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Table 6: Dataset statistics for link prediction task
Homogeneous Graphs KGs

NS Power Router C.ele USAir Yeast PB FB15k237 WN18RR

# Nodes 1589 4941 5022 297 332 2375 1222 14541 40943
# Edges 2742 6594 6258 2148 2126 11693 16714 310116 93003

# Edge types 1 1 1 1 1 1 1 237 11
# Relations - - - - - - - 237 11

Avg. # Degrees 3.45 2.67 2.49 14.46 12.81 9.85 27.36 21.33 2.27

# Training 4387 10550 10012 3436 3401 18708 26742 272,115 86,835
# Validation 548 1319 1251 429 425 2338 3342 17,535 3,034

# Testing 548 1319 1251 429 425 2338 3342 20,466 3,134

Table 7: Dataset statistics for node classification and graph classification task
Node Classification Graph Classification

Cora CiteSeer PubMed IMDB-B IMDB-M MUTAG PROTEINS

# Graphs 1 1 1 1000 1500 188 1113
# Nodes 2708 3327 19717 19.8 (Avg.) 13.0 (Avg.) 17.9 (Avg.) 39.1 (Avg.)
# Edges 2742 6594 6258 96.53 (Avg.) 65.94 (Avg.) 19.79 (Avg.) 72.82 (Avg.)

# Edge types 1 1 1 1 1 4 1
# Node Attr. 1433 3703 500 - - 3 7

# Classes 7 6 3 2 3 2 2

A Experiments

A.1 More Experimental Settings

A.1.1 Dataset Details

We summarize the dataset statistics in Tab. 6 and Tab. 7. In terms of dataset splits, for LP task on
homogeneous graphs, we follow [Li et al., 2020] to split 80%, 10%, 10% of existing links for training,
validation and testing respectively. The same number of negative links are also included through
random sampling. During training phase, positive test links are removed to avoid label leakage. For
KGs, we follow their standard split as shown in Tab. 6. Moreover, we use 60%, 20%, 20% dataset
split for node classification as in [Zhao et al., 2021], and 80%, 10%, 10% for graph classification task
to keep the same percentage of test split as in [Xu et al., 2018b] for fair comparison.

A.1.2 Hyperparameter Settings

We provide detailed hyperparameter settings in Tab. 8 for our implementation. Hyperparameters are
tuned through hyperopt 3 Bergstra et al. [2013].

Table 8: List of value / range of hyperparameters in AutoGEL’s implementation

Hyperparameters Link Prediction Node Classification Graph Classification
Homo. Graphs KGs

Optimizer Adam Adam Adam Adam
Learning rate 1e-4 {1e-3,1e-4} {1e-3, 5e-3, 1e-4} {1e-2, 1e-3, 1e-4}
MPNN layers 2 {1, 2} 2 4

Batch size {64, 128} {128, 256} {64, 256} {32, 128}
Hidden dimension 100 200 {64, 256} {16, 32, 64}

Dropout {0, 0.2} {0, 0.1, 0.2, 0.3} {0, 0.5} {0, 0.5}
Search epoch 300 {200,300} {30, 200} {30, 200}

3https://github.com/hyperopt/hyperopt
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Figure 3: An example: GNN architecture searched by AutoGEL for LP task on PB dataset.

Figure 4: An example: GNN architecture searched by AutoGEL for LP task on FB15k-237 dataset.

A.1.3 Search Space

Apart from our main designs presented in Section 3.1, AutoGEL also includes several other intra-level
design dimensions in the search space:

• Aggregation AGGk: We follow the common design in AutoGNN works (please refer to Section
2.2 for more details) to include {sum,mean,max} for neighborhood aggregation.

• Combination COMk: We select combination function from {sum, concat}. We omit mlp

combination since we empirically find simpler combination operator sum and concat adopted in
our search space already achieves good performance.

• Activation ACTk: Empirical observations from [You et al., 2020] shows the superiority of PReLU
as the activation function for GNNs. In this work, we restrict our candidate activation functions in
{ReLU, PReLU}. For the LP task on KGs, we follow the alternative setting to use tanh since
we empirically found ReLU and PReLU not suitable.

• Node Labeling: The node labeling method (e.g., double-radius node labeling (DRNL) [Zhang
and Chen, 2018] and distance encoding (DE) [Li et al., 2020]) is an important component towards
the success of structural prediction tasks (e.g., link prediction). AutoGEL presets the DE as the
node labeling approach for the LP task due to its generality and empirically good performance.
DRNL can be regarded as a special case for DE, where the differences between them are marginal.
Both DE and DRNL work well in practice [Li et al., 2020]. Moreover, we tried to incorporate this
design dimension into the search space and enable it to be jointly searched with other architecture
components. Unfortunately, sacrificing some search efficiency may not be able to improve the
effectiveness because DE is already a powerful technique. Out of this concern, AutoGEL presets
DE as the node labeling method to better balance between effectiveness and efficiency.

A.2 Case Study

Here we show some searched architectures for several tasks: link prediction (LP), node classification
(NC), and graph classification (GC).

For the LP task (see Fig. 3 and Fig. 4), we find that the depth of MPNN layers L leading to highest
performance is different from graph scenarios. Generally, L = 2 for homogeneous graphs while
L = 1 for knowledge graph. One possible reason is that KGs are usually more densely connected
(see Tab. 6 for more dataset details), and deeper MPNN layers would cause the over-smoothing issue,
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Figure 5: An example: GNN architecture searched by AutoGEL for the NC task on PubMed.

Figure 6: An example: GNN architecture searched by AutoGEL for the GC task on PROTEINS

resulting in performance degradation. Moreover, it is also discussed in [Zhang and Chen, 2018] that
for subgraph-based LP approaches on homogeneous graphs adopted by AutoGEL, 2-hop enclosing
subgraphs already contain rich information required for the prediction, therefore L > 2 should not be
very necessary.

Specifically, for the LP task on KG scenario, we empirically observe that the composition operator
�(hu,he) (see Sec. 3.1) should be one of the most critical components. This operator determines
the way how to compose the neighborhood embedding hu and edge embedding he to generate the
message for the center node v. Actually, the composition operator � incorporates the scoring function
design in past KG embedding models, such as subtraction for geometric models and multiplication
for bilinear models. From experiments, we observed that � is data-dependent. corr is more preferred
for the FB15k-237 dataset, and simpler mult is prone to get better results for the WN18RR dataset.
Using others � for these data sets would lead to significantly different performance based on the
empirical study.

For the NC task (see Fig. 5), pooling operator R(·) is removed from the search space, and we set
L = 2 for all three citation datasets, since we observe performance degradation with larger L on
those datasets.

For the GC task (see Fig.6), we empirically observe that AutoGEL prefers deeper GNN architectures
compared to the LP and NC tasks. One potential reason is that, citation datasets adopted for the NC
task are similar to “small world” networks [Barthélémy and Amaral, 2011] where each node can reach
the entire graph within just a few hops. But the data sets for the GC task represent graph structures,
such as molecules, where deeper architectures might be beneficial to increase effective receptive
field. Besides, while the NC task mainly relies on local neighborhood (short-range) information, the
GC task may require long-range information to capture certain graph properties that are essential to
the prediction, such as chemical properties of molecules [Matlock et al., 2019], and graph moments
[Dehmamy et al., 2019]. Thus deeper GNN architectures are more desired.
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Table 9: Average AUC (with standard deviation) for LP task on homogeneous graphs
Type Model NS Power Router C.ele USAir Yeast PB

Heuristic
CN 94.42±0.95 58.80±0.88 56.43±0.52 85.13±1.61 93.80±1.22 89.37±0.61 92.04±0.35
RA 94.45±0.93 58.79±0.88 56.43±0.51 87.49±1.41 95.77±0.92 89.45±0.62 92.46±0.37
Katz 94.85±1.10 65.39±1.59 38.62±1.35 86.34±1.89 92.88±1.42 92.24±0.61 92.92±0.35

Latent
SPC 89.94±2.39 91.78±0.61 68.79±2.42 51.90±2.57 74.22±3.11 93.25±0.40 83.96±0.86
LINE 80.63±1.90 55.63±1.47 67.15±2.10 69.21±3.14 81.47±10.71 87.45±3.33 76.95±2.76
N2V 91.52±1.28 76.22±0.92 65.46±0.86 84.11±1.27 91.44±1.78 93.67±0.46 85.79±0.78

GLP

VGAE 94.04±1.64 71.20±1.65 61.51±1.22 81.80±2.18 89.28±1.99 93.88±0.21 90.70±0.53
PGNN 94.88±0.77 - - 78.20±0.33 - - 89.72±0.32
SEAL 98.85±0.47 87.61±1.57 96.38±1.45 90.30±1.35 96.62±0.72 97.91±0.52 94.72±0.46

DE-GNN 99.09±0.79 96.68±0.29 98.69±0.17 89.37±0.17 98.04±0.66 98.59±0.26 94.95±0.37

AutoGNN

AutoGEL 99.89±0.06 98.00±0.21 99.08±0.28 92.90±1.02 98.49±0.45 99.24±0.10 97.27±0.15
AutoGEL-intra 99.85±0.06 97.65±0.21 98.92±0.23 92.36±1.13 98.29±0.49 99.18±0.09 97.16±0.13
AutoGEL-diff 99.58±0.17 97.05±0.19 98.92±0.27 90.38±0.64 97.89±0.69 98.90±0.10 96.12±0.21
AutoGEL-\� 99.85±0.06 97.65±0.20 98.98±0.23 92.58±1.14 98.33±0.39 99.14±0.09 97.23±0.07

AutoGEL-darts 99.85±0.06 97.31±0.09 98.87±0.23 91.98±0.77 97.98±0.42 99.02±0.13 95.84±0.29

Table 10: MRR and Hits@N for LP task on knowledge graphs
Type Model FB15k-237 WN18RR

MRR Hits@10 Hits@3 Hits@1 MRR Hits@10 Hits@3 Hits@1

Geometric TransE .294 .465 - - .226 .501 - -
RotatE .338 .533 .375 .241 .476 .571 .492 .428

Bilinear DisMult .241 .419 .263 .155 .430 .490 .440 .390
ComplEx .247 .428 .275 .158 .440 .510 .460 .410

NN-based

ConvKB .243 .421 .371 .155 .249 .524 .417 .057
ConvE .325 .501 .356 .237 .430 .520 .440 .400
ConvR .350 .528 .385 .261 .475 .537 .489 .443

HyperER .341 .520 .376 .252 .465 .522 .477 .436

GLP

R-GCN .248 .417 - .151 - - - -
SACN .350 .540 .390 .260 .470 .540 .480 .430

VR-GCN .248 .432 .272 .159 - - - -
CompGCN .355 .535 .390 .264 .479 .546 .494 .443

AutoGNN
AutoGEL .357 .538 .391 .266 .479 .549 .492 .444

AutoGEL-\� .355 .533 .389 .265 .470 .532 .486 .434
AutoGEL-darts .356 .538 .391 .265 .472 .544 .485 .434
AutoGEL-\he .355 .531 .389 .265 .454 .540 .483 .402

A.3 Ablation Study

Apart from the main experiment results shown in Sec. 4, we also conduct several ablation studies to
investigate the influence of different components in AutoGEL and provide additional experiments in
this section.

1) Impact of Inter-level Design: AutoGEL provides various design dimensions from both intra-level
(see Sec.3.1.1) as well as inter-level (see Sec.3.1.2). To study the effect of the proposed inter-level
designs, we set a variant, i.e., AutoGEL-intra, where inter-level design dimensions are removed
from the search space, and we only conduct operator search from intra-level. As shown in Tab. 9
and Tab. 11, AutoGEL-intra achieves competitive performance compared with manually-designed
GNN baselines, which illustrates the powerfulness of AutoGEL’s intra-level designs. But AutoGEL
brings more performance gains over AutoGEL-intra by searching inter-level operators. Note that the
number of layers L for the LP task on KG is usually 1 (see Appendix A.2), thus there are no results
of AutoGEL-intra in Tab. 10.

2) Impact of Pooling Operator: In this paper, we provide pooling operation candidates R(·) 2

{sum,mean,max} for the LP task on homogeneous graphs. As discussed in Sec. 3.1.3, DEGNN [Li
et al., 2020] utilizes the difference-pooling as R(·). Here we set a variant, i.e., AutoGEL-diff, where
we remove the proposed pooling candidates from the search space and fix the difference-pooling
instead. As shown in Tab. 9, the fixed difference-pooling method leads to the significant performance
degradation, illustrating the strength of AutoGEL’s pooling design.
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Table 11: Average accuracy (%) for node classification and graph classification

Type Model Node Classification Graph Classification
Cora CiteSeer Pubmed IMDB-B IMDB-M MUTAG PROTEINS

PATCHYSAN - - - 71.00 45.20 92.60 75.90
DGCNN - - - 70.00 47.80 85.80 75.50

Manual GCN 88.11 76.66 88.58 74.00 51.90 85.60 76.00
GNNs GraphSAGE 87.41 75.99 88.34 72.30 50.90 85.10 75.90

GAT 87.19 75.18 85.73 - - - -
GIN 86.00 73.40 87.99 75.10 52.30 89.40 76.20

AutoGNN

GraphNAS 88.40 77.62 88.96 - - - -
SANE 89.26 78.59 90.47 - - - -

You et al. [2020] 88.50 74.90 - - 47.80 - 73.90
AutoGEL 89.66 77.66 90.00 81.20 56.80 96.14 82.68

AutoGEL-intra 88.93 76.33 89.73 77.62 55.58 95.98 77.96
AutoGEL-\� 88.88 76.55 89.96 77.44 53.88 93.75 79.3

AutoGEL-darts 89.00 77.49 89.85 76.69 47.42 96.05 80.08

Table 12: Search time (clock time in seconds) comparison on the node classification (NC) task and
graph classification (GC) task

Node Classification Graph Classification
Cora CiteSeer PubMed IMDB-B IMDB-M MUTAG PROTEINS

AutoGEL 12 16 19 58 90 2.4 56
AutoGEL-darts 15 31 97 122 138 3.8 95

Table 13: Search time (clock time in hours) comparison on the LP task
NS Power Router C.ele USAir Yeast PB FB15k-237 WN18RR

AutoGEL 0.5 2.6 3.4 1.4 1.3 4.0 14.4 18.1 13.1
AutoGEL-darts 1.0 2.7 3.4 1.5 1.4 6.0 14.7 18.3 13.7

3) Impact of Separate Weight Transformation Matrices: AutoGEL provide novel linear transformation
approaches, i.e., we assign neighborhood-type specific matrices Wk

�(u) as special attention mechanism
for homogeneous graphs, and edge-aware filters Wk

�(e) to incorporate information from different
directions for heterogeneous graphs (see Sec. 3.1.1). To study the impact of such designs, we provide
two variants, i.e., AutoGEL-\� (see Tab. 9 and 11 ) and AutoGEL-\� (see Tab. 10), where Wk

�(u) and
W

k

�(e) are simply replaced by a single W
k. Compared with these two variants, AutoGEL achieves

better performance cross different graph tasks and datasets.

4) Impact of Edge Embedding: To show the effectiveness of edge embedding he on the LP task, we
set another variant, i.e., AutoGEL-\he, by removing he from AutoGEL’s MPNN and simply replace
�(hk

u
,h

k
e
) with h

k
u

in (8). Experiment results are shown in Tab. 10. Performance degradation is
observed for the AutoGEL-\he, especially on the WN18RR dataset, indicating that he is indeed a
critical design.

5) Impact of Stochastic Differentiable Search Algorithm: As discussed in Sec.3.2, AutoGEL adopts
stochastic differentiable search algorithm in SNAS to perform more effective and efficient architecture
search. To show its superiority, we also try the deterministic differentiable search algorithm DARTS
for AutoGEL, denoted as AutoGEL-darts. Tab. 9, Tab. 10, and Tab. 11 empirically show the consistent
superior performance of the AutoGEL compared with AutoGEL-darts variant cross node/edge/graph
level tasks, indicating the effectiveness of AutoGEL’s search algorithm. Besides, we further show that
the search cost of AutoGEL is also lower than its AutoGEL-darts variant (see Tab. 12, and Tab. 13).
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Table 14: Running time (clock time in hours) of AutoGEL and several baselines for the LP task

Type Model HGs KGs
NS Power Router C.ele USAir Yeast PB FB15k-237 WN18RR

GLP for HG DE-GNN 0.1 1.0 1.2 0.2 0.3 2.0 4.7 - -
Bilinear for KG DistMult - - - - - - - 2.6 0.4

NN for KG ConvE - - - - - - - 26.0 10.2
GLP for KG CompGCN - - - - - - - 16.1 7.8

Ours AutoGEL (search) 0.5 2.6 3.4 1.4 1.3 4.0 14.4 18.1 13.1
AutoGEL (training) 0.3 0.5 0.7 0.4 0.4 1.5 4.8 13.1 7.3

A.4 Search Efficiency

As mentioned in Sec. 4.2, we found that existing GLP modes generally require more computational
resources in practice. Thus, we try to reduce the search cost in the proposed AutoGEL. Tab. 14
reports the running time (hours) of AutoGEL and several other representative baselines for the LP
task on the homogenous graph (HG) and knowledge graph (KG).

From Tab. 14, we can observe that: On the LP task on HGs (NA, Power, Router, C.ele, USAir,
Yeast, and PB), AutoGEL runs quite fast, which substantially eases the difficulty of using AutoGEL.
Besides, AutoGEL achieves more significant performance boost in this scenario (see Tab. 2). On the
LP task on KGs (FB15K-237, WN18RR), DistMult [Yang et al., 2014] is a representative of bilinear
models that run much faster among all KGE models. Although AutoGEL is slower than DistMult, its
computational cost is very close with classic neural networks (NNs) for KG ConvE [Dettmers et al.,
2018] and GLP model CompGCN [Vashishth et al., 2019]. Then recalling Tab. 3, AutoGEL well
balances between search cost and effectiveness.
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