
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A ORGANIZATION OF THE SUPPLEMENTARY MATERIAL

In Section B, we describe in details the training and sampling procedures for DMMD. In Section C,
we describe more details for the 2d experiments. In Section E, we provide more details about
DKALE-Flow method. In Section F, we provide experimental details for the image datasets. In
Section H, we provide proof for the theoretical results described in Section 3 from the main section
of the paper. Finally, in Section I we present the samples from DMMD on different image datasets.

B DMMD TRAINING AND SAMPLING

B.1 MMD DISCRIMINATOR

Let X ⇢ RD and P(X) be the set of probability distributions defined on X . Let P 2 P(X) be the
target or data distribution and Q 2 P(X) be a distribution associated with a generator parameterized
by 2 RL. Let H be Reproducing Kernel Hilbert Space (RKHS), see (Schölkopf & Smola, 2018)
for details, for some kernel k : X ⇥ X ! R. Maximum Mean Discrepancy (MMD) (Gretton et al.,
2012) between Q and P is defined as MMD(Q , P) = sup

f2H
{EQ [f(X)]�EP [f(X)]}. Given

X
N = {xi}

N

i=1 ⇠ Q
⌦N

and Y

M = {yi}
M

i=1 ⇠ P
⌦M , an unbiased estimate of MMD2 (Gretton

et al., 2012) is given by

MMD2
u
[XN

, Y
M] = 1

N(N�1)

P
N

i 6=j
k(xi, xj)+ (14)

1
M(M�1)

P
M

i 6=j
k(yi, yj)�

2
NM

P
N

i=1

P
M

j=1 k(xi, yj).

In MMD GAN (Bińkowski et al., 2021; Li et al., 2017), the kernel in the objective (14) is given as

k(x, y) = kbase(�(x; ✓),�(y; ✓)), (15)

where kbase is a base kernel and �(·; ✓) : X ! RK are neural networks discriminator features with
parameters ✓ 2 RH . We use the modified notation of MMD2

u
[XN

, Y
M ; ✓] for equation (14) to

highlight the functional dependence on the discriminator parameters. MMD is an instance of Integral
Probability Metric (IPM) (see (Arjovsky et al., 2017)) which is well defined on distributions with
disjoint support unlike f-divergences (Nowozin et al., 2016). An advantage of using MMD over other
IPMs (see for example, Wasserstein GAN (Arjovsky et al., 2017)) is the flexibility to choose a kernel
k. Another form of MMD is expressed as a norm of a witness function

MMD(Q , P) = sup
f2H

{EQ [f(X)]� EP [f(X)]} = kfQ ,P kH,

where the witness function fQ ,P is given as

fQ ,P (z) =

Z
k(x, z)dQ �

Z
k(y, z)dP (y)

Given two sets of samples X
N = {xi}

N

i=1 ⇠ Q
⌦N

and Y

M = {yi}
M

i=1 ⇠ P
⌦M , and the kernel

(15), the empirical witness function is given as

f̂Q ,P (z) =
1

N

NX

i=1

kbase(�(xi; ✓),�(z; ✓))�
1

M

MX

j=1

kbase(�(yj ; ✓),�(z; ✓))

The `2 penalty (Bińkowski et al., 2021) is defined as

L`2(✓) =
1

N

NX

i=1

k�(xi; ✓)k
2
2 +

1

N

NX

i=1

k�(yi; ✓)k
2
2

Assuming that M = N and following (Bińkowski et al., 2021; Gulrajani et al., 2017), for ↵i ⇠

U [0, 1], where U [0, 1] is a uniform distribution on [0, 1], we construct zi = xi↵i + (1� ↵)yi for all
i = 1, . . . , N . Then, the gradient penalty (Bińkowski et al., 2021; Gulrajani et al., 2017) is defined as

Lr(✓) =
1

N

NX

i=1

(krf̂Q ,P (zi)k2 � 1)2

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

We denote by L(✓) the MMD discriminator loss given as

L(✓) = �MMD2
u
[XN

, Y
M ; ✓] = 1

N(N�1)

NX

i 6=j

kbase(�(xi; ✓),�(xj ; ✓)) +
1

M(M�1)

MX

i 6=j

kbase(�(yi; ✓),�(yj ; ✓))

�
2

NM

P
N

i=1

P
M

j=1 kbase(�(xi; ✓),�(yj ; ✓))

Then, the total loss for the discriminator on the two samples of data assuming that N = M is given as

Ltot(✓) = L(✓) + �rLr(✓) + �`2L`2(✓),

for some constants �r � 0 and �`2 � 0.

B.2 NOISE-DEPENDENT MMD

In Section 4, we describe the approach to train MMD discriminator from forward diffusion using
noise-dependent discriminators. For that, we assume that we are given a noise level t ⇠ U [0, 1]
where U [0, 1] is a uniform distribution on [0, 1], and a set of clean data X

N = {x
i
}
N

i=1 ⇠ P
⌦N .

Then we produce a set of noisy samples xi

t
using forward diffusion process (6). We denote these

samples by X
N

t
= {x

i

t
}
N

i=1. We define noise conditional kernel

k(x, y; t, ✓) = kbase(�(x, t; ✓),�(y, t; ✓)),

with noise conditional features �(x, t; ✓). This allows us to define the noise conditional discriminator
loss

L(✓, t) = �MMD2
u
[XN

, X
N

t
, t, ✓] = 1

N(N�1)

NX

i 6=j

kbase(�(x
i

t
; t, ✓),�(xj

t
; t, ✓))+ (16)

1
N(N�1)

NX

i 6=j

kbase(�(x
i; t, ✓),�(xj ; t, ✓))

�
2

N2

P
N

i=1

P
N

j=1 kbase(�(xi; t, ✓),�(xj

t
; t, ✓))

The noise conditional `2 penalty is given as

L`2(✓, t) =
1

N

NX

i=1

k�(xi

t
; t, ✓)k22 +

1

N

NX

i=1

k�(xi; t, ✓)k22

The noise conditional gradient penalty is given as

Lr(✓, t) =
1

N

NX

i=1

(krf̂P,t(zi)k2 � 1)2,

where zi = ↵ix
i

t
+ (1� ↵i)xi for ↵i ⇠ U [0, 1] and the noise conditional witness function

f̂P,t(z) =
1

N

NX

i=1

kbase(�(x
t

i
; t, ✓),�(z; ✓))�

1

N

NX

j=1

kbase(�(xi; t, ✓),�(z; ✓)) (17)

Therefore, the total noise conditional loss is given as

Ltot(✓, t) = L(✓, t) + �rLr(✓, t) + �`2L`2(✓, t), (18)

for some constants �r � 0 and �`2 � 0.

B.3 LINEAR KERNEL FOR SCALABLE MMD

Computational complexity of (18) is O(N2). Here, we assume that the base kernel is linear, i.e.

kbase(x, y) = hx, yi

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

This allows us to simplify the MMD computation (16) as

MMD2
u
[XN

, X
N

t
, t, ✓] =

1

N(N � 1)

⇣
�̄t(X

N

t
)T �̄t(X

N

t
)� ¯k�tk

2N (Xt)
⌘
+

1

N(N � 1)

⇣
�̄t(X

N)T �̄t(X
N)� ¯k�tk

2N (Y)
⌘

�
2

NN
(�̄t(X

N

t
))T �̄t(X

N), (19)

where

�̄t(X
N

t
) =

NX

i=1

�(xi

t
; ✓t)

�̄t(X
N) =

NX

j=1

�(xi; ✓t)

¯k�tk
2(XN

t
) =

NX

i=1

k�(xi

t
; ✓t)k

2

¯k�tk
2(XN) =

NX

j=1

k�(xi; ✓t)k
2

Therefore we can pre-compute quantities �̄t(XN

t
), �̄t(XN), ¯k�tk

2(XN

t
), ¯k�tk

2(XN) which takes
O(N) and compute MMD2

u
[XN

, X
N

t
, t, ✓] in O(1) time. This also leads O(1) computation complex-

ity for L`2 and O(N) complexity for Lr. This means that we simplify the computational complexity
to O(N) from O(N2).

At sampling, following (9) requires to compute the witness function (17) for each particle, which for
a general kernel takes O(N2) in total. Using the linear kernel above, simplifies the complexity of the
witness as follows

f̂P,t(z) = h�̄t(Z
N)� �̄t(X

N),�(z; ✓)i,

where Z
N is a set of N noisy particles. We can precompute �̄t(ZN) in O(N) time. Therefore one

iteration of a witness function will take O(1) time and for N noisy particles it makes O(N).

B.4 APPROXIMATE SAMPLING PROCEDURE

In this section we provide an algorithm for the approximate sampling procedure. The only change
with the original Algorithm 2 is the approximate witness function

f̂
?

Pt,P
(z) = h�(z, t; ✓?), �̄(Xt, t, ✓

?)� �̄(X0, t, ✓
?)i,

where

�̄(X0, t, ✓
? =

1

N

NX

i=1

�(xi

0, t; ✓
?) (20)

�̄(Xt, t, ✓
? =

1

N

NX

i=1

�(xi

t
, t; ✓?)

Here x
i

0, i = 1, . . . , N correspond to the whole training set of clean samples and x
i

t
, i = 1, . . . ,

correspond to the noisy version of these clean samples produced by the forward diffusion process 6
for a given noise level t. These features can be precomputed once for every noise level t. The
resulting algorithm is given in Algorithm (3). Another crucial difference with the original algorithm
is the ability to run it for each particle Z independently.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Algorithm 3 Approximate noise-adaptive MMD gradient flow for a single particle
Inputs: T is the number of noise levels
tmax, tmin are maximum and minimum noise levels
Ns is the number of gradient flow steps per noise level
⌘ > 0 is the gradient flow learning rate
�̄(X0, t, ✓

?) - precomputed clean features for all t = 1, . . . , T with (20)
�̄(Xt, t, ✓

?) - precomputed noisy features for all t = 1, . . . , T with (20)
Steps: Sample initial noisy particle Z ⇠ N(0, Id)
for i = T to 0 do

Set the noise level t = i�t and Z
t

0 = Z

for n = 0 to Ns � 1 do

Z
t

n+1 = Z
t

n
� ⌘hrz�(Zt

n
, t; ✓?), �̄(Xt, t, ✓

?)� �̄(X0, t, ✓
?)i

end for

Set Z = Z
t

N

end for

Output Z

C TOY 2-D DATASETS EXPERIMENTS

For the 2-D experiments, we train DMMD using Algorithm (1) for Niter = 50000 steps with a batch
size of B = 256 and a number of noise levels per batch equal to Nnoise = 128. The Gradient penalty
constant �r = 0.1 whereas the `2 penalty is not used. To learn noise-conditional MMD for DMMD,
we use a 4-layers MLP g(t; ✓) with ReLU activation to encode �(t; ✓) = �min + ReLU(g(t; ✓)) with
�min = 0.001, which ensures �(t; ✓) > 0. The MLP layers have the architecture of [64, 32, 16, 1].
Before passing the noise level t 2 [0, 1] to the MLP, we use sinusoidal embedding similar to the one
used in (Ho et al., 2020), which produces a feature vector of size 1024. The forward diffusion process
from (Ho et al., 2020) have modified parameters such that corresponding �1 = 10�4,�T = 0.0002.
On top of that, we discretize the corresponding process using only 1000 possible noise levels, with
tmin = 0.05 and tmax = 1.0. At sampling time for the algorithm 2, we use tmin = 0.05, tmax = 1.0,
Ns = 10 and T = 100. The learning rate ⌘ = 1.0. As basleines, we consider MMD-GAN with a
generator parameterised by a 3-layer MLP with ELU activations. The architecture of the MLP is
[256, 256, 2]. The initial noise for the generator is produced from a uniform distribution U [�1, 1]
with a dimensionality of 128. The gradient penalty coefficient equals to 0.1. As for the discriminator,
the only learnable parameter is �. We train MMD-GAN for 250000 iterations with a batch size of
B = 256. Other variants of MMD gradient flow use the same sampling parameters as DMMD.

We used 1 a100 GPU with 40GB of memory to run these experiments. In total, all the experiments
took less than 2 hours.

D F-DIVERGENCES

The approach described in Section 4 can be applied to any divergence which has a well defined
Wasserstein Gradient Flow described by a gradient of the associated witness function. Such diver-
gences include the variational lower bounds on f-divergences, as described by (Nowozin et al., 2016),
which are popular in GAN training, and were indeed the basis of the original GAN discriminator
(Goodfellow et al., 2014). One such f-divergence is the KL Approximate Lower bound Estimator
(KALE, Glaser et al., 2021). Unlike the original KL divergence, which requires a density ratio, the
KALE remains well defined for distributions with non-overlapping support. Similarly to MMD, the
Wasserstein Gradient of KALE is given by the gradient of a learned witness function. Thus, we train
noise-conditional KALE discriminator and use corresponding noise-conditional Wasserstein gradient
flow, as with DMMD. We call this method Diffusion KALE flow (D-KALE-Flow). This approach
is described in Appendix E. We found this approach to lead to reasonable empirical results, but unlike
with DMMD, it achieved worse performance than a corresponding GAN, see Appendix G.1.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

E D-KALE-FLOW

In this section, we describe the DKALE-flow algorithm mentioned in Section D. Let X ⇢ RD and
P(X) be the set of probability distributions defined on X . Let P 2 P(X) be the target or data
distribution and Q 2 P(X) be some distribution. The KALE objective (see (Glaser et al., 2021)) is
defined as

KALE(Q,P |�) = (1 + �)max
h2H

{1 +

Z
hdQ�

Z
e
h
dP �

�

2
||h||

2
H
}, (21)

where � � 0 is a positive constant and H is the RKHS with a kernel k. In practice, KALE divergence
(21) can be replaced by a corresponding parametric objective

KALE(Q,P |�, ✓,↵) = (1 + �)

✓Z
h(X; ✓,↵)dQ(X)�

Z
e
h(Y ;✓,↵)

dP (Y)�
�

2
||↵||

2
2

◆
, (22)

where
h(X; ✓,↵) = �(X; ✓)T↵,

with �(X; ✓) 2 RD and ↵ 2 RD. The objective function (22) can then be maximized with respect to
✓ and ↵ for given Q and P . Similar to DMMD, we consider a noise-conditional witness function

h(x; t, ✓,↵,) = �(x; t, ✓)T↵(t;)

From here, the noise-conditional KALE objective is given as

L(✓, , t|�) = KALE(Pt, P |�, ✓,↵),

where Pt is the distribution corresponding to a forward diffusion process, see Section 4. Then, the
total noise-conditional objective is given as

Ltot(✓, , t|�) = L(✓, , t|�) + �rLr(✓, , t) + �`2L`2(✓, t),

where gradient penalty has similar form to WGAN-GP (Gulrajani et al., 2017)

Lr(✓, , t) = EZ(||rZh(Z; t, ✓,↵,)||2 � 1)2,

where Z = �X + (1� �)Y , � ⇠ U [0, 1], X ⇠ P (X) and Y ⇠ P (Y). The l2 penalty is given as

L`2(✓, t) =
1

2

�
EX⇠P (X)||�(X; t, ✓)||2 + EY⇠P (Y)||�(Y ; t, ✓)||2

�

Therefore, the final objective function to train the discriminator is

Ltot(✓, |�) = Et⇠U [0,1] [Ltot(✓, , t|�)]

This objective function depends on RKHS regularization �, on gradient penalty regularization �r
and on l2-penalty regularization �`2 . Unlike in DMMD, we do not use an explicit form for the
witness function and do not use the RKHS parameterisation. On one hand, this allows us to have a
more scalable approach, since we can compute KALE and the witness function for each individual
particle. On the other hand, the explicit form of the witness function in DMMD introduces beneficial
inductive bias. In DMMD, when we train the discriminator, we only learn the kernel features, i.e.
corresponding RKHS. In D-KALE, we need to learn both, the kernel features �(x; t, ✓) as well as
the RKHS projections ↵(t;). This makes the learning problem for D-KALE more complex. The
corresponding noise adaptive gradient flow for KALE divergence is described in Algorithm 4. An
advantage over original DMMD gradient flow is the ability to run this flow individually for each
particle.

F IMAGE GENERATION EXPERIMENTS

For the image experiments, we use CIFAR10 (Krizhevsky et al., 2009) dataset. We use the same
forward diffusion process as in (Ho et al., 2020). As a Neural Network backbone, we use U-
Net (Ronneberger et al., 2015) with a slightly modified architecture from (Ho et al., 2020). Our
neural network architecture follows the backbone used in (Ho et al., 2020). On top of that we
output the intermediate features at four levels – before down sampling, after down-sampling, before
upsampling and a final layer. Each of these feature vectors is processed by a group normalization, the

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Algorithm 4 Noise-adaptive KALE flow for single particle
Inputs: T is the number of noise levels
tmax, tmin are maximum and minimum noise levels
Ns is the number of gradient flow steps per noise level
⌘ > 0 is the gradient flow learning rate
Trained witness function h(·; t, ✓?, ?)
Steps: Sample initial noisy particle Z ⇠ N(0, Id)
Set �t = (tmax � tmin)/T
for i = T to 0 do

Set the noise level t = tmin + i�t and Z
t

0 = Z

for n = 0 to Ns � 1 do

Z
t

n+1 = Z
t

n
� ⌘rh(Zt

n
; t, ✓?, ?)

end for

Set Z = Z
t

N

end for

Output Z

activation function and a linear layer producing an output vector of size 32. To produce the output of
a discriminator features, these four feature vectors are concatenated to produce a final output feature
vector of size 128. The noise level time is processed via sinusoidal time embedding similar to (Ho
et al., 2020). We use a dropout of 0.2. DMMD is trained for Niter = 250000 iterations with a batch
size B = 64 with number Nnoise = 16 of noise levels per batch. We use a gradient penalty �r = 1.0
and `2 regularisation strength �`2 = 0.1. As evaluation metrics, we use FID (Heusel et al., 2018) and
Inception Score (Salimans et al., 2016) using the same evaluation regime as in (Ho et al., 2020). To
select hyperparameters and track performance during training, we use FID evaluated on a subset of
1024 images from a training set of CIFAR10.

For CIFAR10, we use random flip data augmentation.

In DMMD we have two sets of hyperparameters, one is used for training in Algorithm 1 and
one is used for sampling in Algorithm 2. During training, we fix the sampling parameters and
always use these to select the best set of training time hyperparameters. We use ⌘ = 0.1 gra-
dient flow learning rate, T = 10 number of noise levels, Np = 200 number of noisy particles,
Ns = 5 number of gradient flow steps per noise level, tmin = 0.001 and tmax = 1 � 0.001. We
use a batch of 400 clean particles during training. For hyperparameters, we do a grid search for
�r 2 {0, 0.001, 0.01, 0.1, 1.0, 10.0}, for �`2 2 {0, 0.001, 0.01, 0.1, 1.0, 10.0}, for dropout rate
{0, 0.1, 0.2, 0.3}, for batch size {16, 32, 64}. To train the model, we use the same optimization
procedure as in (Ho et al., 2020), notably Adam (Kingma & Ba, 2017) optimizer with a learning rate
0.0001. We also swept over the the dimensionality of the output layer 32, 64, 128, such that each
of four feature vectors got the equal dimension. Moreover, we swept over the number of channels
for U-Net {32, 64, 128} (the original one was 32) and we found that 128 gave us the best empirical
results.

After having selected the training-time hyperparameters and having trained the model, we run a
sweep for the sampling time hyperparameters over ⌘ 2 {1, 0.5, 0.1, 0.04, 0.01}, T 2 {1, 5, 10, 50},
Ns 2 {1, 5, 10, 50}, tmin 2 {0.001, 0.01, 0.1, 0.2}, tmax 2 {0.9, 1� 0.001}. We found that the best
hyperparameters for DMMD were ⌘ = 0.1, Ns = 10, T = 10, tmin = 0.1 and tmax = 0.9. On top of
that, we ran a variant for DMMD with T = 50 and Ns = 5.

For a-DMMD method, we used the same pretrained discriminator as for DMMD but we did an
additional sweep over sampling time hyperparameters, because in principle these could be different.
We found that the best hyperparameters for a-DMMD are ⌘ = 0.04, tmin = 0.2, tmax = 0.9, T = 5,
Ns = 10.

For the denoising step, see Table 2, for DMMD-e, we used 2 steps of DMMD gradient flow with a
higher learning rate ⌘? = 0.5 with tmax = 0.1 and tmin = 0.001. For a-DMMD-e, we used 2 steps of
DMMD gradient flow with a higher learning rate of ⌘? = 0.5 with tmax = 0.2 and tmin = 0.001. For
a-DMMD-e, we used 2 steps of DMMD gradient flow with a higher learning rate of ⌘? = 0.1 with

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

tmax = 0.2 and tmin = 0.001. The only parameter we swept over in this experiment was this higher
learning rate ⌘?.

After having found the best hyperparameters for sampling, we run the evaluation to compute FID on
the whole CIFAR10 dataset using the same regime as described in (Ho et al., 2020).

For MMD-GAN experiment, we use the same discriminator as for DMMD but on top of that we
train a generator using the same U-net architecture as for DMMD with an exception that we do not
use the 4 levels of features. We use a higher gradient penalty of �r = 10 and the same `2 penalty
�`2 = 0.1. We use a batch size of B = 64 and the same learning rate as for DMMD. We use a
dropout of 0.2. We train MMD-GAN for 250000 iterations. For each generator update, we do 5
discriminator updates, following (Brock et al., 2019).

For MMD-GAN-Flow experiment, we take the pretrained discriminator from MMD-GAN and run a
gradient flow of type (4) on it, starting from a random noise sampled from a Gaussian. We swept over
different parameters such as learning rate ⌘ and number of iterations Niter. We found that none of our
parameters led to any reasonable performance. The results in Table 1 are reported using ⌘ = 0.1 and
Niter = 100.

F.1 ADDITIONAL DATASETS

We study performance of DMMD on additional datasets, MNIST (Lecun et al., 1998), on CELEB-A
(64x64 (Liu et al., 2015) and on LSUN-Church (64x64) (Yu et al., 2016). For MNIST and CELEB-A,
we use the same training/test split as well as the evaluation protocol as in (Franceschi et al., 2023).
For LSUN-Church, For LSUN Church, we compute FID on 50000 samples similar to DDPM (Ho
et al., 2020). For MNIST, we used the same hyperparameters during training and sampling as
for CIFAR-10 with NFE=100, see Appendix F. For CELEB-A and LSUN, we ran a sweep over
�`2 2 {0, 0.001, 0.01, 0.1, 1.0, 10.0} and found that `2 = 0.001 led to the best results. For sampling,
we used the same parameters as for CIFAR-10 with NFE=100. The reported results in Table 4 are
given with NFE=100.

F.1.1 RESULTS ON CELEB-A, LSUN-CHURCH AND MNIST

Besides CIFAR-10, we study the performance of DMMD on MNIST (Lecun et al., 1998), CELEB-A
(64x64 (Liu et al., 2015) and LSUN-Church (64x64) (Yu et al., 2016). For MNIST and CELEB-
A, we consider the same splits and evaluation regime as in (Franceschi et al., 2023). For LSUN
Church, the splits and the evaluation regime are taken from (Ho et al., 2020). For more details,
see Appendix F.1. The results are provided in Table 4. In addition to DMMD, we report the
performance of Discriminator flow baseline from (Franceschi et al., 2023) with numbers taken from
the corresponding paper. We see that DMMD performance is significantly better compared to the
discriminator flow, which is consistent with our findings on CIFAR-10. The corresponding samples
are provided in Appendix I.2.

Table 4: Unconditional image generation on additional datasets. The metric used is FID. The
number of gradient flow steps for DMMD is 100.

Dataset MMD-GAN DDPM DMMD Disc. flow (Franceschi et al., 2023)

MNIST 7.0 1.94 3.0 4.0
CELEB-A 12.1 6.72 8.3 41.0
LSUN 8.4 3.84 6.1 -

F.2 D-KALE-FLOW DETAILS

We study performance of D-KALE-flow on CIFAR10. We use the same architectural setting
as in DMMD with the only difference of adding an additional mapping ↵(t;) from noise
level to D dimensional feature vector, which is represented by a 2 layer MLP with hidden
dimensionality of 64 and GELU activation function. We use batch size B = 256, dropout
rate equal to 0.3. For sampling time parameters during training, we use ⌘ = 0.5, total num-
ber of noise levels T = 20, and number of steps per noise level Ns = 5. At training, we

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

sweep over RKHS regularization � 2 {0, 1, 10, 100, 500, 1000, 2000}, gradient penalty �r 2

{0, 0.1, 1.0, 10.0, 50.0, 100.0, 250.0, 500.0, 1000.0}, l2 penalty in {0, 0.1, 0.01, 0.001}.

F.3 NUMBER OF PARTICLES ABLATION

Number of particles. In Table 5 we report performance of DMMD depending on the number
of particles Np at sampling time. As expected as the number of particles increases, the FID score
decreases, but the overall performance is sensitive to the number of particles. This motivates the
approximate sampling procedure from Section 5.

Table 5: Number of particles ablation, FIDs on CIFAR10.
Np = 50 Np = 100 Np = 200

9.76 8.55 8.31

G PERFORMANCE VS. NUMBER OF GRADIENT FLOW STEPS TRADE-OFF

Here, we provide a table showing the dependence of the performance of DMMD on number of
total DMMD gradient flow steps, which we call NFE. The NFE is the total number of gradient flow
iterations, which equals to NsT , where Ns is the number of steps per noise level and T is the number
of noise levels. By default, we use the gradient flow learning rate ⌘ = 0.1, see (9). We also found
that as we increase the number of total gradient flow steps, it was sometimes beneficial to use a
smaller learning rate, ⌘ = 0.05. Results are given in Table 6. We see that as we increase NFE, the
FID improves up to a point (NFE = 250). After NFE=250, we do not see a further improvement.
Moreover, as we noticed in our experiments, increasing the total compute at sampling time might
require readjusting the gradient flow learning rate.

Table 6: Dependence of the FID on CIFAR-10 on the total number of gradient flow steps (NFE). ⌘ is
the gradient flow learning rate, see (9).

Total number of steps (NFE) FID

10(⌘ = 0.1) 377.5

50(⌘ = 0.1) 36.4

100(⌘ = 0.1) 8.5

250(⌘ = 0.1) 12.1

250(⌘ = 0.05) 7.74

500(⌘ = 0.05) 8.6

1000(⌘ = 0.05) 9.1

G.1 RESULTS WITH F-DIVERGENCE

We study performance of D-KALE-Flow described in Section D and Appendix E, in the setting of
unconditional image generation for CIFAR-10. We compare against a GAN baseline which uses
the KALE divergence in the discriminator, but has adversarially trained generator. More details are
described in Appendix E and Appendix F.2. The results are given in Table 7. We see that unlike with
DMMD, D-KALE-Flow achieves worse performance than corresponding KALE-GAN - indicating
that the inductive bias provided by the generator may be more helpful in this case - this is a topic for
future study.

G.2 COMPUTE RESOURCES FOR IMAGE EXPERIMENTS

For all the experiments, we used A100 GPUs with 40 GB of memory. To train DMMD for 250k
steps, we needed to run training for around 24 hours. The total hyperparameter sweep for DMMD

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 7: Unconditional image generation on CIFAR-10 with KALE-divergence. The number of
gradient flow steps is 100.

Method FID Inception score

D-KALE-Flow 15.8 8.5
KALE-GAN 12.7 8.7

required 36 runs to figure out regularization constants, 12 runs to figure out batch size and dropout
rate and then 3 runs to figure out the dimensionality of the U-Net and the same 3 runs where the
features of the U-Net were coming only from the last layer. This required 54 runs in total.

Running inference on small subset of CIFAR-10 required around 2 minutes of GPU time, and we ran
full grid search to select best sampling time parameters, which is around 1080 values. We did this
sweep for DMMD and a�DMMD. For DMMD� e, we additionally swept over higher learning
rate at the second stage which required 5 more runs. For a�DMMD� e and a�DMMD� a, we
swept over learning rates at second stage which required 10 more runs. After having found the best
parameters, we run sampling with the best parameters on full CIFAR-10 which takes about 1 hour for
NFE = 100.

For additional datasets, for MNIST we used the same best parameters as for CIFAR-10, which
required one run only since we saw very good performance out of the box. For CELEB-A and LSUN,
we ran an additional sweep over regularization strength which required 6 training runs per dataset
and 2 additional runs for sampling the whole datasets.

For MMD�GAN , the training runs were faster, by around 2-x factor. We did a grid search over the
regularization strengths which took 36 training runs and 12 runs to figure out batch size and drop-out
rate.

For DKALE-flow, the experiment was as fast as MMD�GAN and we ran a grid search with 67
runs for regularization and 4 runs for dropout. The same was done for DKALE�GAN .

H OPTIMAL KERNEL WITH GAUSSIAN MMD

In this section, we prove the results of Section 3. We consider the following unnormalized Gaussian
kernel

k↵(x, y) = ↵
�d exp[�kx� yk

2
/(2↵2)].

For any µ 2 Rd and � > 0 we denote ⇡µ,� the Gaussian distribution with mean µ and covariance
matrix �2Id. We denote MMD2

↵
the MMD2 associated with k↵. More precisely for any µ1, µ2 2 Rd

and �1,�2 > 0 we have

MMD2
↵
(⇡µ1,�1 ,⇡µ2,�2) = E⇡µ1,�1⌦⇡µ1,�1

[k↵(X,X
0)]� 2E⇡µ1,�1⌦⇡µ2,�2

[k↵(X,Y)] + (23)

E⇡µ2,�2⌦⇡µ2,�2
[k↵(Y, Y

0)] .

In this section we prove the following result.
Proposition H.1. For any µ0 2 Rd

and � > 0, let ↵
?

be given by

↵
? = argmax

↵�0krµ0MMD2
↵
(⇡0,�,⇡µ0,�)k.

Then, we have that

↵
? = ReLU(kµ0k

2
/(d+ 2)� 2�2)1/2. (24)

Before proving Proposition H.1, let us provide some insights on the result. The quantity
krµ0MMD2

↵
(⇡0,�,⇡µ0,�)k represents how much the mean of the Gaussian ⇡µ0,� is displaced

when considering a flow on the mean of the Gaussian w.r.t. MMD2
↵

. Intuitively, we aim for
krµ0MMD2

↵
(⇡0,�,⇡µ0,�)k to be as large as possible as this represents the maximum displacement

possible. Hence, this justifies our goal of maximizing krµ0MMD2
↵
(⇡0,�,⇡µ0,�)k with respect to the

width parameter ↵.

We show that the optimal width ↵? has a closed form given by (24). It is notable that, assuming that
� > 0 is fixed, this quantity depends on kµ0k, i.e. how far the modes of the two distributions are.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

This observation justifies our approach of following an adaptive MMD flow at inference time. Finally,
we observe that there exists a threshold, i.e. kµ0k

2
/(d+ 2) = 2�2 for which lower values of kµ0k

still yield ↵? = 0. This phase transition behavior is also observed in our experiments.

We define D(↵,�, µ0, µ1) for any ↵,� > 0 and µ0, µ1 2 Rd given by

D(↵,�, µ0, µ1) =
R
Rd⇥Rd k↵(x, y)d⇡µ0,�(x)d⇡µ1,�(y).

Proposition H.2. For any ↵,� > 0 and µ0, µ1 2 Rd
we have

D(↵,�, µ0, µ1) = [↵2
�
2(1/2 + 1/↵2)]�d/2 exp[kµ̂0k

2
/(22) + kµ̂1k

2
/(22)

� hµ̂0, µ̂1i/↵
2
� kµ0k

2
/(2�2)� kµ1k

2
/(2�2)],

with

µ̂1 = (↵2
µ1 + 

2
µ0)/(

2 + ↵
2),

µ̂0 = (↵2
µ0 + 

2
µ1)/(

2 + ↵
2),

where  = (1/�2 + 1/↵2)�1/2
.

Proof. In what follows, we start by computing D(↵,�, µ0, µ1) for any ↵,� > 0 and µ0, µ1 2 Rd

given by

D(↵,�, µ0, µ1) =
R
Rd⇥Rd k↵(x, y)d⇡µ0,�(x)d⇡µ1,�(y)

= 1/(2⇡�2
↵)d

R
Rd⇥Rd exp[�kx� yk

2
/(2↵2)] exp[�kx� µ0k

2
/(2�2)] exp[�ky � µ1k

2
/(2�2)]dxdy

= 1/(2⇡�2
↵)d

R
Rd⇥Rd exp[�kx� yk

2
/(2↵2)� kx� µ0k

2
/(2�2)� ky � µ1k

2
/(2�2)]dxdy.

In what follows, we denote  = (1/�2 + 1/↵2)�1/2. We have

D(↵,�, µ0, µ1) = C(µ0, µ1)
R
Rd⇥Rd exp[�kxk

2
/(22)� kyk

2
/(22) + hx, yi/↵

2 + hx, µ0i/�
2 + hy, µ1i/�

2]dxdy,

with C(µ0, µ1) = 1/(2⇡�2
↵)d exp[�kµ0k

2
/(2�2) � kµ1k

2
/(2�2)]. In what follows, we denote

P(x, y) the second-order polynomial given by

P(x, y) = kxk
2
/(22) + kyk

2
/(22)� hx, yi/↵

2
� hx, µ0i/�

2
� hy, µ1i/�

2
.

Note that we have

D(↵,�, µ0, µ1) = C(µ0, µ1)
R
Rd⇥Rd exp[�P(x, y)]dxdy. (25)

Next, for any µ̂0, µ̂1 2 Rd, we consider Q(x, y) given by

Q(x, y) = kx� µ̂0k
2
/(22) + ky � µ̂1k

2
/(22)� hx� µ̂0, y � µ̂1i/↵

2

= kxk
2
/(22) + kµ̂0k

2
/(22) + kyk

2
/(22) + kµ̂1k

2
/(22)� hx, µ̂0i/

2
� hy, µ̂1i/

2
� hx� µ̂0, y � µ̂1i/↵

2

= kxk
2
/(22) + kµ̂0k

2
/(22) + kyk

2
/(22) + kµ̂1k

2
/(22)� hx, µ̂0i/

2
� hy, µ̂1i/

2

� hx, yi/↵
2
� hµ̂0, µ̂1i/↵

2 + hy, µ̂0i/↵
2 + hx, µ̂1i/↵

2

= P(x, y) + kµ̂0k
2
/(22) + kµ̂1k

2
/(22)� hx, µ̂0i/

2
� hy, µ̂1i/

2 + hx, µ0i/�
2 + hy, µ1i/�

2

� hµ̂0, µ̂1i/↵
2 + hy, µ̂0i/↵

2 + hx, µ̂1i/↵
2

= P(x, y) + kµ̂0k
2
/(22) + kµ̂1k

2
/(22)� hµ̂0, µ̂1i/↵

2

+ hx, µ0/�
2
� µ̂0/

2 + µ̂1/↵
2
i+ hy, µ1/�

2
� µ̂1/

2 + µ̂0/↵
2
i.

In what follows, we set µ̂0, µ̂1 such that

µ1/�
2 = µ̂1/

2
� µ̂0/↵

2
,

µ0/�
2 = µ̂0/

2
� µ̂1/↵

2
.

We get that

µ̂1 = (µ1/(�
2

2) + µ0/(�

2
↵
2))/(1/4 � 1/↵4),

µ̂0 = (µ0/(�
2

2) + µ1/(�

2
↵
2))/(1/4 � 1/↵4).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

We have that

�
2(1/4 � 1/↵4) = �

2(1/�4 + 2/(�2
↵
2)) = 1/�2 + 2/↵2 = 1/2 + 1/↵2

. (26)

Therefore, we get that

µ̂1 = (µ1/
2 + µ0/↵

2)/(1/2 + 1/↵2),

µ̂0 = (µ0/
2 + µ1/↵

2)/(1/2 + 1/↵2).

Finally, we get that

µ̂1 = (↵2
µ1 + 

2
µ0)/(

2 + ↵
2),

µ̂0 = (↵2
µ0 + 

2
µ1)/(

2 + ↵
2).

With this choice, we get that

P(x, y) = Q(x, y)� kµ̂0k
2
/(22)� kµ̂1k

2
/(22) + hµ̂0, µ̂1i/↵

2 (27)

We also have that for any x, y 2 Rd

Q(x, y) = (1/2)

✓
x� µ̂0

y � µ̂1

◆> ✓
Id/2 �Id/↵2

�Id/↵2 Id/2

◆✓
x� µ̂0

y � µ̂1

◆

Using this result we have that
R
Rd⇥Rd exp[�Q(x, y)] = (2⇡)d det(⌃�1)�1/2

, (28)

with
⌃�1 =

✓
Id/2 �Id/↵2

�Id/↵2 Id/2

◆
.

Using (26), we get that
det(⌃�1) = [(1/�2)(1/2 + 1/↵2)]d.

Combining this result and (28) we get that
R
Rd⇥Rd exp[�Q(x, y)] = (2⇡)d[(1/�2)(1/2 + 1/↵2)]�d/2

.

Combining this result, (27) and (25) we get that

D(↵,�, µ0, µ1) = C(µ0, µ1) exp[kµ̂0k
2
/(22)+kµ̂1k

2
/(22)�hµ̂0, µ̂1i/↵

2](2⇡)d[(1/�2)(1/2+1/↵2)]�d/2
.

Therefore, we get that

D(↵,�, µ0, µ1) = [↵2
�
2(1/2 + 1/↵2)]�d/2 exp[kµ̂0k

2
/(22) + kµ̂1k

2
/(22)

� hµ̂0, µ̂1i/↵
2
� kµ0k

2
/(2�2)� kµ1k

2
/(2�2)].

We investigate two special cases of Proposition H.2.

First, we show that if µ0 = µ1 then D(↵,�, µ0, µ0) does not depend on µ0.

Proposition H.3. For any ↵,� > 0 and µ0 2 Rd
we have D(↵,�, µ0, µ0) = (↵2 + 2�2)�d/2

.

Proof. We have that µ̂0 = µ̂1 = µ1 = µ0 in Proposition H.2. In addition, we have that

(1/22) + (1/22)� 1/↵2
� 1/(2�2)� 1/(2�2) = 0.

Therefore, we have that

exp[kµ̂0k
2
/(22) + kµ̂1k

2
/(22)� hµ̂0, µ̂1i/↵

2
� kµ0k

2
/(2�2)� kµ1k

2
/(2�2)] = 1,

which concludes the proof upon using that 1/2 = 1/↵2 + 1/�2.

Proposition H.3 might seem surprising at first but in fact it simply highlights the fact that when
trying to differentiate a Gaussian measure with itself, the result is independent of the location of the
Gaussian and only depends on its scale. Then, we study the case where µ1 = 0.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Proposition H.4. For any ↵,� > 0 and µ0 2 Rd
we have

D(↵,�, µ0, 0) = (↵2 + 2�2)�d/2 exp[�kµ0k
2
/(2(↵2 + 2�2))].

Proof. First, we have that
µ̂0 = ↵

2
/(2 + ↵

2)2µ0, µ̂1 = 
2
/(2 + ↵

2)2µ0.

Therefore, we get that

D(↵,�, µ0, 0) = [�2(1/2 + 1/↵2)]d/2 exp[(1/2){(↵4
/

2
� 

2)/(2 + ↵
2)� 1/�2

}kµ0k
2]

Using (26) we get that
↵
4
/

2
� 

2 = ↵
2(↵2 + 

2)/�2
.

Therefore, we get that
(↵4

/
2
� 

2)/(2 + ↵
2)� 1/�2 = (↵2

/(↵2 + 
2)� 1)/�2 = �1/(↵2(1 + 2�2

/↵
2)),

which concludes the proof.

Using Proposition H.3, Proposition H.4 and definition (23), we have the following result.
Proposition H.5. For any ↵,� > 0 and µ0 2 Rd

we have

MMD2(⇡0,�,⇡µ0,�) = 2(↵2 + 2�2)�d/2(1� exp[�kµ0k
2
/(2(↵2 + 2�2))]).

In addition, we have

rµ0MMD2(⇡0,�,⇡µ0,�) = �2(↵2 + 2�2)�d/2�1 exp[�kµ0k
2
/(2(↵2 + 2�2))]µ0.

Finally, we have the following proposition.
Proposition H.6. For any µ0 2 Rd

and � > 0 let ↵
?

be given by

↵
? = argmax

↵�0krµ0MMD2(⇡0,�,⇡µ0,�)k.

Then, we have that

↵
? = ReLU(kµ0k

2
/(d+ 2)� 2�2)1/2.

Proof. Let � > 0 and µ0 2 Rd. First, using Proposition H.5, we have that for
krµ0MMD2(⇡0,�,⇡µ0,�)k

2 = 4↵2d
kµ0k

2(↵2 + 2�2)�d�2 exp[�kµ0k
2
/(↵2 + 2�2)].

Next, we study the function f : [0, t0] ! R given for any t 2 [0, t0] by

f(t) = t
d+2 exp[�tkµ0k

2],

with t0 = 1/(2�2). We have that

f 0(t) = t
d+1 exp[�tkµ0k

2]((d+ 2)� kµ0k
2
t).

We then consider two cases. First, if t0  (d + 2)/kµ0k
2, i.e. �2

 kµ0k
2
/(2(d + 2)), then f is

increasing on [0, t0] and we have that f is maximum if t = t0. Hence, if �2
 kµ0k

2
/(2(d+2)), we

have that ↵? = 0. Second, if t0  (d+ 2)/kµ0k
2, i.e. �2

 kµ0k
2
/(2(d+ 2)) then f is increasing

on [0, t?], non-increasing on [t?, t0] with t
? = (d + 2)/kµ0k

2 and we have that f is maximum if
t = t

?. Hence, if �2
� kµ0k

2
/(2(d + 2)), we have that ↵? = (kµ0k

2
/(d + 2) � 2�2)1/2, which

concludes the proof.

H.1 PHASE TRANSITION BEHAVIOUR

I IMAGE GENERATION SAMPLES

I.1 CIFAR10 SAMPLES

Samples from DMMD with NFE=100 and NFE=250 are given in Figure 4. Samples from DMMD
with NFE=100 and from a-DMMD with NFE=50 are given in Figure 5.

I.2 ADDITIONAL DATASETS SAMPLES

Samples for MNIST are given in Figure 6, for CELEB-A (64x64) are given in Figure 7 and for LSUN
Church (64x64) are given in Figure 8.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Figure 3: Evolution of the norm of the mean µt of the Gaussian distribution ⇡µt,� according to a
gradient flow on the mean µt w.r.t. MMD↵t . In the adaptive case ↵t is given by Proposition 3.1
while in the non adaptive case, ↵t = ↵0 = 1. In our experiment we consider d = 1 and � = 1, for
illustration purposes.

Figure 4: CIFAR-10 samples from DMMD with NFE=250 on the left and with NFE=100 on the
right

Figure 5: CIFAR-10 samples from DMMD with NFE=100 on the left and samples from the a-
DMMD-e with NFE=50 on the right

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Figure 6: DMMD samples for MNIST.

Figure 7: DMMD samples for CELEB-A (64x64).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Figure 8: DMMD samples for LSUN Church (64x64).

29

