
Supplementary Material for “Group-Aware
Threshold Adaptation for Fair Classification”

Anonymous Author(s)
Affiliation
Address
email

1 Upper Bounds on False-Positive/Negative Rate Gap Between Groups1

1.1 Notations2

We start from defining notations. We denote fya(x) for the estimated parametric probability density3

function (PDF) of the distribution of output logit h in the subset {Y = y,A = a}. Correspondingly,4

we denote the corresponding cumulative distribution function (CDF) as5

Fya(x) =

∫ x

−∞
fya(x)dx.

We use F−1ya (x) to denote the inverse of the CDF.6

Then, following the definitions given in the main paper, we have7

TPa(θa) = 1− F1a(θa), FNa(θa) = F1a(θa),

FPa(θa) = 1− F0a(θa), TNa(θa) = F0a(θa).
(1)

1.2 Characterizing the accuracy loss function under perfect EOp condition8

Before stating the theorem, we illustrate the difference between Lper(θ) used in our paper versus loss9

function one would use in a population-wise classification problem (without considering group-aware10

thresholds). That is, one would only consider the loss function on accuracy11

L̄per(θ) = (r1F̄N(θ) + r0F̄P(θ))
2
, (2)

where only one threshold θ (for both groups) needs to be decided, ry = (ny0 + ny1)/N is the12

population ratio of data samples with label y, F̄N(θ), F̄P(θ) are the population-wise false-negative13

and false-positive rate. F̄N(θ), F̄P(θ) are defined in a similar way as in (1) except that we just use14

the population-wise pdf f̄y(x) in the integral for label y. (2) will be our benchmark to compare with15

Lper(θ) used in our paper.16

We start from considering the case that we achieve perfect EOp condition, that is17

TP1(θ1) = TP0(θ0), or equivalently FN1(θ1) = FN0(θ0). (3)

This means that θ0 and θ1 satisfies the following condition18

F11(θ1) = F10(θ0). (4)

Equivalently, we have19

θ0 = F−110

(
F11(θ1)

)
. (5)
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Under any given pair of (θ0, θ1) that satisfies (5), recall that the performance error Lper(θ) is defined20

as21

Lper(θ) =
(n01
N

FP1(θ1) +
n11
N

FN1(θ1) +
n00
N

FP0(θ0) +
n10
N

FN0(θ0)
)2
. (6)

From (3), we get22

n11
N

FN1(θ1) +
n10
N

FN0(θ0) =
n11 + n10

N
FN(θ1) = r1FN(θ1),

where r1 denotes, over the entire population (across different groups), proportion of samples with23

positive labels. In other words, r1FN(θ1) represents the proportion of data samples (from both24

groups) with positive label but falsely classified as negative out of the entire dataset.25

Next, we look at the other two terms:26

n01
N

FP1(θ1) +
n00
N

FP0(θ0).

This sum can be written as27

n01
N

FP1(θ1) +
n00
N

FP0(θ0) =
n01 + n00

N
FP1(θ1) +

n00
N

(
FP0(θ0)− FP1(θ1)

)
= r0FP(θ1) +

n00
N

(
FP0(θ0)− FP1(θ1)

)
.

We denote ε1 =
(
FP0(θ0)− FP1(θ1)

)
. Hence,28

Lper(θ) = Lper(θ1) =
(
r1FN(θ1) + r0FP(θ1) +

n00
N
ε1

)2
. (7)

Comparing (2) with (7), we can see that, when FP0(θ0) > FP1(θ1), the term n00

N ε1 captures the29

additional accuracy loss due to that we have chosen two different thresholds even though that30

condition (4) is satisfied. Next, we characterize an upper bound for ε1.31

1.3 Theorem 1 and its Proof32

We first state the assumptions we need to make for Theorem 1.33

Assumption 1. For any given classier h and its induced parametric PDF fya and CDF Fya, we34

assume the following holds:35

• The PDF fya(x) is uniformly bounded, i.e., there is an f̂ya(x) = maxx fya(x).36

• The inverse CDF F−1ya (x) is Lipschitz continuous with Lipschitz constant Mya.37

• The difference in the CDF between two groups is uniformly bounded, i.e.,

|Fy1(x)− Fy0(x)| ≤ uy, ∀x.

Theorem 1. For any given classifier that satisfies Assumption 1 and any given pair of thresholds38

(θ0, θ1) that satisfies the perfect EOp condition, the gap between false-positive rates of the two group39

is upper bounded by40

|ε1| =
∣∣FP0(θ0)− FP1(θ1)

∣∣ ≤ u0 + C1u1, (8)

where C1 = f̂01M10.41

Proof. Recall that FP1(θ1) = 1− F01(θ1) and FP0(θ0) = 1− F00(θ0). Hence,42 ∣∣FP0(θ0)− FP1(θ1)
∣∣ =

∣∣F01(θ1)− F00(θ0)
∣∣

≤
∣∣F01(θ1)− F01(θ0)

∣∣+
∣∣F01(θ0)− F00(θ0)

∣∣.
To bound ε, we just need to bound

∣∣F01(θ1)− F01(θ0)
∣∣ and

∣∣F01(θ0)− F00(θ0)
∣∣.43

For the second one, we note that from Assumption 1 that∣∣F01(θ0)− F00(θ0)
∣∣ ≤ u0.
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For the first one, we note that44 ∣∣F01(θ1)− F01(θ0)
∣∣ ≤ f̂01|θ1 − θ0|,

where f̂01 = maxx f01(x).45

Next, we bound |θ1 − θ0|. Note that from (5),46

|θ1 − θ0| =
∣∣F−110

(
F11(θ1)

)
− θ1

∣∣
=

∣∣∣F−110

(
F11(θ1)

)
− F−110

(
F10(θ1)

)∣∣∣
≤ M10

∣∣F11(θ1)− F10(θ1)|
≤ M10u1.

47

Theorem 1 provides an upper bound on the difference in the false positive rate between the two48

groups, for any given pair of (θ0, θ1) such that the false negative rates are the same for the two49

groups (i.e., satisfies the perfect EOp condition). As discussed in Section 1.2, this upper bound also50

characterize the additional accuracy loss due to that we have group-dependent thresholds compared51

to the case with only one threshold for both groups.52

1.4 Under perfect PE condition53

For predictive equality (PE) condition, we prove a similar result. That is, assuming we achieve perfect54

PE condition with55

FP1(θ1) = FP0(θ0), or equivalently TN1(θ1) = TN0(θ0). (9)

This means that θ0 and θ1 satisfies the following condition56

F01(θ1) = F00(θ0). (10)

Equivalently, we have57

θ0 = F−100

(
F01(θ1)

)
. (11)

Under any given pair of (θ0, θ1) that satisfies (11), the performance error Lper(θ) can be written as58

Lper(θ) =
(n01
N

FP1(θ1) +
n11
N

FN1(θ1) +
n00
N

FP0(θ0) +
n10
N

FN0(θ0)
)2

=
(
r1FN(θ1) + r0FP(θ1) +

n10
N
ε2

)2
,

where59

ε2 =
(
FN0(θ0)− FN1(θ1)

)
.

Similar to Theorem 1, we can provide an upper bound on ε2 under Assumption 1.60

Theorem 2. For any given classifier that satisfies Assumption 1 and any given pair of thresholds61

(θ0, θ1) that satisfies the perfect PE condition, the gap between false-negative rates of the two group62

is upper bounded by63

|ε2| =
∣∣FN0(θ0)− FN1(θ1)

∣∣ ≤ u1 + C0u0, (12)

where C0 = f̂11M00.64

Proof. The proof is similar to that of Theorem 1. We provide the main steps and omit details that65

repeat with the proof of Theorem 1. We have66 ∣∣FN0(θ0)− FN1(θ1)
∣∣ =

∣∣F11(θ1)− F10(θ0)
∣∣

≤
∣∣F11(θ1)− F11(θ0)

∣∣+
∣∣F11(θ0)− F10(θ0)

∣∣
≤ f̂11|θ1 − θ0|+ u1

≤ f̂11M00u0 + u1.

67
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Theorem 2 provides an upper bound on the difference in the false negative rate between the two68

groups, for any given pair of (θ0, θ1) such that the false positive rates are the same for the two groups69

(i.e., satisfies the perfect PE condition).70

To sum up, Theorem 1 and 2 characterize the upper bound of false positive/negative rate gap between71

two groups when the false negative/positive rate gap is 0. At the same time, it captures the upper72

bound of additional accuracy loss due to the two different thresholds for different groups under a73

perfect fairness (EOp or EP) condition.74

2 Characterizing the Tradeoff between Accuracy and Fairness75

In this section, we prove a theorem to characterize the tradeoff between accuracy and fairness. That76

is, we start from the perfect EOp or PE conditions and perturb the solution by a small amount. We77

then bound the difference in the accuracy loss by comparing the perturbed solution with the original78

solution that satisfies the perfect fairness conditions.79

2.1 Perturbed EOp condition80

To start with, let us consider solutions (θ0, θ1) that satisfy the perfect EOp condition (5). Under this81

condition, the optimization problem becomes one dimensional, that is,82

θ∗1 = argmin
θ1

Lper(θ1),

where83

Lper(θ1) =
(
r1FN1(θ1) + r0FP1(θ1) +

n00
N
ε1(θ1)

)2
(13)

and84

ε1(θ1) = FP0(θ0)− FP1(θ1) = F01(θ1)− F00

(
F−110 (F11(θ1))

)
.

From θ∗1 , we can get the corresponding θ∗0 = F−110 (F11(θ∗1)). We further denote this optimal accuracy85

loss value as86

L∗ = Lper(θ∗1).

Now with the optimal solution (θ∗0 , θ
∗
1), we investigate the changes in Lper(θ∗1) when we perturb the87

perfect EOp condition and allow a small difference. That is, now consider solution (θ̃0, θ̃1) such that88

|FN1(θ1
∗)− FN1(θ̃1)| ≤ γ/2, |FN0(θ0

∗)− FN0(θ̃0)| ≤ γ/2. (14)

Consequently, the solution (θ̃0, θ̃1) satisfy the following perturbed EOp condition:89 ∣∣TP1(θ̃1)− TP0(θ̃0)
∣∣ =

∣∣FN1(θ̃1)− FN0(θ̃0)
∣∣ ≤ γ. (15)

Without loss of generality, we assume that (i) the true positive rate of group 1 is higher than that90

of group 0, and (ii) the above inequality is binding (because if not binding, then we can always91

choose a smaller γ to make it binding). Thus, we have TP1(θ̃1) − TP0(θ̃0) = γ, or equivalently,92

FN0(θ̃0)− FN1(θ̃1) = γ. This gives us93

θ̃0 = F−110

(
F11(θ̃1) + γ)

)
. (16)

Next, we analyze Lper(θ̃1) by substituting (θ̃0, θ̃1) in (6), which gives us94

Lper(θ̃1) =
(
r1FN1(θ̃1) + r0FP1(θ̃1) +

n10
N
γ +

n00
N
ε̃1(θ̃1)

)2
, (17)

where95

ε̃1(θ̃1) = FP0(θ̃0)− FP1(θ̃1) = F01(θ̃1)− F00

(
F−110

(
F11(θ̃1) + γ)

))
.

We denote the optimal value for this perturbed version as θ̃∗1 , and its corresponding loss value as96

L̃∗ = Lper(θ̃∗1).
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Furthermore, from (14), we have97

|FN1(θ∗1)− FN1(θ̃∗1)| = |F11(θ∗1)− F11(θ̃∗1)| ≤ γ/2. (18)

Under Assumption 1, we have98

|θ∗1 − θ̃∗1 | =
∣∣F−111 (F11(θ∗1))− F−111 (F11(θ̃∗1))

∣∣
≤ M11

∣∣F11(θ∗1)− F11(θ̃∗1)
∣∣

= M11γ/2.

2.2 Theorem 3 and its proof99

We are ready to compare Lper(θ∗1) and Lper(θ̃∗1). The latter loss should be no larger than the former100

since we relaxed the perfect EOp condition (constraint) in the optimization, i.e., L∗ ≥ L̃∗.101

Theorem 3. Under Assumption 1 and condition (14),102

Lper(θ∗1)− Lper(θ̃∗1) ≤ Cγ,

where C = 2L∗
(
r1
2 + r0

f̂01M11

2 + n00

N

(
f̂00M10 +

ε̂′1M11

2

)
+ n10

N

)
, and ε̂′1 = max ε̃′1 is the maxi-103

mum of the derivative of ε̃1.104

Proof. We have that105

Lper(θ∗1)− Lper(θ̃∗1)

≤ 2L∗
∣∣∣r1FN1(θ∗1) + r0FP1(θ∗1) +

n00
N
ε1(θ∗1)

−
(
r1FN1(θ̃∗1) + r0FP1(θ̃∗1) +

n10
N
γ +

n00
N
ε̃1(θ̃∗1)

)∣∣∣
≤ 2L∗

(
r1γ/2 + r0|FP1(θ∗1)− FP1(θ̃∗1)|+ n00

N

∣∣ε1(θ∗1)− ε̃1(θ̃∗1)
∣∣+

n10
N
γ
)
,

where we further have that106

|FP1(θ∗1)− FP1(θ̃∗1)| = |F01(θ∗1)− F01(θ̃∗1)|
≤ f̂01|θ∗1 − θ̃∗1 |
≤ f̂01M11γ/2,

and107 ∣∣ε1(θ∗1)− ε̃1(θ̃∗1)
∣∣ ≤ ∣∣ε1(θ∗1)− ε̃1(θ∗1)

∣∣+
∣∣ε̃1(θ∗1)− ε̃1(θ̃∗1)

∣∣
≤

∣∣F00(F−110 (F11(θ∗1)))− F00(F−110 (F11(θ∗1) + γ))
∣∣+ ε̂′1M11γ/2

= (f̂00M10 + ε̂′1M11/2)γ.

Here, ε̂′1 = max ε̃′1 is the maximum of the derivative of ε̃1. Combining all the terms in front of γ108

gives us the desired upper bound.109

Theorem 3 quantifies the decrease in accuracy loss (i.e., the improvement in accuracy) when we allow110

a gap of true positive rates between two groups (i.e., relaxation from the perfect EOp condition).111

Repeating the analysis for the perturbed PE condition, we can obtain a similar bound for the changes112

in the accuracy loss function. We omit the details here in the interest of space.113

3 Experimental Details114

3.1 Comparing Methods115

We compared our method with multiple state-of-the-art methods to verify our work. The details about116

the comparing methods are as below:117
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• Learning fair representations for kernel models (abbreviated as FGP) [11]: a pre-118

processing method to learn representation focusing on kernel-based models. The fair119

model that satisfies certain fairness criterion is obtained by Bayesian learning from fair120

Gaussian process (FGP) prior.121

• Fairness confusion tensor (abbreviated as FACT) [5]: a post-processing model that mini-122

mize the least-squares accuracy-fairness optimality problem based on confusion tensor.123

• Adversarial de-biasing (abbreviated as AdvDeb) [12]: an in-processing model that miti-124

gates the conflicting gradient directions in utility and fairness objectives by projecting one125

gradient to another to remove the opposite direction.126

• Calibrated equal odds post-processing (abbreviated as CEOPost) [9]: a post-processing127

method that minimizes the disparity in the predicted probability to the preferred class among128

different sensitive groups, while maintaining the calibration condition in a relaxed condition.129

• Equality of opportunity in supervised learning (abbreviated as Eq.Odds) [3]: a post-130

processing method that learns the threshold to yield the equalized odds/opportunity between131

different demographic by exploring the intersection of achievable true positive rates and132

false positive rates.133

• Learning adversarially fair and transferable representations (abbreviated as134

LAFTR) [8]: a fair representation learning model that adopts fairness metrics as the adver-135

sarial objectives and analyze the balance between utility and fairness.136

• Baseline: For CelebA dataset, we use ResNet50 [4] as a reference because we input second137

last layer(2048 features) of ResNet to all methods. For other tabular datasets, logistic138

regression is used as all other methods except for FGP and LAFTR are based on logistic139

regression.140

If the hyperparameter is adjustable in the listed methods, we report the result with the fairness141

coefficient that has an accuracy closest to the average accuracy in the coefficient sweep to balance142

utility and fairness.143

3.2 Evaluation Metrics144

In the experiments, we evaluate the methods on four fairness and two performance measures. Four145

fairness metrics are as below:146

• Equal Opportunity (abbreviated as EOp) [3] : This measures absolute difference of favor-
able prediction given positive label.

|P (Ŷ = 1|Y = 1, A = 1)− P (Ŷ = 1|Y = 1, A = 0)|.

• Equalized Odds (abbreviated as EOd) [3] : This measures the difference between the147

probability given the true labels.148

|P (Ŷ = 1|Y = 1, A = 1)− P (Ŷ = 1|Y = 1, A = 0)|+
|P (Ŷ = 1|Y = 0, A = 1)− P (Ŷ = 1|Y = 0, A = 0)|.

• Balanced Accuracy Difference (abbreviated as BD) : This measures difference between149

balanced accuracy between the groups.150

|P (Ŷ = 1|Y = 1, A = 1) + P (Ŷ = 0|Y = 0, A = 1)|
− |P (Ŷ = 1|Y = 1, A = 0) + P (Ŷ = 0|Y = 0, A = 0)|.

If BD and EOd has the same value, it indicates that both TPR and TNR are higher in a certain151

sensitive group. However, if the gap between the two terms is large, we can interpret as the152

classifier is more biased as a group with higher TPR has lower TNR. This is more unfair as153

a sample from the privileged group is more likely to be falsely and correctly predicted as154

positive output. EOp is a partial measure of EOd as it only measures the difference from a155

favorable class.156
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CelebA
Model GSTAR FGP FACT CEOPost
Time 0.287 - 0.067 0.077

Model DIR Eq.Odds LAFTR AdvDeb
Time 183.20 0.062 107.04(min) 303.15

Adult
Model GSTAR FGP FACT CEOPost
Time 0.29 51.28 0.055 25.61

Model DIR Eq.Odds LAFTR AdvDeb
Time 168 0.037 53.04(min) 102.00

Compas
Model GSTAR FGP FACT CEOPost
Time 0.292 43.74 0.035 8.3

Model DIR Eq.Odds LAFTR AdvDeb
Time 123.20 0.034 57.04(min) 15.45

German
Model GSTAR FGP FACT CEOPost
Time 0.271 7.08 0.0257 2.64

Model DIR Eq.Odds LAFTR AdvDeb
Time 1.68 0.034 56.51(min) 2.17

Table 1: Computational time (in seconds) for all comparing fairness methods for each dataset.

• Absolute (1 - Disparate Impact) (abbreviated as 1-DIMP) [1] : This measures ratio of the157

probability of the favorable prediction given a protected group.158 ∣∣∣∣∣1− P (Ŷ = 1|A = 1)

P (Ŷ = 1|A = 0)

∣∣∣∣∣ .
We evaluate performance of the methods with two metrics.159

• Balanced Accuracy (abbreviated as BA) : This measures average between true positive rate160

and true negative rate. Compared to the traditional accuracy, this measure effectively shows161

the whether the classifier is focusing on the performance of a certain class when the dataset162

is unbalanced.163
1

2

(
P (Ŷ = 1|Y = 1) + P (Ŷ = 0|Y = 0)

)
.

• Accuracy (abbreviated as ACC) : This measures traditional classification accuracy of the164

method.165

3.3 Dataset Description166

We evaluate the methods on four fairness datasets. The goal for all datasets is binary classification on167

binary sensitive feature. The details of the datasets are as below:168

• CelebA image dataset1 [7]: The data consists of 202,599 face images in diverse demo-169

graphics. The images are annotated with 40 attributes (face shape, skin tone, smiling, etc.).170

Similar to Quadrianto et al. [10], the goal is to predict whether a person in the image is171

attractive or not. The feature sex is used as the sensitive feature.172

• Adult dataset from the UCI repository [6] contains 48,842 instances described by 14 features173

(workclass, age, education, sex, race, etc) with the goal of the income prediction whether a174

person’s income exceeds 50K USD per year. The feature sex is used as the sensitive feature.175

• COMPAS2(Correctional Offender Management Profiling for Alternative Sanctions) dataset176

includes 6,167 samples described by 401 features with the target of recidivism prediction177

1http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
2https://github.com/propublica/compas-analysis
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with the label showing if each person gets rearrested within two years. The feature race is178

used as the sensitive feature for this dataset.179

• German credit dataset from the UCI repository [2] contains 1,000 samples described by180

20 features. The goal is to predict the credit risks. The feature sex is used as the sensitive181

feature.182

3.4 Computational Cost183

In Table 1, we describe the computational time for each method on each dataset. By introducing184

estimated PDF functions for post-processing, we outperform other methods except Eq.Odds [3] and185

FACT [5]. As they both only utilize the entries of the confusion matrix to find optimal mixing rate in186

their methods, they have less computation than ours. However, as we discussed in the main paper, we187

explore better feasible region than theirs by group-specific thresholding that results better in both188

fairness and performance by sacrificing little efficiency, yet outperforms most of the other works.189
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