Under review as a conference paper at ICLR 2025

A ORGANIZATION OF THE SUPPLEMENTARY MATERIAL

In Section B} we describe in details the training and sampling procedures for DMMD. In Section [C]
we describe more details for the 2d experiments. In Section [E, we provide more details about
DKALE-Flow method. In Section [F} we provide experimental details for the image datasets. In
Section[H, we provide proof for the theoretical results described in Section 3| from the main section
of the paper. Finally, in Section[[we present the samples from DMMD on different image datasets.

B DMMD TRAINING AND SAMPLING

B.1 MMD DISCRIMINATOR

Let X C RP and P(X) be the set of probability distributions defined on X. Let P € P(X) be the
target or data distribution and @, € P(X’) be a distribution associated with a generator parameterized

by ¢ € R¥. Let H be Reproducing Kernel Hilbert Space (RKHS), see (Scholkopf & Smola, [2018)
for details, for some kernel k£ : X x X — R. Maximum Mean Discrepancy (MMD) (Gretton et al.|
2012) between @, and P is defined as MMD(Qy,, P) = sup g, {Eq,, [f(X)] — Ep[f(X)]}. Given

XN ={a N, ~ Q%N and YM = {y}M ~ P®M an unbiased estimate of MMD? (Gretton
et al.| 2012) is given by
, N
MMDZLXY, M) = b S, ()4 (14)

M N M
m Zi;éj k(yi, Z/J') - ﬁ Zi:l Zj:l k(xi, yj)-
In MMD GAN (Binkowski et al.| 2021} [Li et al.| 2017)), the kernel in the objective is given as
k(x,y) = kpase(D(2;0), 9(y; 0)), (15)

where kp,se is a base kernel and ¢(+;0) : X — RX are neural networks discriminator features with
parameters § € R, We use the modified notation of MMD?2[X ™, Y™ 4] for equation (14) to
highlight the functional dependence on the discriminator parameters. MMD is an instance of Integral
Probability Metric (IPM) (see (Arjovsky et al.,|2017)) which is well defined on distributions with
disjoint support unlike f-divergences (Nowozin et al.,|2016). An advantage of using MMD over other
IPMs (see for example, Wasserstein GAN (Arjovsky et al., 2017)) is the flexibility to choose a kernel
k. Another form of MMD is expressed as a norm of a witness function

MMD(Qy, P) = ;lelg{EQw [F(XO] =Ep[f (XN} = lfay. Pl

where the witness function fq, p is given as

four(a) = [K20y~ [k 2)aP)

Given two sets of samples XV = {z;}¥, ~ Q%N and YM = {y,}M ~ P®M and the kernel
(15)), the empirical witness function is given as

) 1 Y 1
fq,.p(2) = ~ Z oase (d(x430), ¢(2;0)) — i Z pase (0(y530), ¢(2;0))
im1 =1

The /5 penalty (Birikkowski et al., 2021) is defined as
N

N
1 1
Lo, (0) = N Z ll(x:;0)|15 + N Z (v 0)|13
i=1 i=1
Assuming that M = N and following (Binkowski et al., [2021; |Gulrajani et al., |2017), for o; ~
U|0, 1], where U0, 1] is a uniform distribution on [0, 1], we construct z; = x;a; + (1 — «)y; for all
i=1,..., N. Then, the gradient penalty (Binkowski et al.|[2021} |Gulrajani et al.,[2017) is defined as

1 N

Ly(0) =+ > (Vg p(zil2 —1)°

=1

15

Under review as a conference paper at ICLR 2025

We denote by £(#) the MMD discriminator loss given as

M
L(0) = —MMD;[XN, Y™ 6] = gra— 1);% (:;0 ,as(a:j;o))+mgkbmw(yi;e)w(yﬁe))
1#£] ax

_ﬁ Zi\il Zj]\/il kbase(¢(xi; 0)7 ¢(yj; 9))

Then, the total loss for the discriminator on the two samples of data assuming that N = M is given as
Liot(0) = L(O) + Av L (0) + N, Lo, (0),

for some constants Ay > 0 and A\, > 0.

B.2 NOISE-DEPENDENT MMD

In Section[4, we describe the approach to train MMD discriminator from forward diffusion using
noise- dependent discriminators. For that, we assume that we are given a noise level ¢t ~ U [O,%J
where U[0, 1] is a uniform distribution on [0 1] and a set of clean data XV = {2/}, ~ PN,
Then we produce a set of noisy samples :z:t using forward diffusion process @ We denote these
samples by X}V = {2} ;. We define noise conditional kernel

k(x,y;t,0) = koase(0(2, ;0), 6(y, t;0)),

with noise conditional features ¢(x, ¢; #). This allows us to define the noise conditional discriminator
loss

N
L(0,t) = —MMDZ[XV, XN, ,0] = 5= D koase($(a11,0), 6(a;1,0)+ (16)
i#£j
N . .
m Z kjbase(d)(mz; t7 9)7 (b(‘rj ; ta 9))
i#]

— % Sisy Yy Kase (B(a51,6), (a3 ,6))

The noise conditional /5 penalty is given as

1 N

N
i 1 i
Lo(6,1) = 55 D lloit. O3+ 5 Y o' £,0)13
i=1 i=1

The noise conditional gradient penalty is given as

N

Lo(0.8) = 5 S (IVFpean)ll ~ 1)

=1

where 2; = a2t + (1 — ;) for a; ~ U|0, 1] and the noise conditional witness function

fPt Zkbase $ t 9) Zkbase xz;t79)7¢(2;0)) (17)

Therefore, the total noise conditional loss is given as

Liot(0,t) = L(0,t) + AvLv(0,t) + A, Lo, (0,1), (18)
for some constants Ay > 0 and Az, > 0.
B.3 LINEAR KERNEL FOR SCALABLE MMD

Computational complexity of is O(N?). Here, we assume that the base kernel is linear, i.e.

kbase(xv y) = <£C, y>

16

Under review as a conference paper at ICLR 2025

This allows us to simplify the MMD computation (16} as

MMD?[x ™, XN, t,6] = (68X — llgnl?™ (X)) +

N(N-1)
v (BT A -)
2 - _
=y @X) T (XY), (19)
where
_ N .
Gu(X]V) = Zm;;en
1;1
o (XN) = Z¢(zi§9t)

N

e 2(XY) = lleats 0|
=1
N

e 2(XN) = llga’s 0,)1?
j=1

Therefore we can pre-compute quantities ¢; (X)), ¢ (X V), [|6¢]|2(XY), [|0¢||2(XN) which takes
O(N) and compute MMD?2[X ™, XN ¢, 6] in O(1) time. This also leads O(1) computation complex-
ity for £,, and O(N) complexity for Lv;. This means that we simplify the computational complexity
to O(N) from O(N?).

At sampling, following (9) requires to compute the witness function for each particle, which for
a general kernel takes O(IN?) in total. Using the linear kernel above, simplifies the complexity of the

witness as follows . ~ ~
Fra(2) = (6(2%) = (X ™), é(=:0)),

where Z¥ is a set of N noisy particles. We can precompute ¢;(Z”) in O(N) time. Therefore one
iteration of a witness function will take O(1) time and for N noisy particles it makes O (V).

B.4 APPROXIMATE SAMPLING PROCEDURE

In this section we provide an algorithm for the approximate sampling procedure. The only change
with the original Algorithm[2]is the approximate witness function

Ih, p(2) = ((2,1;0%), §(X¢, 1, 0%) — $(Xo, ¢, 0%)),

where
1
$(Xo,1,0" = — 2; o(xp, t:6") (20)
_ 1
QS(Xt? ta 9* = N Z ¢("L‘;a t7 9*)
i=1
Here 2,7 = 1,..., N correspond to the whole training set of clean samples and z%,i = 1,...,

correspond to the noisy version of these clean samples produced by the forward diffusion process [f]
for a given noise level t. These features can be precomputed once for every noise level ¢. The
resulting algorithm is given in Algorithm (3). Another crucial difference with the original algorithm
is the ability to run it for each particle Z independently.

17

Under review as a conference paper at ICLR 2025

Algorithm 3 Approximate noise-adaptive MMD gradient flow for a single particle

Inputs: 7' is the number of noise levels
tmax, tmin are maximum and minimum noise levels
Nj is the number of gradient flow steps per noise level
1 > 0 is the gradient flow learning rate
$(Xo,t,0%) - precomputed clean features forall ¢ = 1,...,T with
d(X, t, 0%) - precomputed noisy features forall t = 1,...,T with
Steps: Sample initial noisy particle Z ~ N(0, Id)
fori =T to 0 do

Set the noise level ¢t = {At and Z{ = Z

forn =0to N, — 1do - -

ZrtLJrl = Zfz - 77<Vz¢(me t;0%), 9(X¢,t,0%) — p(Xo, t, 0*)>

end for

Set Z = Z&,
end for
Output Z

C ToY 2-D DATASETS EXPERIMENTS

For the 2-D experiments, we train DMMD using Algorithm (1) for N, = 50000 steps with a batch
size of B = 256 and a number of noise levels per batch equal to Npeise = 128. The Gradient penalty
constant Ay = 0.1 whereas the {5 penalty is not used. To learn noise-conditional MMD for DMMD,
we use a 4-layers MLP ¢(t;) with ReLU activation to encode o (t; 8) = omin + ReLU(g(¢; 0)) with
Omin = 0.001, which ensures o(t;) > 0. The MLP layers have the architecture of [64, 32, 16, 1].
Before passing the noise level ¢ € [0, 1] to the MLP, we use sinusoidal embedding similar to the one
used in (Ho et al., 2020), which produces a feature vector of size 1024. The forward diffusion process
from (Ho et al.,|2020) have modified parameters such that corresponding 81 = 10~4, 87 = 0.0002.
On top of that, we discretize the corresponding process using only 1000 possible noise levels, with
tmin = 0.05 and ty,0x = 1.0. At sampling time for the algorithm g, we use tyin = 0.05, thax = 1.0,
N; = 10 and T' = 100. The learning rate n = 1.0. As basleines, we consider MMD-GAN with a
generator parameterised by a 3-layer MLP with ELU activations. The architecture of the MLP is
[256, 256, 2]. The initial noise for the generator is produced from a uniform distribution U[—1, 1]
with a dimensionality of 128. The gradient penalty coefficient equals to 0.1. As for the discriminator,
the only learnable parameter is 0. We train MMD-GAN for 250000 iterations with a batch size of
B = 256. Other variants of MMD gradient flow use the same sampling parameters as DMMD.

We used 1 100 GPU with 40G B of memory to run these experiments. In total, all the experiments
took less than 2 hours.

D F-DIVERGENCES

The approach described in Section [can be applied to any divergence which has a well defined
Wasserstein Gradient Flow described by a gradient of the associated witness function. Such diver-
gences include the variational lower bounds on f-divergences, as described by (Nowozin et al.,[2016),
which are popular in GAN training, and were indeed the basis of the original GAN discriminator
(Goodfellow et al., 2014). One such f-divergence is the KL. Approximate Lower bound Estimator
(KALE, |Glaser et al., 2021). Unlike the original KL divergence, which requires a density ratio, the
KALE remains well defined for distributions with non-overlapping support. Similarly to MMD, the
Wasserstein Gradient of KALE is given by the gradient of a learned witness function. Thus, we train
noise-conditional KALE discriminator and use corresponding noise-conditional Wasserstein gradient
flow, as with DMMD. We call this method Diffusion KALE flow (D-KALE-Flow). This approach
is described in Appendix [E} We found this approach to lead to reasonable empirical results, but unlike
with DMMD, it achieved worse performance than a corresponding GAN, see Appendix

18

Under review as a conference paper at ICLR 2025

E D-KALE-FLOW

In this section, we describe the DKALE-flow algorithm mentioned in Section |§ Let ¥ ¢ RP and
P(X) be the set of probability distributions defined on X. Let P € P(X) be the target or data
distribution and @) € P(X) be some distribution. The KALE objective (see (Glaser et al., 2021)) is
defined as

KALE(Q, PIN) = (14) max{1 + / hdQ — /eth - g||h||3d}, Q1)

where A > 0 is a positive constant and # is the RKHS with a kernel k. In practice, KALE divergence
[21)) can be replaced by a corresponding parametric objective

KALE(Q.PIX0,0) = (143 ([1(x:0,0)aQ(x) = [2 0ap(y) - Slali) . @2

where

h(X:0,a) = ¢(X:0) e,
with ¢(X;6) € RP and a € RP. The objective function can then be maximized with respect to
0 and « for given and P. Similar to DMMD, we consider a noise-conditional witness function

h(ws;t, 0, 0,9) = ¢(x;t,0)T alt; ¥)
From here, the noise-conditional KALE objective is given as
L(0,9,t|\) = KALE(P;, P\, 6,),

where P, is the distribution corresponding to a forward diffusion process, see Section[d. Then, the
total noise-conditional objective is given as

Liot(0,9,t|A) = L(0,9,t{A) + Av L (0,9,1) + Ao, Lo, (6, 1),
where gradient penalty has similar form to WGAN-GP (Gulrajani et al., [2017)
Ly (0,9,1) = Ez([[Vzh(Z;t,0,0,9)||2 — 1)*,
where Z = X + (1 - B)Y, B~ U|0,1], X ~ P(X)and Y ~ P(Y). The 12 penalty is given as

1
L, (0,t) = 3 (Ex~po)||6(X;t,0)|]> + Eywpan l|o(Y5t,0)[)
Therefore, the final objective function to train the discriminator is

Liot(0,%N) = Eyvrio,1) [Lrot(0, 9, | A)]

This objective function depends on RKHS regularization A, on gradient penalty regularization Ay
and on 12-penalty regularization)\g,. Unlike in DMMD, we do not use an explicit form for the
witness function and do not use the RKHS parameterisation. On one hand, this allows us to have a
more scalable approach, since we can compute KALE and the witness function for each individual
particle. On the other hand, the explicit form of the witness function in DMMD introduces beneficial
inductive bias. In DMMD, when we train the discriminator, we only learn the kernel features, i.e.
corresponding RKHS. In D-KALE, we need to learn both, the kernel features ¢(z; ¢,) as well as
the RKHS projections «/(t; ¢). This makes the learning problem for D-KALE more complex. The
corresponding noise adaptive gradient flow for KALE divergence is described in Algorithm[#. An
advantage over original DMMD gradient flow is the ability to run this flow individually for each
particle.

F IMAGE GENERATION EXPERIMENTS

For the image experiments, we use CIFAR10 (Krizhevsky et al., [2009) dataset. We use the same
forward diffusion process as in (Ho et al., |2020). As a Neural Network backbone, we use U-
Net (Ronneberger et al., 2015) with a slightly modified architecture from (Ho et al.| |2020). Our
neural network architecture follows the backbone used in (Ho et al., [2020). On top of that we
output the intermediate features at four levels — before down sampling, after down-sampling, before
upsampling and a final layer. Each of these feature vectors is processed by a group normalization, the

19

Under review as a conference paper at ICLR 2025

Algorithm 4 Noise-adaptive KALE flow for single particle

Inputs: 7' is the number of noise levels
tmax, tmin are maximum and minimum noise levels
Nj is the number of gradient flow steps per noise level
1 > 0 is the gradient flow learning rate
Trained witness function h(-; ¢, 0%, 1*)
Steps: Sample initial noisy particle Z ~ N(0, Id)
Set At = (tmax — tmin) /T
fori =T to 0 do
Set the noise level t = ty, + At and Zf = Z
forn =0to Ny, — 1 do
Zhyy = ZL — qVh(ZL:,0%, %)
end for
Set Z = Z&,
end for
Output Z

activation function and a linear layer producing an output vector of size 32. To produce the output of
a discriminator features, these four feature vectors are concatenated to produce a final output feature
vector of size 128. The noise level time is processed via sinusoidal time embedding similar to (Ho
et al.,[2020). We use a dropout of 0.2. DMMD is trained for Nj, = 250000 iterations with a batch
size B = 64 with number N,;s. = 16 of noise levels per batch. We use a gradient penalty Ay = 1.0
and /5 regularisation strength Ay, = 0.1. As evaluation metrics, we use FID (Heusel et al.,[2018) and
Inception Score (Salimans et al.,2016)) using the same evaluation regime as in (Ho et al.,[2020). To
select hyperparameters and track performance during training, we use FID evaluated on a subset of
1024 images from a training set of CIFAR10.

For CIFAR10, we use random flip data augmentation.

In DMMD we have two sets of hyperparameters, one is used for training in Algorithm [T and
one is used for sampling in Algorithm [2. During training, we fix the sampling parameters and
always use these to select the best set of training time hyperparameters. We use n = 0.1 gra-
dient flow learning rate, 7' = 10 number of noise levels, N, = 200 number of noisy particles,
N; = 5 number of gradient flow steps per noise level, ¢y = 0.001 and ¢x = 1 — 0.001. We
use a batch of 400 clean particles during training. For hyperparameters, we do a grid search for
Av € {0,0.001,0.01,0.1,1.0,10.0}, for A,, € {0,0.001,0.01,0.1,1.0,10.0}, for dropout rate
{0,0.1,0.2,0.3}, for batch size {16,32,64}. To train the model, we use the same optimization
procedure as in (Ho et al.,2020), notably Adam (Kingma & Ba, 2017) optimizer with a learning rate
0.0001. We also swept over the the dimensionality of the output layer 32, 64, 128, such that each
of four feature vectors got the equal dimension. Moreover, we swept over the number of channels
for U-Net {32, 64,128} (the original one was 32) and we found that 128 gave us the best empirical
results.

After having selected the training-time hyperparameters and having trained the model, we run a
sweep for the sampling time hyperparameters over ny € {1,0.5,0.1,0.04,0.01}, T € {1, 5,10, 50},
N, € {1,5,10,50}, tmin € {0.001,0.01,0.1,0.2}, tmax € {0.9,1 — 0.001}. We found that the best
hyperparameters for DMMD were n = 0.1, Ny = 10, T = 10, tmin = 0.1 and t0x = 0.9. On top of
that, we ran a variant for DMMD with T' = 50 and N; = 5.

For a-DMMD method, we used the same pretrained discriminator as for DMMD but we did an
additional sweep over sampling time hyperparameters, because in principle these could be different.
We found that the best hyperparameters for a-DMMD are n = 0.04, t;in = 0.2, tpax = 0.9, T = 5,
N = 10.

For the denoising step, see Table 2, for DMMD-e, we used 2 steps of DMMD gradient flow with a
higher learning rate n* = 0.5 with ¢,,x = 0.1 and t,,;, = 0.001. For a-DMMD-e, we used 2 steps of
DMMD gradient flow with a higher learning rate of * = 0.5 with ¢;,,x = 0.2 and ¢,;, = 0.001. For
a-DMMD-e, we used 2 steps of DMMD gradient flow with a higher learning rate of n* = 0.1 with

20

Under review as a conference paper at ICLR 2025

tmax = 0.2 and ¢, = 0.001. The only parameter we swept over in this experiment was this higher
learning rate n*.

After having found the best hyperparameters for sampling, we run the evaluation to compute FID on
the whole CIFAR10 dataset using the same regime as described in (Ho et al., 2020).

For MMD-GAN experiment, we use the same discriminator as for DMMD but on top of that we
train a generator using the same U-net architecture as for DMMD with an exception that we do not
use the 4 levels of features. We use a higher gradient penalty of Ay = 10 and the same /5 penalty
Ae, = 0.1. We use a batch size of B = 64 and the same learning rate as for DMMD. We use a
dropout of 0.2. We train MMD-GAN for 250000 iterations. For each generator update, we do 5
discriminator updates, following (Brock et al.,[2019).

For MMD-GAN-Flow experiment, we take the pretrained discriminator from MMD-GAN and run a
gradient flow of type (4) on it, starting from a random noise sampled from a Gaussian. We swept over
different parameters such as learning rate 7 and number of iterations Vi,,. We found that none of our
parameters led to any reasonable performance. The results in Table [T]are reported using 7 = 0.1 and
N iter — 100

F.1 ADDITIONAL DATASETS

We study performance of DMMD on additional datasets, MNIST (Lecun et al., 1998), on CELEB-A
(64x64 (Liu et al., 2015) and on LSUN-Church (64x64) (Yu et al., 2016). For MNIST and CELEB-A,
we use the same training/test split as well as the evaluation protocol as in (Franceschi et al., |[2023).
For LSUN-Church, For LSUN Church, we compute FID on 50000 samples similar to DDPM (Ho
et al., [2020). For MNIST, we used the same hyperparameters during training and sampling as
for CIFAR-10 with NFE=100, see Appendix |F| For CELEB-A and LSUN, we ran a sweep over
e, € {0,0.001,0.01,0.1,1.0,10.0} and found that £5 = 0.001 led to the best results. For sampling,
we used the same parameters as for CIFAR-10 with NFE=100. The reported results in Table [are
given with NFE=100.

F.1.1 RESULTS ON CELEB-A, LSUN-CHURCH AND MNIST

Besides CIFAR-10, we study the performance of DMMD on MNIST (Lecun et al.,|1998), CELEB-A
(64x64 (Liu et al., 2015) and LSUN-Church (64x64) (Yu et al.,[2016). For MNIST and CELEB-
A, we consider the same splits and evaluation regime as in (Franceschi et al.} 2023). For LSUN
Church, the splits and the evaluation regime are taken from (Ho et al., [2020). For more details,
see Appendix [FI] The results are provided in Table . In addition to DMMD, we report the
performance of Discriminator flow baseline from (Franceschi et al., 2023 with numbers taken from
the corresponding paper. We see that DMMD performance is significantly better compared to the
discriminator flow, which is consistent with our findings on CIFAR-10. The corresponding samples
are provided in Appendix

Table 4: Unconditional image generation on additional datasets. The metric used is FID. The
number of gradient flow steps for DMMD is 100.

Dataset MMD-GAN DDPM DMMD Disc. flow (Franceschi et al.| [2023))
MNIST 7.0 1.94 3.0 4.0

CELEB-A 12.1 6.72 8.3 41.0

LSUN 8.4 3.84 6.1 -

F.2 D-KALE-FLOW DETAILS

We study performance of D-KALE-flow on CIFAR10. We use the same architectural setting
as in DMMD with the only difference of adding an additional mapping «(t;) from noise
level to D dimensional feature vector, which is represented by a 2 layer MLP with hidden
dimensionality of 64 and GELU activation function. We use batch size B = 256, dropout
rate equal to 0.3. For sampling time parameters during training, we use n = 0.5, total num-
ber of noise levels 7' = 20, and number of steps per noise level N, = 5. At training, we

21

Under review as a conference paper at ICLR 2025

sweep over RKHS regularization A € {0, 1,10, 100, 500, 1000, 2000}, gradient penalty Ay €
{0,0.1,1.0,10.0, 50.0, 100.0, 250.0, 500.0, 1000.0}, 12 penalty in {0, 0.1, 0.01, 0.001}.

F.3 NUMBER OF PARTICLES ABLATION

Number of particles. In Table|5 we report performance of DMMD depending on the number
of particles IV, at sampling time. As expected as the number of particles increases, the FID score
decreases, but the overall performance is sensitive to the number of particles. This motivates the
approximate sampling procedure from Section 3]

Table 5: Number of particles ablation, FIDs on CIFAR10.
N, =50 N,=100 N, =200
9.76 8.55 8.31

G PERFORMANCE VS. NUMBER OF GRADIENT FLOW STEPS TRADE-OFF

Here, we provide a table showing the dependence of the performance of DMMD on number of
total DMMD gradient flow steps, which we call NFE. The NFE is the total number of gradient flow
iterations, which equals to N 7', where IV, is the number of steps per noise level and T’ is the number
of noise levels. By default, we use the gradient flow learning rate n = 0.1, see (9). We also found
that as we increase the number of total gradient flow steps, it was sometimes beneficial to use a
smaller learning rate, 7 = 0.05. Results are given in Table[6. We see that as we increase NFE, the
FID improves up to a point (NFE = 250). After NFE=250, we do not see a further improvement.
Moreover, as we noticed in our experiments, increasing the total compute at sampling time might
require readjusting the gradient flow learning rate.

Table 6: Dependence of the FID on CIFAR-10 on the total number of gradient flow steps (NFE). 7 is
the gradient flow learning rate, see @)

Total number of steps (NFE) FID

10(n = 0.1) 377.5
50(n = 0.1) 36.4
100(n = 0.1) 8.5
250(n = 0.1) 12.1
250(n = 0.05) 7.74
500(n = 0.05) 8.6
1000(n = 0.05) 9.1

G.1 RESULTS WITH F-DIVERGENCE

We study performance of D-KALE-Flow described in Section[D and Appendix [E, in the setting of
unconditional image generation for CIFAR-10. We compare against a GAN baseline which uses
the KALE divergence in the discriminator, but has adversarially trained generator. More details are
described in Appendix [Eland Appendix [F2. The results are given in Table[7] We see that unlike with
DMMD, D-KALE-Flow achieves worse performance than corresponding KALE-GAN - indicating
that the inductive bias provided by the generator may be more helpful in this case - this is a topic for
future study.

G.2 COMPUTE RESOURCES FOR IMAGE EXPERIMENTS

For all the experiments, we used A100 GPUs with 40 GB of memory. To train DMMD for 250k
steps, we needed to run training for around 24 hours. The total hyperparameter sweep for DMMD

22

Under review as a conference paper at ICLR 2025

Table 7: Unconditional image generation on CIFAR-10 with KALE-divergence. The number of
gradient flow steps is 100.

Method FID Inception score
D-KALE-Flow 15.8 8.5
KALE-GAN 12.7 8.7

required 36 runs to figure out regularization constants, 12 runs to figure out batch size and dropout
rate and then 3 runs to figure out the dimensionality of the U-Net and the same 3 runs where the
features of the U-Net were coming only from the last layer. This required 54 runs in total.

Running inference on small subset of CIFAR-10 required around 2 minutes of GPU time, and we ran
full grid search to select best sampling time parameters, which is around 1080 values. We did this
sweep for DMMD and a« — DMMD. For DMMD — e, we additionally swept over higher learning
rate at the second stage which required 5 more runs. For a — DMMD — e and a — DMMD — a, we
swept over learning rates at second stage which required 10 more runs. After having found the best
parameters, we run sampling with the best parameters on full CIFAR-10 which takes about 1 hour for
NFE = 100.

For additional datasets, for M NIST we used the same best parameters as for CIFAR-10, which
required one run only since we saw very good performance out of the box. For CELEB-A and LSUN,
we ran an additional sweep over regularization strength which required 6 training runs per dataset
and 2 additional runs for sampling the whole datasets.

For MMD — G AN, the training runs were faster, by around 2-x factor. We did a grid search over the
regularization strengths which took 36 training runs and 12 runs to figure out batch size and drop-out
rate.

For DKALE-flow, the experiment was as fast as MMD — GAN and we ran a grid search with 67
runs for regularization and 4 runs for dropout. The same was done for DKALE — GAN.

H OPTIMAL KERNEL WITH GAUSSIAN MMD

In this section, we prove the results of Section[3} We consider the following unnormalized Gaussian
kernel

ka(z,y) = o™ expl~lz — y*/(207)].
For any i € R% and ¢ > 0 we denote 7,0 the Gaussian distribution with mean . and covariance

matrix o2Id. We denote MMDi the MMD? associated with k. More precisely for any sy, 1o € R?
and 01,09 > 0 we have

MMDi(”m,UuW#z,Uz) =E (ko (X, XI)] —2E ka(X,Y)]+ (23)

[k (Y, Y7)].

Ty 00 @Tpq, 010 Tpy,o1 @y o0

g o0 @y, 09
In this section we prove the following result.
Proposition H.1. For any jig € R and o > 0, let o* be given by

a* = argmax, ||VMOMMDZ (70,05 Tpao,) |-

Then, we have that
o = ReLU(||po|?/(d + 2) — 20%)/2. (24)

Before proving Proposition let us provide some insights on the result. The quantity
[V 1o MMD? (70,0, 1,0) || Tepresents how much the mean of the Gaussian 7, , is displaced
when considering a flow on the mean of the Gaussian w.r.t. MMD?. Intuitively, we aim for
[V .o MMD?Z (0,0, 7100) || to be as large as possible as this represents the maximum displacement
possible. Hence, this justifies our goal of maximizing ||V ,,, MMD?2 (70 o, 70,0)|| With respect to the
width parameter a.

We show that the optimal width o* has a closed form given by (24). It is notable that, assuming that
o > 0 is fixed, this quantity depends on ||u||, i.e. how far the modes of the two distributions are.

23

Under review as a conference paper at ICLR 2025

This observation justifies our approach of following an adaptive MMD flow at inference time. Finally,
we observe that there exists a threshold, i.e. ||10||?/(d + 2) = 20?2 for which lower values of || o||
still yield o* = 0. This phase transition behavior is also observed in our experiments.

We define D(«, 0, jug, p11) for any a, o > 0 and pig, 11 € R? given by
D(a,0, o, 1) = fgayga ka(2,y)dTu, o (2)dm,, o (y)-
Proposition H.2. For any o, 0 > 0 and jig, 11 € R? we have
D(@, 0, 10, 1) = [a203(1/ + 1/02)] /2 expl | fiol2/(262) + }ur |/ (262)
= (o, i) /o® — |lol*/(20%) = [lpa]|?/(207)],
with
i = (@p1 + K2po) /(K2 +),
fio = (@®po + & 1) /(K* + ?),
where k = (1/02 +1/a?)~1/2,
Proof. In what follows, we start by computing D(, o, g, f11) for any o, > 0 and pg, py € R9
given by
D(a, 0, 10, 1) = Jpayma ko (@, y)dmuq o (2)dmp, o (y)
=1/(2n0a)? [pa, ga exp[~llz — ylI*/(20%)] exp[~|lz — pol|*/(20°)] exp[~ly — m|*/(20°)]dzdy
=1/(2n0a)? [pu, ga exp[=llz —ylI*/(20%) = ||z = poll*/(20%) = |y — m|*/(20%)]dzdy.
In what follows, we denote = (1/0% 4+ 1/a?)~ /2. We have
D(a, 0, po, 1) = Clpo, 111) Jgayma exp[=[12l1?/(26%) = yl?/(262) + (2, y) [0® + (2, po) /0? + (y, 1) /o] dzdy,

with C(po, 1) = 1/(2mo2a)? exp[—||pol|?/(202) — ||11]|?/(202)]. In what follows, we denote
P(z,y) the second-order polynomial given by

P(z,y) = l2l?/(262) + llyl*/ (262) = (2, 9)/0® = (z, po) [0* = (y, 1) /0.
Note that we have
D(a, 0, pio, 1) = Clpo; 1) Jayga exp[—P(z,y)]dzdy. (25)
Next, for any fig, ji1 € R?, we consider Q(z,y) given by

Q(z,y) = [l — foll?/(26%) + [ly — i |*/(26%) = (x — fao, y — f1n) /@®
= |21/ (26%) + llfuoll* /(262) + [y 12/ (26%) + | fu]|* / (262) = (@, o) /6% — (y,) /6* — (2 — fro,y —)/
= [/ (26%) + [l f1oll* /(262) + [y [1?/ (26%) + | f]|* / (262) — (2, fio) /6% — (y, fua) />
— (@) /a® = (fo, fn)/a® + (y, o) /a® + (z, fu) /o
=P(z,y) + [i0l?/(26%) + [l 1?/(26%) = (&, fr0) /K* = {y, i) /K> + {x, po) /0® + (y, 1) /o
— (o, fn)/® + (y, o) /&® + (x, r) /o
= P(z,y) + llioll*/(26%) + [l]|*/(26%) = (o,) /o
+ (@, p0/0? = fio/K* + n /a®) + (y, 1 /o? = fu/K® + fo/a®).
In what follows, we set fig, {11 such that
p1/0” = i /K> — fio/a?,
po/o” = fio/K> — fir /o’
We get that
in = (1 /(0°K%) + po/(0%a®)) /(1) = 1/a%),
fo = (no/(0%K%) + m/(0%a?))/(1/k* = 1/a).

24

Under review as a conference paper at ICLR 2025

We have that
o?(1/k* —1/a*) = 0?(1/0* +2/(0%a?)) = 1/0* +2/a* = 1/k* + 1/’ (26)
Therefore, we get that
fn = (/K + po/a®)/(1/K* +1/a®),
fio = (po/K* + pa /0®)/(1/K* + 1/a?).
Finally, we get that
i = (@®p1 + w2p0) /(K* + o),
fio = (oo + K%) /(K2 +).
With this choice, we get that
P(z,y) = Qz,y) — llaol?/(26%) — | iul*/(262) + (G0, fu) /o 27
We also have that for any z,y € R?

-
B x — fip Id/k? —Id/a?\ [z — jio
Q) = (1/2) (y - ﬂl) (M) (h e
Using this result we have that
Jrawga €xp[—Q(z,y)] = (2m)? det(S1)71/2, (28)
with
o1 _ Id/x* —1d/a?
~Id/a?® 1d/k?)°
Using (26), we get that
det(X™1) = [(1/0?)(1/K> +1/a?)]%
Combining this result and we get that
Jrasga exp[=Q(z,)] = (2m)?[(1/0%)(1/K* + 1/a?)] /2.
Combining this result, and we get that
D(a, 0, pig, 1) = Cpo, i) explll poll®/ (26%) | 1 |12/ (26%) = (fio, fin) /o] (2m) ! [(1/0®) (/K> +1/a?)] /2.
Therefore, we get that
D(av,0, o,) = [0*0*(1/w% + 1/a®)] =2 expllfiol|*/(25%) + Iljin ||/ (267)
= (0, fin) /0® = ||mol*/(20°) = ||ma][*/(20)].

We investigate two special cases of Proposition
First, we show that if pig = 1 then D(«v, 0, ug, 140) does not depend on pg.
Proposition H.3. For any o, 0 > 0 and g € R we have D(a, 0, 1o, o) = (o 4 202)~%/2,

Proof. We have that fip = fi; = j11 = puo in Proposition|H.2| In addition, we have that
(1/262) + (1/262) — 1/a® —1/(20?) — 1/(20%) = 0.
Therefore, we have that
expllliol12/(262) + [la]|/(252) = {jio,) [— lloll?/(202) — a2/ (20%)] = 1,
which concludes the proof upon using that 1/x% = 1/a? + 1/02. O

Proposition [H.3] might seem surprising at first but in fact it simply highlights the fact that when
trying to differentiate a Gaussian measure with itself, the result is independent of the location of the
Gaussian and only depends on its scale. Then, we study the case where p; = 0.

25

Under review as a conference paper at ICLR 2025

Proposition H.4. For any o, 0 > 0 and jig € R? we have
D(a, 0, 19,0) = (o +20°) "2 exp[—||o||*/ (2(a® + 20%))).

Proof. First, we have that
fio = ?/(k* +a?)’uo, fu = K2/(K* +a®)?po.

Therefore, we get that

D(a,0,0,0) = [0*(1/5* +1/a*)]"? exp[(1/2){ (e /r* = £7)/(r* + %) = 1/} || po]1?]

ing (2 h
Using @8) wo ge tha ot /k? — k2 = a*(a® + K?) /o2
Therefore, we get that

(@*/K* = K*)/(K* + a®) = 1/0% = (a®/(a® + k%) = 1)/0® = =1/(a®(1 + 20% /a?)),

which concludes the proof. O

Using Proposition Proposition[H.4]and definition (23), we have the following result.
Proposition H.5. For any o, 0 > 0 and jig € R? we have
MMD? (70,0, psp,0) = 2(0” +20%)~¥2(1 — exp[—||uo |/ (2(a® + 20%))]).
In addition, we have
Vo MMD? (0,0, Mg, o) = —2(0® +20%) =2 exp[— o[>/ (2(0” + 20%))] o

Finally, we have the following proposition.
Proposition H.6. For any j1g € R% and o > 0 let o* be given by

o = argmaxaonV,mMMD%ﬂ'o’a, o) |-
Then, we have that

a* = ReLU(||uol*/(d +2) — 20%)!/2.
Proof. Let o > 0 and po € RY. First, using Proposition we have that for
19,1 MMD2 (%, 7.0 2 = 4012 (02 + 20%) =12 expl ol |2/ (02 + 202)]
Next, we study the function f : [0,¢y] — R given for any ¢ € [0, t] by
£(t) = 42 exp[—t| o],

with tg = 1/(20%). We have that

£/(t) =t exp[—tl|po[1?]((d + 2) = [|o]1t)-
We then consider two cases. First, if tg < (d + 2)/||ol|?, i.e. 02 < ||poll?/(2(d + 2)), then f is
increasing on [0, o] and we have that f is maximum if ¢ = ¢y. Hence, if 0% < ||u0||%/(2(d + 2)), we
have that o* = 0. Second, if ¢ty < (d + 2)/||uol|? i-e. 0 < ||uol|?/(2(d + 2)) then f is increasing
on [0,t*], non-increasing on [t*,to] with t* = (d + 2)/||uo||*> and we have that f is maximum if

t = t*. Hence, if 02 > ||uol|?/(2(d + 2)), we have that o* = (||u0||?/(d + 2) — 202)'/2, which
concludes the proof. O

H.1 PHASE TRANSITION BEHAVIOUR
I IMAGE GENERATION SAMPLES

1.1 CIFAR10 SAMPLES

Samples from DMMD with NFE=100 and NFE=250 are given in Figure @ Samples from DMMD
with NFE=100 and from a-DMMD with NFE=50 are given in Figure 5]

1.2 ADDITIONAL DATASETS SAMPLES

Samples for MNIST are given in Figure[6] for CELEB-A (64x64) are given in Figure[7]and for LSUN
Church (64x64) are given in Figure

26

Under review as a conference paper at ICLR 2025

Evolution of the norm Evolution of the kernel width

— adaptive
—— Non adaptive

0 40000 60000 80000 100000

Figure 3: Evolution of the norm of the mean y; of the Gaussian distribution 7, » according to a
gradient flow on the mean p; w.r.t. MMD,,. In the adaptive case a; is given by Proposition
while in the non adaptive case, a; = ag = 1. In our experiment we consider d = 1 and o = 1, for
illustration purposes.

Figure 4: CIFAR-10 samples from DMMD with NFE=250 on the left and with NFE=100 on the
right

Figure 5: CIFAR-10 samples from DMMD with NFE=100 on the left and samples from the a-
DMMD-e with NFE=50 on the right

27

Under review as a conference paper at ICLR 2025

Figure 6: DMMD samples for MNIST.

Figure 7: DMMD samples for CELEB-A (64x64).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Figure 8: DMMD samples for LSUN Church (64x64).

29

