{-d/2}.$
29	Therefore, we get that	
30	$D(\alpha, \sigma, \mu_{0}, \mu_{1}) = [\alpha^{2} \sigma^{2} (1/r^{2} + 1/\alpha^{2})]^{-d/2} \exp[\ \hat{\mu}_{0}\ ^{2} / (2r^{2}) + \ \hat{\mu}_{1}\ ^{2} / (2r^{2})]^{-d/2}$	
31	$D(\alpha, 0, \mu_0, \mu_1) = [\alpha \ 0 \ (1/n + 1/\alpha)] \qquad \exp[\ \mu_0\ / (2n) + \ \mu_1\ / (2n)]$	
332	$- \langle \mu_0, \mu_1 \rangle / \alpha - \ \mu_0 \ / (2\sigma) - \ \mu_1 \ / (2\sigma)].$	
34		
335	We investigate two special cases of Proposition H 2	
336		
37	First, we snow that if $\mu_0 = \mu_1$ then $D(\alpha, \sigma, \mu_0, \mu_0)$ does not depend on μ_0 .	
338	Proposition H.3. For any $\alpha, \sigma > 0$ and $\mu_0 \in \mathbb{R}^d$ we have $D(\alpha, \sigma, \mu_0, \mu_0) = (\alpha^2 + 2\sigma^2)^{-d/2}$.	
340	<i>Proof</i> We have that $\hat{\mu}_0 = \hat{\mu}_1 = \mu_0$ in Proposition H 2. In addition, we have that	
341	(1/0.2) + (1/0.2) + (1/0.2) + 1/(0.2) + 1/(0.2) = 0	
342	$(1/2\kappa^{-}) + (1/2\kappa^{-}) - 1/\alpha^{2} - 1/(2\sigma^{2}) - 1/(2\sigma^{2}) = 0.$	
343	Therefore, we have that	
344	$\exp[\ \hat{\mu}_0\ ^2/(2\kappa^2) + \ \hat{\mu}_1\ ^2/(2\kappa^2) - \langle\hat{\mu}_0, \hat{\mu}_1\rangle/\alpha^2 - \ \mu_0\ ^2/(2\sigma^2) - \ \mu_1\ ^2/(2\sigma^2)] = 1,$	
346	which concludes the proof upon using that $1/\kappa^2 = 1/\alpha^2 + 1/\sigma^2$.	
47		
348	Proposition H.3 might seem surprising at first but in fact it simply highlights the fact that w	vhen

1349 trying to differentiate a Gaussian measure with itself, the result is independent of the location of the Gaussian and only depends on its scale. Then, we study the case where $\mu_1 = 0$.

1350 **Proposition H.4.** For any $\alpha, \sigma > 0$ and $\mu_0 \in \mathbb{R}^d$ we have 1351 $D(\alpha, \sigma, \mu_0, 0) = (\alpha^2 + 2\sigma^2)^{-d/2} \exp[-\|\mu_0\|^2 / (2(\alpha^2 + 2\sigma^2))].$ 1352 1353 *Proof.* First, we have that 1354 $\hat{\mu}_0 = \alpha^2 / (\kappa^2 + \alpha^2)^2 \mu_0, \qquad \hat{\mu}_1 = \kappa^2 / (\kappa^2 + \alpha^2)^2 \mu_0.$ 1355 1356 Therefore, we get that $\mathbf{D}(\alpha, \sigma, \mu_0, 0) = [\sigma^2 (1/\kappa^2 + 1/\alpha^2)]^{d/2} \exp[(1/2)\{(\alpha^4/\kappa^2 - \kappa^2)/(\kappa^2 + \alpha^2) - 1/\sigma^2\} \|\mu_0\|^2]$ 1357 1358 Using (26) we get that 1359 $\alpha^4/\kappa^2 - \kappa^2 = \alpha^2(\alpha^2 + \kappa^2)/\sigma^2.$ 1360 Therefore, we get that 1361 $(\alpha^4/\kappa^2 - \kappa^2)/(\kappa^2 + \alpha^2) - 1/\sigma^2 = (\alpha^2/(\alpha^2 + \kappa^2) - 1)/\sigma^2 = -1/(\alpha^2(1 + 2\sigma^2/\alpha^2)),$ 1362 1363 which concludes the proof. 1364 Using Proposition H.3, Proposition H.4 and definition (23), we have the following result. 1365 1366 **Proposition H.5.** For any $\alpha, \sigma > 0$ and $\mu_0 \in \mathbb{R}^d$ we have 1367 $MMD^{2}(\pi_{0,\sigma}, \pi_{\mu_{0},\sigma}) = 2(\alpha^{2} + 2\sigma^{2})^{-d/2}(1 - \exp[-\|\mu_{0}\|^{2}/(2(\alpha^{2} + 2\sigma^{2}))]).$ 1368 In addition, we have 1369 $\nabla_{\mu_0} \text{MMD}^2(\pi_{0,\sigma}, \pi_{\mu_0,\sigma}) = -2(\alpha^2 + 2\sigma^2)^{-d/2 - 1} \exp[-\|\mu_0\|^2 / (2(\alpha^2 + 2\sigma^2))]\mu_0.$ 1370 1371 Finally, we have the following proposition. 1372 **Proposition H.6.** For any $\mu_0 \in \mathbb{R}^d$ and $\sigma > 0$ let α^* be given by 1373 $\alpha^{\star} = \operatorname{argmax}_{\alpha > 0} \| \nabla_{\mu_0} \mathrm{MMD}^2(\pi_{0,\sigma}, \pi_{\mu_0,\sigma}) \|.$ 1374 1375 Then, we have that $\alpha^{\star} = \operatorname{ReLU}(\|\mu_0\|^2/(d+2) - 2\sigma^2)^{1/2}.$ 1376 1377 1378 *Proof.* Let $\sigma > 0$ and $\mu_0 \in \mathbb{R}^d$. First, using Proposition H.5, we have that for 1379 $\|\nabla_{\mu_0} \text{MMD}^2(\pi_{0,\sigma}, \pi_{\mu_0,\sigma})\|^2 = 4\alpha^{2d} \|\mu_0\|^2 (\alpha^2 + 2\sigma^2)^{-d-2} \exp[-\|\mu_0\|^2 / (\alpha^2 + 2\sigma^2)].$ 1380 Next, we study the function $f: [0, t_0] \to \mathbb{R}$ given for any $t \in [0, t_0]$ by 1381 $f(t) = t^{d+2} \exp[-t \|\mu_0\|^2],$ 1382 1383 with $t_0 = 1/(2\sigma^2)$. We have that 1384 $f'(t) = t^{d+1} \exp[-t\|\mu_0\|^2]((d+2) - \|\mu_0\|^2 t).$ 1385 We then consider two cases. First, if $t_0 \leq (d+2)/||\mu_0||^2$, i.e. $\sigma^2 \leq ||\mu_0||^2/(2(d+2))$, then f is 1386 increasing on $[0, t_0]$ and we have that f is maximum if $t = t_0$. Hence, if $\sigma^2 \leq ||\mu_0||^2/(2(d+2))$, we have that $\alpha^* = 0$. Second, if $t_0 \leq (d+2)/||\mu_0||^2$, i.e. $\sigma^2 \leq ||\mu_0||^2/(2(d+2))$ then f is increasing on $[0, t^*]$, non-increasing on $[t^*, t_0]$ with $t^* = (d+2)/||\mu_0||^2$ and we have that f is maximum if 1387 1388 1389 $t = t^{\star}$. Hence, if $\sigma^2 \geq \|\mu_0\|^2/(2(d+2))$, we have that $\alpha^{\star} = (\|\mu_0\|^2/(d+2) - 2\sigma^2)^{1/2}$, which 1390 concludes the proof. 1391 1392 H.1 PHASE TRANSITION BEHAVIOUR 1393 1394 Ι IMAGE GENERATION SAMPLES 1395 1396 I.1 CIFAR10 SAMPLES Samples from DMMD with NFE=100 and NFE=250 are given in Figure 4. Samples from DMMD 1399 with NFE=100 and from *a*-DMMD with NFE=50 are given in Figure 5 1400 1401 I.2 ADDITIONAL DATASETS SAMPLES 1402 Samples for MNIST are given in Figure 6, for CELEB-A (64x64) are given in Figure 7 and for LSUN 1403

Church (64x64) are given in Figure 8

Figure 3: Evolution of the norm of the mean μ_t of the Gaussian distribution $\pi_{\mu_t,\sigma}$ according to a gradient flow on the mean μ_t w.r.t. MMD_{α_t} . In the *adaptive* case α_t is given by Proposition 3.1 while in the *non adaptive* case, $\alpha_t = \alpha_0 = 1$. In our experiment we consider d = 1 and $\sigma = 1$, for illustration purposes.

Figure 4: CIFAR-10 samples from DMMD with NFE=250 on the left and with NFE=100 on the right

Figure 5: CIFAR-10 samples from DMMD with NFE=100 on the left and samples from the a-DMMD-e with NFE=50 on the right

1458			
1459			
1460			
1461			
1462			
1463			
1464			
1465			
1466			
1467			
1468			
1469			
1470			
1471			
1472			
1473			
1474			
1475			
1476			
1477			
1478			
1479			
1480			
1481			
1482			
1483			
1484			
1485			
1486			
1487			
1488			
1489			2
1490			-
1491			
1492			
1493			
1494			
1495			9
1496			1
1497			
1498			
1499			
1500			
1501			
1502			
1503			
1504			
1505			8
1506			
1507			
1508			
1509			
1510			

Figure 6: DMMD samples for MNIST.

Figure 7: DMMD samples for CELEB-A (64x64).

Figure 8: DMMD samples for LSUN Church (64x64).