
A Appendix

A.0 Related Work Continued

Discussion continued from Section 7:

Batch Reinforcement Learning. In recent times, [16] and [13] propose datasets and experimental
setups for studying offline RL problems. A large body of work examines solutions to the batch RL
problem. Researchers have identified that extrapolation error, the phenomenon in which batch RL
algorithms incorrectly estimate the value of states/actions not present in the training batch, is a major
challenge, and have proposed methods to tackle it, e.g. BCQ [14], BEAR [19], IRIS from [25], and
CQL [21] among many others. In contrast to these model-free methods, [4, 31, 30] learn a forward
predictive model from the batch data and use it for model predictive control. These methods all
approach the traditional batch RL problem, while we consider a different and harder setting in which
the action labels are unavailable. Aforementioned advances in offline RL are complementary to our
work. Offline value learning approaches (such as CQL and BCQ) can serve as a drop-in replacement
for Q-learning in our pipeline and improve our results. In fact, our experiments with BCQ substantiate
this.

State-only Learning. In line of work which studies learning form goal-directed state-only experience,
researchers use imitation learning-based techniques [29, 40, 11, 18], learn policies that match the
distribution of visited states [41, 42, 43], or use demonstrations to construct dense reward functions
[35, 34, 36, 46, 9]. These methods make strong assumptions about the quality and goal-directed
nature of the experience data, and suffer in performance when faced with low-quality or undirected
experience.

Instead of goal-directed experience our work tackles the problem of learning from undirected
experience. Past work in this area employs Q-learning to learn optimal behavior from sub-optimal
data [8, 37, 10]. [8] and [37] use domain specific insights. [10] rely on being able to generate the
next state and only demonstrate results in environments with low-dimensional states. Instead, our
work maps transition tuples to discrete latent actions and can thus easily work with high-dimensional
observations such as RGB images.
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A.1 Proofs

Proof. Proof for Lemma 3.2. We will start by showing that for any policy ⇡M̂ on M̂ , there exists a
policy ⇡M on M such that V ⇡M̂

M̂
(s) = V ⇡M

M (s), for all s.
To do this we need to introduce the idea of fundamental actions, which are classes of actions which
have the same state and reward transition distributions in a given state. If we have a fundamental
action b, corresponding to some state and reward distributions, let ↵(b, s) ✓ A give the set of actions
in A that have the matching state and reward transition distributions,

8
a2↵(b,s)

p(s0, r|s, a) = p(s0, r|s,↵(b, s)1).

Similarly, let ↵̂(b, s) ✓ Â give the set of actions in Â belonging to b in state s. In any given state,
there are at most min(|A|, |Â|) fundamental actions for M and the union of all actions belonging
to all fundamental actions gives the set of actions that make up the original action space. For our
MDP let’s denote B(s) as the set of fundamental actions in the state s for M , and B̂(s) as the set of
fundamental actions in the state s for M̂ . Let �(s, a), and �̂(s, a) be functions which return the set
of actions which correspond to the same fundamental action containing as a in state s for M , and M̂
respectively. This means,

[

b2B(s)

↵(b, s) = A, 8
b2B(s)

8
b0 6=b

↵(b, s) \ ↵(b0, s) = ;, and 8
a2A,s

9b2B(s)|a 2 ↵(b, s). (1)

With this notation out of the way we can construct a policy ⇡M̂ from ⇡M , which achieves the same
value in M̂ as ⇡M does in M . We do this by constructing ⇡M̂ such that the probability distributions
over each fundamental action is equivalent. We define this policy as

⇡M (a|s) = 1

|�(s, a)|
X

â2�̂(s,a)

⇡M̂ (â|s).

Following [38] we can define the value function for a given policy as

V ⇡M
M (s) = E⇡M [Gt|St = s],

V ⇡M
M (s) =

X

a2A

⇡M (a|s)
X

s0,r

p(s0, r|s, a)
⇥
r + �V ⇡M

M (s0)
⇤
.

From the properties in Eq. 1, we know a sum over fundamental actions will count each action exactly
once, so we can write this sum as

V ⇡M
M (s) =

X

b2B(s)

X

a2↵(b,s)

⇡M (a|s)
X

s0,r

p(s0, r|s, a)
⇥
r + �V ⇡M

M (s0)
⇤
. (2)

substituting in the constructed policy we have

V ⇡M
M (s) =

X

b2B(s)

X

a2↵(b,s)


1

|�(s, a)|
X

â2�̂(s,a)

⇡M̂ (â|s)
�X

s0,r

p(s0, r|s, a)
⇥
r + �V ⇡M

M (s0)
⇤
.

since the third sum is over �̂(s, a) with a 2 ↵(b, s), we can rewrite this sum as over â 2 ↵̂(b, s),
giving

V ⇡M
M (s) =

X

b2B(s)

X

a2↵(b,s)


1

|�(s, a)|
X

â2↵̂(b,s)

⇡M̂ (â|s)
�X

s0,r

p(s0, r|s, a)
⇥
r + �V ⇡M

M (s0)
⇤
.

For the final sum, from the definition of fundamental actions, we know p(s0, r|s, a) =
p(s0, r|s,↵(b, s)1) = p̂(s0, r|s, ↵̂(b, s)1), so we can rewrite that term as

X

s0,r

p̂(s0, r|s, ↵̂(b, s)1)
⇥
r + �V ⇡M

M (s0)
⇤
.

2



Crucially, in the second sum (over a 2 ↵(b, s)), �(s, a) is the same for all a 2 ↵(b, s), so the term
in brackets can be treated as a constant. Similarly, since |B(s, a)| = |↵(b, s)| we can simplify the
second sum leaving

V ⇡M
M (s) =

X

b2B(s)

X

â2↵̂(b,s)

⇡M̂ (â|s)
X

s0,r

p̂(s0, r|s, ↵̂(b, s)1)
⇥
r + �V ⇡M

M (s0)
⇤
.

This gives the definition of V ⇡M̂

M̂
(s) using the same decomposition as equation Eq. 2, meaning

V ⇡M
M (s) = V

⇡M̂

M̂
(s).

One can show the opposite direction, that a policy there exists a policy ⇡M 0 for any policy ⇡M such
V ⇡M
M (s) = V

⇡M̂

M̂
(s), with a symmetric construction.

Note that Lemma 3.2 holds true regardless of the stochasticity of the policy, as the constructed policy
matches probability of the original policy for taking each fundamental action.

Proof for Theorem 3.1. Under the new MDP M̂ , Q-learning will learn the same optimal
value function value function as learned under MDP M , i.e. 8sV ⇤

M̂
(s) = V ⇤

M (s).

Proof. This follows from Lemma 3.2 by contradiction. Assume there is a state s0 where V ⇤
M̂
(s) 6=

V ⇤
M (s). Two cases must be considered. In the first case, V ⇤

M̂
(s) > V ⇤

M (s). We will notate the optimal

policy in M̂ as ⇡̃⇤
M̂

(i.e. V ⇤
M̂

= V
⇡̃⇤
M̂

M̂
) and the optimal policy in M as ⇡⇤

M . We know there must exist

a policy ⇡̃⇤
M such that V ⇡̃⇤

M
M (s) = V

⇡̃⇤
M̂

M̂
(s) from Lemma 3.2. We arrive at a contradiction because

V
⇡̃⇤
M

M (s) > V
⇡⇤
M

M (s), so ⇡⇤
M could not have been the optimal policy on M . The other direction

follows a symmetric argument. If V
⇡̃⇤
M̂

M̂
(s) < V

⇡⇤
M

M (s), we know there must be a policy ⇡⇤
M̂

in M̂

such that V ⇡⇤
M

M (s) = V
⇡⇤
M̂

M̂
(s). This implies V

⇡⇤
M̂

M̂
(s) > V

⇡̃⇤
M̂

M̂
(s), meaning that ⇡̃⇤

M̂
could not have

been the optimal policy. Since Q-learning is known to converge to the optimal value function [45],
Q-learning on M̂ will converge to the original value function V ⇤

M .
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A.2 State Only Learning From Stochastic MDPs

Here we will briefly prove that problem of deducing the optimal value function of an MDP M , from
some state-only experience dataset D, cannot be solved in general for non-deterministic MDPs. We
notate D as the space of all complete state-only datasets, and V as the space of all value functions. By
complete state-only dataset, we mean datasets in which all possible transition triples (s, s0, r) appear.
Note that exactly one complete dataset exists for each MDP. We denote DM as the complete dataset
corresponding to an MDM M .

In short, the idea is to construct a single state-only dataset which ambiguously could have been
produced from two different MDPs which have different optimal value functions. Since no function
deterministic function can model two outputs from the same input, no such function can exist.
Theorem A.1. For any function f : D ! V which maps from the set of of state-only datasets, D,
to a set of value functions. There exists some MDP M , with corresponding dataset DM such that
f(D) 6= V ⇤

M .
@f | 8Mf(DM ) = V ⇤

M .

Proof. We proceed by contradiction, assume any f : D! V such that

8Mf(DM ) = V ⇤
M .

If we can construct M1 and M2 such that V ⇤
M1
6= V ⇤

2 , and D such that D = DM1 = DM2 , then f
cannot produce the correct value function for f(D) in all cases, from the definition of a function. We
will now show a very simple construction which exhibits this property. Consider an MDP M1, with 3
states, s1, s2, st, and 2 actions a1, a2. st is terminal, and gives reward 1, other states give reward 0.
The transition dynamics of the two actions are given below.

Table: a1 transitions for M1

s1 s2 st
s1 0 1 0
s2 0 0 1

Table: a2 transitions for M1

s1 s2 st
s1 0 0 1
s2 1 0 0

For simplicity, assume M1 has a discount factor of 0.9. This means V ⇤(s1) = V ⇤(s2) = 1.

We define M2 as identical to M1, only with stochastic transitions.
Table: a1 transitions for M2

s1 s2 st
s1 0 1 0
s2 0 0 1

Table: a2 transitions for M2

s1 s2 st
s1 0.9 0.1
s2 1 0 0

In this MDP, with a discount factor of 0.9, V ⇤(s2) = 1, but V ⇤(s1) = 0.1 + 0.9 ⇤ 0.9 = 0.91.

Since both M1 and M2 share the same states, actions, and possible transitions, DM1 = DM2 . So we
have satisfied our condition that D = DM1 = DM2 , and V ⇤

M1
6= V ⇤M2. Thus, no f can model the

value functions for both MDPs in general.
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A.3 Grid World Behavior vs. Purity

Figure S7 plots the MSE in value function and the proportion of states with correct implied actions as
a function of the noise in the action labels.

Figure S7: We plot correctness of value function estimate and behavior as a function of state-based purity of the
intervening actions used for Q-learning. Left plot shows the mean squared error (lower is better) between the
obtained value function and the optimal value function. Right plot shows fraction of states in which the learned
value function induces the optimal action (higher is better). Both value function and behaviors become worse as
state-based purity decreases.
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A.4 Environment Details

2D Grid World. We use the environment and data from Section 3.2. We use the (x, y) coordinates
as our state for this environment. We use a multi-layer perceptron for f✓ and L2 loss for l.

2D Continuous Control Navigation. We use the Maze2D data from D4RL [13]. Observation space
here is (x, y, vx, vy) i.e. location and velocity of the agent, and action space is force along x and y
directions. We use a frame skip of 3. We use a multi-layer perceptron for f✓ and L2 loss for l. In
the embodiment transfer variant, we swap the agent for a 4-legged ant, also from D4RL. The ant
embodiment is far more challenging to control, with an 8-d action space and 29-d observation space.

Atari Game. We work with Freeway. We generated our own data using the protocol described
in [1]. We turned off sticky actions and store frames both at the default resolution (84⇥ 84) and full
resolution (224 ⇥ 224). Other settings are same as is typical: stack last 4 frames to represent the
observations, and use frame-skip of 4. We use a convolutional encoder-decoder model for f✓ and
predict raw future observations. We use L2 distance in the pixel space as our loss function l.

3D Visual Navigation. We work with the branching environment from [8] in the AI Habitat
Simulator [33], and use the provided dataset of first-person trajectories as our pre-recorded experience
dataset. Following [8], we employ low-level controllers for deriving behaviors from the learned value
functions. We use a convolutional encoder-decoder for f✓, and L2 loss in pixel space as l.

Kitchen Manipulation. In this task a 9-DOF Franka arm can interact with several different objects
physically simulated kitchen. The observations are 24-d, containing the end-effector position and
state of various objects in the environment (microwave door angle, kettle position, etc.). The action
space represents the 9-d joint velocity. In cross-embodiment experiments we replace the Franka arm
with a hook. The observation space remains the same while the action space becomes 3-d position
control.

For experiments in kitchen manipulation, we add an additional component to the reward computation
to incentivize behavior to remain within the region of the state space covered by the demonstrations
(where the learned value function is in-distribution). To do this, we build a density model over the
end effector position using a 2 component Gaussian mixture model. If a state s has a less than 1%
probability according to the GMM density model, then we assign V (s) = 0, for the update described
in Section 5.2. We apply this shaping to both ours and D3G in Figure 4. We give sparse reward the
same benefit of this shaping by giving reward �1 outside of the GMM distribution, and 0 inside.
Sparse task reward remains the same.

For all environments, we throw out the provided action labels when learning our models.
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A.5 Data Collection

2D Grid World. The setting for this experiment is a 6 ⇥ 6 grid with 8 actions, corresponding to
moving in the 4 cardinal directions and 4 diagonal directions. The agent starts in the top left (0,0),
and gets reward 0 everywhere, except for in the bottom right, (5,5). Reaching the bottom right gives
the agent reward 1 and terminates the episode. In the starting square (0,0), the agent has probability
0.5 of moving right, and probability 0.5 of moving down. When the agent is on the top or bottom
edge of the maze (row = 0 or row = 5) it moves right with probability 0.9, and takes a random action
with probability 0.1. When it is on the left or right edge of the grid (column = 0 or column = 5), it
moves down with probability 0.9 and takes a random action with probability 0.1. Otherwise, it is in
the interior of the grid, where it takes an action away from the goal (randomly chosen from: up, left,
or up-left) with probability 0.9, and one of the remaining actions otherwise (randomly chosen from:
down, right, down-right, up-right, down-left). This policy is rolled out for 20,000 policies to generate
the data for methods described in main paper Section 3.2 and Figure 1.

Atari Game. Data for the Freeway environment had to be additionally collected, as native high
resolution resolution images of the episodes from [1] are not readily available. For this, we re-
generated the data using the protocal described in [1], without sticky actions. Then, the high resolution
data was collected by taking the action sequences from the re-generated dataset and executing them
in an emulator, while storing the native resolution images. Because we re-generated the data without
sticky actions, the high resolution episodes are perfect recreations of the low resolution episodes.

Visual Navigation. The data used for the visual navigation experiment was generated using the same
protocol as [8]. Agents are tasked to reach one of two goals (Gnear and Gfar) in a visually realistic
simulator [33]. Navigating to Gnear is the optimal path as it is nearer to the agent’s starting location.

The dataset contains 3 types of trajectories, T1, T2, and T3, representing 50%, 49.5%, and 0.5% of
the trajectories in the dataset respectively . T1 takes a sub-optimal path to Gnear, T3 takes the optimal
path to Gnear, and T2 navigates to Gfar.

2D Continuous Control (Maze2D) We use the Maze2D dataset from D4RL as is.

Kitchen Manipulation. The data used for the Kitchen Manipulation environment comes from the
partial version of the D4RL FrankaKitchen dataset. To facilitate cross-embodiment transfer we
convert the state representation to contain end-effector location instead of joint angles.
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A.6 Latent Action Quality

We first measure the effectiveness of our latent action mining process by judging the extent to
which the induced latent actions are a refinement of the original actions. We measure this using the
state-conditioned purity of the partition induced by the learned latent actions.

In a given state, for any latent action â, there must be some ground truth action which most frequently
mapped to â. We define the purity of â as the proportion of the most frequent action among all actions
mapped to â. For example, in a given state s if a set of actions [0, 0, 0, 1, 2], were mapped to latent
action â, then 0 is the most frequent action mapped to â and thus the purity of â would be 0.6. For a
given state, the purity of an entire set of latent actions is the weighted mean of purity of individual
latent actions. Overall purity is the average of all state wise purities weighted by how often the states
appear in the dataset.

We extend this definition of state-conditioned purity to continuous or high-dimensional states by
measuring the validation accuracy of a function g that is trained to map the high-dimensional state
(or observation) s, and the associated latent action â to the actual ground truth action a. Training
such a function induces an implicit partition of the state space. Learning to predict the ground truth
action from the latent action â within this induced partition estimates the most frequent ground truth
action, and accuracy measures its proportion, i.e. purity. This exact procedure reduces to the above
definition for discrete state spaces, but also handles continuous and high-dimensional states well.
For continuous action spaces, we measure the mean squared error in action prediction instead of
classification accuracy.

Table S3 reports the purity (and MSE for continuous action environment) obtained by our proposed
future prediction method. For reference, we also report the purity obtained when using single action
that maps all samples into a single cluster, and 2 clustering methods that cluster either concatenation
of the two observations i.e. [ot+1; ot], or the difference between the two observations i.e. [ot+1 � ot].
We use 8 latent actions for all environments except the FrankaKitchen environment for which we use
64 because of its richer underlying action space.

In general, our forward models are effective at generating a latent action space that is a state-
conditioned refinement of the original action space. This is indicated by the improvement in state-
conditioned purity values over using a single action or naive clustering. For the 2D Grid World and
2D Continuous Navigation, clustering in the correct space (state difference vs. state concatenation)
works well as expected. But our future prediction model, which directly predicts st+1 and doesn’t
use any domain specific choices, is able to outperform the corresponding clustering method. We
also observe large improvements over all baselines for the challenging case of environments with
high-dimensional state representations: Freeway and 3D Visual Navigation.

Table S3: We report the state-conditioned action purity (higher is better, MSE for continuous action case where
lower is better), of latent actions for different approaches: single action, clustering concatenated observations,
clustering difference in observations, and the proposed future prediction models from Section 4.1. We note the
utility of the future prediction model for the challenging case of Freeway and 3D Visual Navigation environments.
See Section A.6 for a full discussion.

Environment Observation Action Purity Single Clustering Clustering Future

Space Space Metric Action [ot, ot+1] [ot+1 � ot] Prediction

2D Grid World xy location Discrete, 8 Purity (") 0.827 0.851 1.000 0.998
Freeway 210⇥ 160 image Discrete, 3 Purity (") 0.753 0.778 0.773 0.907

3D Visual Navigation (Branching) 224⇥ 224 image Discrete, 3 Purity (") 0.783 0.839 0.859 0.928

2D Continuous Control xy loc. & vel Continuous, 2 MSE (#) 2.207 2.188 0.325 0.905
Kitchen Manipulation 24-d State Continuous, 8 MSE (#) 0.015 0.015 0.015 0.014
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A.7 Analysis of Learned Latent Actions

We analyze the latent actions learned for the Freeway environment.

We visualize our future prediction model’s predictions for the Freeway environment in Figure S8.
In line with our expectations, the one action future prediction model and the latent action future
prediction model are both able to reconstruct the background and the vehicles perfectly. At the same
time, the one action future prediction model fails to reconstruct the agent accurately, whereas the
latent action future prediction model is able to reconstruct the agent almost perfectly. This provides
evidence for the effectiveness of our proposed latent action mining approach at discovering pure
action groundings.

Ground Truth ot+1 With One Action With Latent ActionsGround Truth ot

Figure S8: We visualize the Freeway future prediction models’ reconstructions for ot+1. From left to right,
the ground truth ot, the ground truth ot+1, the reconstruction for ot+1 by the future prediction model with one
action, the reconstruction for ot+1 by the future prediction model with latent actions. The agent is circled in
each image.
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Figure S9: Visualization of the latent actions learned in
Freeway. X-axis is the agent’s y-position, y-axis is the
displacement of the agent (which is indicative of ground
truth action).

Furthermore, we visualize the learned latent ac-
tions for Freeway in Figure S9. In Freeway, the
agent can only move along the y-axis, and con-
sequently, the environment action space only has
three actions: move up, move down, and no-op.
This means that the agent’s y-displacement be-
tween the current frame and the previous frame
directly corresponds to the ground truth action
taken. In this visualization, we visualize the the
chosen latent action (by color: blue, orange, or
green) as a function of the agent’s y-position in
the current frame (x-axis) and the y-displacement
relative to the previous frame (y-axis). Note that
as mentioned in the paper, we learn the value func-
tions over the top three most dominant actions to
stabilize training; for this reason, the visualization
only consists of three latent actions.

Within each vertical region marked by the red bars, we see that the latent actions are split into
distinct clusters based on the agent’s y-displacement. Because the agent’s y-displacement directly
corresponds to the ground truth action taken, this indicates that given the agent’s y-position, the
learned latent actions encode information about the ground truth action. Hence, we qualitatively
confirm that the state-based purity of the latent actions is high.
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A.8 Value Function Details

Value Function Model Selection The numbers reported in Table 1 are the 95th percentile Spearman’s
correlation coefficients over the course of training. If training is stable and converges, this corresponds
to taking the final value, and in the case that training is not stable and diverges, this acts as a form of
early stopping. We take the 95th percentile as opposed to the maximum to eliminate outliers.

Below we present visualizations of value functions learned from LAQ.

Freeway. We visualize the value functions learned using our latent actions for Freeway. Figure S10
plots the values over the course of an episode. In Freeway, the agent has to move vertically up and
down the screen to cross a busy freeway, receiving reward when it successfully gets to the other side.
In a single episode, the agent can cross the freeway multiple times; each time the agent makes it
to the other side, the agent’s location is reset to the original starting location, allowing the agent to
attempt to cross the freeway once again. For this reason, we see the value increase as the agent gets
closer to the other side of the road, and then drop as soon as its position resets to the starting location.
As evident, the peaks of the learned value function correspond highly to the environment reward.

Figure S10: We visualize the value predicted by our learned value function over the course of one episode of
Freeway. The red points correspond to when the agent receives a reward from the environment.

Figure S11: Visualization of the learned value function
for 3D Visual Navigation.

3D Visual Navigation. Figure S11 visualizes the
learned value map in the 3D Visual Navigation
branching environment from [8]. As depicted in
Figure 6, there are two goals: Gnear and Gfar.
The figure on the right illustrates that the value
function learned by utilizing our latent actions
correctly assigns high value to the regions sur-
rounding the two goal locations, and low value
elsewhere. Additionally, we learn the value func-
tions with DQN using a dataset obtained by us-
ing a sub-optimal policy which prefers to go to
the goal further away rather than the goal close
by. Despite this sub-optimality, the learned value
function correctly assigns a higher value to the
nearby goal than the goal which is further away.
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Figure S12: Visualization of the learned value function
for 2D Continuous Control.

2D Continuous Control. Figure S12 shows a
visualization of the value function learned using
latent actions for the 2D Continuous Control envi-
ronment. While the observation space of this envi-
ronment is (x, y, vx, vy) i.e. location and velocity
of the agent, we produce this visualization over
just the location of the agent. Based on just the
location of the agent, the optimal value function
would be a monotonically decreasing function as
the distance from the goal location increases. In
this particular environment, the goal of the agent
is to get to the top-right corner of the maze. The
visualization shows that the learned value func-
tion produces high values around this goal region
at the top-right corner of the maze, and gradually
lower values the farther away you go. This fig-
ure visually is in line with our quantitative results
in Table 1 which show that the value function
learned using latent actions in the 2D Continuous Control environment highly correlates to that
learned using ground truth actions.
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Figure S13: Visualization of the learned value function
in Kitchen Manipulation. The x-axis is the microwave
angle in radians, the y-axis is the distance between the
end-effector and the microwave door handle, with the
colors corresponding to the magnitude of the values.

Kitchen Manipulation. We visualize the values
as a function of both the angle that the microwave
door makes with respect to its starting state as
well as the distance between the end-effector and
the microwave door handle in Figure S13. The
task here is to open the microwave door: the agent
receives a binary reward when the angle that the
microwave door makes with respect to its start-
ing state (i.e. closed microwave door) is above a
threshold (approx. 0.7 radians), and zero other-
wise. As expected, we see that the predicted value
of a state increases as the angle of the microwave
door increases. The end-effector position does
not start out at the microwave door handle, but
rather is initialized a fixed distance away from
the handle. As a result, the agent must first move
the end-effector to the microwave door handle,
before interacting with the door handle to open it.
In addition to this, we hypothesize that as the dis-
tance between the end-effector and the microwave
door handle decreases, the predicted value should
increase. While not as obvious as the relation
between the microwave door angle and the value, we see some indication that as the distance between
the end-effector and the microwave door handle decreases, the value increases.
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A.9 LAQ in Stochastic MDPs

We have conducted experiments on stochastic MDPs in the gridworld environment. Specifically, we
do this by adding sticky actions, such that with a certain probability (called the stickiness parameter),
the environment executes the previous action as opposed to the given action. We run LAQ with data
from this stochastic environment and examine a) purity of latent actions, b) quality of learned value
functions, and c) correctness of implied behavior.

Figure S14: As a function of stochasticity in environment, we plot: state-based purity of the latent actions (top
left), Spearman’s rank correlation between LAQ learned value function and ground truth value function (top
right), correctness of implied behavior by the LAQ learned value function (bottom left), and average state-value
of LAQ learend value function, and the ground truth value function (bottom right).

As expected, Figure S14 (left) shows that the state-based purity of the learned latent actions falls off as
the stochasticity (stickiness) increases. However, these impure latent actions have little effect on the
Spearman’s rank correlation (top right). The Spearman’s rank correlation does decrease but remains
reasonably high even when the stickiness parameter is set to 95%. While the ordering of the values
of the different states doesn’t change by much, we note increasing amount of over-estimation in the
values (bottom right). This is expected as with increasing stochasticity, there is an increasingly large
gap between what LAQ thinks it can control, and what it can actually control. However, the behavior
implied by LAQ is still always correct (bottom left), as the over-estimation is uniform over all states.
Thus, it is possible to get good performance from LAQ in some stochastic environments. However,
it is possible to also construct simple scenarios where LAQ, and for that matter any deterministic
algorithm, will suffer as we describe in Section A.2.
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A.10 Algorithm

Algorithm 1 LAQ

1: Given dataset D of (ot, ot+1, rt) triples
2: for each epoch do . Latent Action Mining
3: for sampled batch (ot, ot+1, rt) ⇠ D do

4: L(ot, ot+1) = minâ2Â l(f✓(ot, â), ot+1)
5: ✓  ✓ � ↵r✓L(ot, ot+1) . Section 4.1
6: end for

7: end for

8: let ĝ(ot, ot+1) = argminâ2Â l(f✓(ot, â), ot+1)

9: D̂ = {(ot, ot+1, rt, ĝ(ot, ot+1)) | (ot, ot+1, rt) 2 D} . Latent Action Labeling
10: for each epoch do

11: for sampled batch (ot, ot+1, rt, â) ⇠ D̂ do . Q-learning with Latent Actions
12: Q-learning update to learn Q(s, â)
13: end for

14: end for

15: V (s) = maxâ2Â Q(s, â)
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