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1 Experimental Setup and Training Details

Hardware Details: We use Unitree’s A1 robot as our hardware platform [1]. A1 is a medium
sized quadruped with 18 DoFs out of which 12 are actuated. Its mass is about 12 kg. We measure the
joint positions and velocities of the 12 joints from the motor encoders and roll and pitch angles from
the IMU sensor. To sense the foot contacts with ground in the real world, the foot sensor readings
are taken on-board. The feet of the robot are deformable rubber membranes with filled air and air
pressure sensors attached. When the foot membranes are deformed, readings from the pressure sensor
will increase. We binarize the pressure reading by setting a threshold. Whenever the pressure reading
from a foot is above that threshold, we treat it as a foot contact. The deployed policy uses position
control for the joints of the robots. We use a PD controller to convert target joint position to torque
with fixed gains (Kp = 55 and Kd = 0.8).

Simulation Setup: We use the A1 URDF [1] to simulate the A1 robot in the RaiSim simulator
[2]. We generate complex terrains using the inbuilt fractal terrain generator (flat terrain for
structured gait emergence: number of octaves = 2, fractal lacunarity = 2.0, fractal gain = 0.25,
frequency = 10Hz, amplitude = 0.23m; uneven terrain for unstructured gait emergence:
number of octaves = 2, fractal lacunarity = 2.0, fractal gain = 0.25, frequency = 20Hz, amplitude =
0.27m). We simulate each episode for a maximum of 1000 steps and terminate the episode earlier
if the height of the robot drops below 0.28m, magnitude of the body roll exceeds 0.4 radians or the
pitch exceeds 0.2 radians. The control frequency of the policy is 100Hz, and the simulation time step
is 0.0025s.

Environmental Variations: All environmental variations with their ranges are listed in Table 1 of
the main paper. The environment information of et in RMA [3] includes center of mass position and
the payload (3 dimensions), motor strength (12 dimensions), friction (1 dimension), linear speed in
x direction vx (1 dimension), linear speed in y direction vy (1 dimension) and yaw speed ωyaw (1
dimension), making it a 19-dim vector. We smooth vx, vy and ωyaw by using exponential averaging
with values of history time steps and a smoothing factor of 0.2.

State Space: The state is 30 dimensional containing the joint positions (12 dimensions), joint
velocities (12 dimensions), roll and pitch angles of the torso, and binarized foot contact indicators (4
dimensions). We did not use any classical state estimator to measure the base velocity or orientation.

Action Space: The action space is 12 dimensional corresponding to the target joint position for
the 12 robot joints. The speed up policy learning, the policy network outputs the delta target joint
positions, which are converted to target joint positions by adding the joint angles of the initial
standing state. The delta target joint positions at HAA, HFE and KFE are restricted to [−0.15, 0.15],
[−0.4, 0.4] and [−0.4, 0.4] in radians respectively. The predicted 12-dim target joint angles a = q̂

is converted to torques τ using a PD controller: τ = Kp (q̂ − q) + Kd

(
ˆ̇q − q̇

)
. Kp and Kd are

manually-specified gains, and the target joint velocities ˆ̇q are set to 0.
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Figure 1: Key frames of the walking gait, trotting gait and bouncing (galloping) gait. Red dots indicate foot
contacts. Videos: https://energy-locomotion.github.io
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Figure 2: Walking with 1 kg payload (two bottles of 500 ml water are strapped on the back of the robot). The 1
kg payload is out of the normal perturbation of environment parameters used in simulation training shown in
Table 1 in the main paper.

Reward: We use the energy consumption-based reward throughout all settings. On uneven terrain
for unstructured gaits, we can add the extra penalties from [3] like minimizing ground impacts
to explicitly reduce the risks of hardware wearing because complex terrain can otherwise damage
the hardware quickly. However, these extra penalties are not responsible for the unstructured gait
emergence in complex uneven terrain.

Hyperparameters of Policy Learning: PPO [4] and Adam optimizer [5] are used to train the
base policy and the environmental factor encoder in RMA [3]. The total number of training epoch
is 15, 000. During each epoch, a batch of 100, 000 state-action transitions, which is split into 4
mini-batches, is sampled from the current policy. Each mini-batch is used for 4 times to compute
the loss and backpropagation. The total loss is the surrogate policy loss plus half the value loss. The
action log probability ratio is clipped between 0.8 and 1.2, and the target value is clipped to 0.8− 1.2
times the range of the value that is computed in previous iteration. We lower bound the standard
deviation of the parameterized Gaussian action space to 0.2 to encourage exploration. We set λ and γ
in the generalization advantage estimation [6] to 0.95 and 0.998 respectively. We set the learning rate
of the optimizer to 5e−4, β to (0.9, 0.999), and ε to 1e−8.

2 Additional Experiment Results

2.1 Emergence of Walking, Trotting and Bouncing

In Figure 1 of the Supplementary, we show four key frames of the walking at low target speed (0.375
m/s), trotting at median target speed (0.9 m/s) and bouncing (galloping) gaits at high target speed
(1.5 m/s). At high speed, the robot gallops for the first few seconds, where the front two legs leave
the ground first and also contact the ground first after the flight phase. Then, it switches to using
bouncing gait where the four legs hit the ground at approximately the same time.
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2.2 Robustness Tests

Figure 3: Two examples of emerged failure gaits when
trained on flat ground without fractal variations. Both
failure gaits are tilted and unstable.

In addition to Figure 5 of the main text, Figure 2
in the Supplementary shows the the key frames
of walking gait under 1 kg payload. The walking
gait is robust to the extra payload that is out of
the normal perturbation of environment param-
eters used in simulation training shown in Table
1 of the main paper. For more qualitative results
on robustness, please refer to videos at https:
//energy-locomotion.github.io.

3 Additional Ablation Studies

Fractal Terrain during Training In Figure 3, we show the key frames of 2 gaits at low and median
speeds when the policies are trained with energy minimization (Section 2.4) but on a flat terrain
without fractal perturbations (Section 2.3). All 10 training trials converge to unnatural and unstable
gaits. We found that adding fractal terrain also facilitates a larger foot clearance and robustness which
improves real-world hardware deployment.

4 Details of the MPC baseline

We use a reference implementation [7] of convex MPC [8] for Unitree A1. The parameters for gait
generation to enforce constraints on ground reaction forces are fine-tuned for walking gait, trotting
gait and bouncing gait. For the walking gait, we test at target speeds vtarget in the range from
0.1m/s to 0.7m/s every 0.1m/s. We set the duty factors of 4 legs to [0.8, 0.8, 0.8, 0.8], initial leg
phases to [0, 0.25, 0.5, 0], and the stance duration to −0.5vtarget + 0.75 seconds. Only the Rear-
Left foot is initialized in swing phase. For the trotting gait, we test at target speeds vtarget in the
range from 0.5m/s to 1.5m/s every 0.1m/s. We set the duty factors of 4 legs to [0.6, 0.6, 0.6, 0.6],
initial leg phases to [0.9, 0, 0, 0.9], and the stance duration to −0.15vtarget + 0.325 seconds. The
Front-Right and Rear-Left feet are initialized in swing phase. For the bouncing gait, we test at target
speeds vtarget in the range from 1.0m/s to 2.0m/s every 0.1m/s. We set the duty factors of 4 legs to
[0.35, 0.35, 0.35, 0.35], initial leg phases to [0, 0, 0, 0], and the stance duration to 0.04 seconds. All
feet are initialized to the stand phase.

5 Details of Gait Transition

We first train our fixed-velocity policies as described in the paper which lead to a walking policy
πwalking, a trotting policy πtrotting and a bouncing (galloping) policy πbouncing. Each gait policy
has its own encoder µ to embed the environmental parameters et which are only available during
simulation. We then treat these policies as experts and collect demonstration data from them to
self-supervise and bootstrap the initial training phase of the velocity-conditioned policy Π. We
represent the command velocity inputs at these three velocity modes as three one-hot vectors of
length three. Notice that these three policies serve as experts at three different velocity modes at
low (0.375 m/s), median (0.9 m/s) and high (1.5 m/s), but there is no expert demonstrations at other
target velocities sampled from the continuous range of 0.375 m/s - 1.5 m/s. To learn motor skills and
smooth gait transition at continuous intermediate velocities, we rely on the velocity-conditioned RL
rewards, resample the target velocity every 200 steps, and represent the command velocity inputs
as interpolations between the three velocity modes (e.g. 1.2 m/s is represented as [0, 0.5, 0.5] and
0.5 m/s is represented as [0.238, 0.762, 0]). The velocity-conditioned policy Π cannot rely on
environmental parameters, since these environmental parameters are not available when the policy
is deployed on the robot. Instead, the velocity-conditioned policy Π relies on 20 history steps of
observations (xt−1 to xt−20) and actions (at−2 to at−21) which implicitly contain information about
environmental parameters and are encoded by the adaptation module φ into a 8-dimensional vector
fed to Π. The velocity-conditioned policy Π is trained by minimizing self-supervised L2 loss at the
three velocity modes minus expected returns at randomly sampled velocities from the continuous
range of 0.375 m/s - 1.5 m/s. We linearly anneal the L2 loss to zero during initial 2500 training
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epochs, and then velocity-conditioned policy is optimized with only RL loss at randomly sampled
velocities for additional 2500 training epochs.
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