
Under review as a conference paper at ICLR 2024

A ADDITIONAL METHODOLOGY DETAILS

A.1 SPARSE-IFT FOR CONVOLUTIONAL LAYERS

In this section, we detail the straightforward extension of the Sparse-IFT family for convolutional
layers.

Sparse Wide Similar to the setup for fully connected layers, in the case of convolutional layers, we
widen the number of input and output channels.

Sparse Parallel Similar to the setup for fully connected layers, in the case of convolutional layers,
we can implement this transformation with the use of convolutional branches in parallel.

Sparse Factorized and Sparse Doped Let ✓l 2 Rcin⇥cout⇥kh⇥kw represent the weight matrix of a
convolutional layer, where cin, cout, kh, kw denote the input channels, output channels, kernel height,
and kernel width, respectively. We apply low-rank or matrix factorization to the weight matrix by
first converting the 4D tensor into a 2D matrix with shape: (cin · kh · kw)⇥ cout. In this setup, we
can express ✓l = UV T , where U 2 Rcin·kh·kw⇥d, V 2 Rcout⇥d. In this factorization, U learns a
lower-dimensional set of features and is implemented as a convolutional layer with d output channels
and kh ⇥ kw filter. V matrix expands this low-dimensional set of features and is implemented as a
convolutional layer with 1⇥ 1 filter.

A.1.1 SPARSE-IFT FOR DEPTHWISE CONVOLUTION LAYERS

For a normal convolution layer, all inputs are convolved to all outputs. However, for depthwise
convolutions, each input channel is convolved with its own set of filters. Let ✓l 2 Rcin⇥cout⇥kh⇥kw

represent the weight matrix of a normal convolution layer, where cin, cout, kh, kw denote the input
channels, output channels, kernel height, and kernel width, respectively. An equivalent depthwise
convolution layer will have weights ✓dw,l 2 R1⇥cout⇥kh⇥kw .

Sparse Wide A Sparse Wide depthwise convolution will have weights ✓swdw,l 2 R1⇥ksw·cout⇥kh⇥kw .
Since the fraction of non-sparse weights is given by 1� s, the FLOPs required by this transformation
are B·(ksw·cout)·kh·kw·(1 � s). Setting these equal to the FLOPs of the original dense ✓dw,l, we
obtain the widening factor ksw = 1

(1�s) . In this case, we do not scale the input channels as it converts
the depthwise convolution to a grouped convolution without an equivalent scaling in the number of
groups.

Other Sparse-IFT Transformations The Sparse Wide IFT generally changes a layer’s input and
output channels, subsequently scaling the following layers in a CNN. However, the other Sparse-IFT
transforms (Sparse Parallel, Sparse Factorized, and Sparse Doped) do not modify a convolution
layer’s input or output channels (as seen in Figure 2). This allows for fine-grained control of what
layers to apply the Sparse-IFT transformations. Since depthwise convolutions are an extreme form
of structured sparsity, where some filters interact with only specific input channels, we opt not
to sparsify them when using the other Sparse-IFT transformations and leave the layer unchanged
while still maintaining FLOPs equivalent to the dense baseline. Note that the different convolution
layers surrounding the depthwise convolution are still transformed with Sparse-IFT to increase their
representational capacity.

B COMPUTER VISION: EXPERIMENTAL SETTINGS

B.1 IMPORTANCE OF NON-LINEARITY

We use BatchNorm Ioffe & Szegedy (2015) followed by ReLU Nair & Hinton (2010) as a non-linearity.
We provide an extended set of empirical results in Table 10 to help validate the importance of training
with and without non-linearity by training configurations of the Sparse Parallel, Factorized, and
Doped IFT families at different levels of sparsity. The results without non-linear activation functions
are often worse than the dense accuracy (77%) across all Sparse-IFT family transformations. We

15



Under review as a conference paper at ICLR 2024

omit Sparse Wide in Table 10 because here we increase the number of channels in the convolutional
layers while maintaining the existing architecture.

Table 10: Evaluation on the importance of utilizing the non-linear activation across different members
of Sparse-IFT with ResNet-18 on CIFAR100 across different values of sparsity (columns). Non-linear
activations enhance the representational capacity of Sparse-IFT, leading to higher accuracy. All
reported results are the average over 3 random seeds.

Transformation Non-linear activation 0.50 0.75 0.90

Sparse Factorized 7 75.9 ± 0.3 76.6 ± 0.4 76.5 ± 0.4
3 77.8 ± 0.4 78.4 ± 0.5 78.9 ± 0.5

Sparse Parallel 7 77.1 ± 0.1 77.2 ± 0.2 77.6 ± 0.1
3 77.9 ± 0.2 79.1 ± 0.2 78.2 ± 0.2

Sparse Doped 7 77.3 ± 0.2 77.1 ± 0.1 76.5 ± 0.2
3 78.2 ± 0.1 77.8 ± 0.1 76.9 ± 0.2

B.2 COMPUTER VISION: PRE-TRAINING SETTINGS

CIFAR-100 Our implementation of CIFAR-100 follows the setup from DeVries & Taylor (2017)
for ResNets. We train the models for 200 epochs with batches of 128 using SGD, Nesterov momentum
of 0.9, and weight-decay of 5⇥10�4. The learning rate is initially set to 0.1 and is scheduled to
decay to decrease by a factor of 5x after each of the 60th, 120th, and 160th epochs. Following recent
advances in improving ResNets, we initialize the network with Kaiming He initialization He et al.
(2016), zero-init residuals He et al. (2019), and disable weight-decay in biases and BatchNorm Ioffe
& Szegedy (2015) layers. For CIFAR-100 experiments with MobileNetV2, MobileViT-S, and BotNet-
50, we follow the same training setup used for ResNet, but the learning rate is scheduled via cosine
annealing.

ImageNet Our implementation of ImageNet follows the standard setup from Krizhevsky et al.
(2017); Simonyan & Zisserman (2014). The image is resized with its shorter side randomly sampled
in [256, 480] for scale augmentation Simonyan & Zisserman (2014). A 224 ⇥ 224 crop is randomly
sampled from an image or its horizontal flop, and then normalized. For evaluation, the image is first
resized to 256 ⇥ 256, followed by a 224 ⇥ 224 center crop, and then normalized. Following recent
advances in improving ResNets, we initialize the network with Kaiming He initialization He et al.
(2016) and zero-init residuals He et al. (2019).

For ResNets, we replicate the settings recommended by Nvidia Nvidia (2019b), which uses the SGD
optimizer with a momentum of 0.875 and weight decay of 3.0517578125⇥10�5. We disable weight-
decay for biases and BatchNorm layers. The model is trained with label smoothing Szegedy et al.
(2016) of 0.1 and mixed precision Micikevicius et al. (2018) for the standard 90 epochs using a cosine-
decay learning rate schedule with an initial learning rate of 0.256 for a batch size of 256. Srinivas et al.
(2021) follow the same setup as ResNet for training BotNet-50 on ImageNet, therefore we maintain
the same hyperparameter settings as Nvidia (2019b) for our BotNet-50 ImageNet experiments.

Sparsity Setup For enabling the Sparse-IFT transformations, we use the RigL Evci et al. (2020)
algorithm in its default hyperparameter settings (↵ = 0.3,�T = 100), with the drop-fraction (↵)
annealed using a cosine decay schedule for 75% of the training run. We keep the first and last layers
(input convolution and output linear layer) dense to prevent a significant degradation in model quality
during pre-training, which is standard practice. We account for these additional dense FLOPs by
increasing the sparsity in the remaining layers, similar to Gale et al. (2019) and Liu et al. (2022b).

B.3 COMPUTER VISION

B.3.1 SPARSE-IFT VS. EXTENDED SPARSE TRAINING SCHEDULES

We provide a direct comparison with sparse training methods (e.g., RigL and SET) in the Iso-FLOP
setting (i.e., training with a longer schedule) to demonstrate the significance of our results with

16



Under review as a conference paper at ICLR 2024

Table 11: Results with ResNet-18 on CIFAR-100 across different values of sparsity (columns). Best
accuracy for each sparse training method is highlighted in bold. The original dense ResNet-18 model
obtains an accuracy of 77.0±0.2. All reported results are over 3 random seeds.

Dense Transformation Sparse Training Method Epochs 0.50 0.75 0.90

77.0 ± 0.2

Sparse Wide SET 200 · 1
1�s 78.7 ± 0.2 78.4 ± 0.1 76.8 ± 0.1

Sparse Wide RigL 200 · 1
1�s 78.9 ± 0.1 78.8 ± 0.1 76.4 ± 0.2

Sparse Parallel RigL 200 79.1 ± 0.2 79.5 ± 0.1 80.1 ± 0.2

respect to this standard sparse baselines. As shown in the Table 11, Sparse-IFTs outperform dynamic
sparse training methods by a significant margin across all levels of sparsity. Note, at higher levels of
sparsity (e.g., 90%), sparse training methods obtain worse accuracy compared to the FLOP equivalent
dense baseline. In contrast, with Sparse-IFT, we observe higher accuracy across all levels of sparsity
evaluated.

B.3.2 SPARSE-IFT ON EFFICIENT COMPUTER VISION ARCHITECTURES

Here, we provide an extended set of results on MobileNetV2, MobileViT-S, and BotNet-50 on
CIFAR-100. In particular, we enable Sparse Wide and Sparse Parallel IFT at 50% and 75% sparsity
values (see Table 12).

Table 12: Evaluation of Sparse Wide and Sparse Parallel IFT with various compute efficient archi-
tectures on CIFAR-100 across different values of sparsity (columns). Using Sparse Parallel IFT, all
architectures outperform the dense baseline by a significant margin.

Dense Transformation 0.50 0.75

MobileNetV2 72.4 ± 0.2 Sparse Wide 73.4 73.7

Sparse Parallel 72.9 73.3

MobileViT-S 73.5 ± 0.1 Sparse Wide 74.6 74.8

Sparse Parallel 73.7 74.4

BotNet-50 79.8 ± 0.2 Sparse Wide 80.3 80.6

Sparse Parallel 79.7 80.5

B.3.3 EVALUATION OF SPARSE-IFT WITH STRUCTURED SPARSITY

Block Sparsity To derive Iso-FLOP configurations with block sparsity, we reuse the analysis done
previously with unstructured sparsity (see Section 2.4) and express the width scaling as a function of
sparsity. However, we will search for a block sparse mask during training instead of an unstructured
sparsity mask. We use the method proposed by Hubara et al. (2021) to search N:M transposable
sparsity, which can accelerate both the forward and backward pass during training on NVIDIA GPUs
with Tensor Cores. We use 4:8-T, 2:8-T, and 1:8-T block patterns to obtain 50%, 75%, and 87.5%
sparsity, respectively. Note the 1:8-T block is the closest approximation to a 90% sparsity pattern
attainable with a block size of 8. We also set up and experimented using the method proposed
by Jiang et al. (2022) to train with fine-grained sparse block structures dynamically. However, the
algorithm uses agglomerative clustering which led to a much slower runtime and quickly ran out of
memory even at 50% sparsity using the Sparse Wide IFT on a single Nvidia V100 (16 GB).

Low Rank Let klr be the factor with which we widen all layers’ input and output dimensions for
low-rank factorization. We replace all dense layers with low-rank factorization, i.e. ✓lrl = UlV T

l ,
where Ul 2 R(klr.Din)⇥d and Vl 2 R(klr.Dout)⇥d. Given a widening factor and equating the FLOPs
of this transformation to that of a dense transformation f✓, we obtain the following expression for
rank d: Din.Dout.klr

(Din+Dout
. We evaluate this factorization across different values of width-scaling klr in

Table 13.

17



Under review as a conference paper at ICLR 2024

Table 13: Comparison of structured sparse and unstructured sparse methods on CIFAR-100 test
accuracy on ResNet-18.

Width Scaling Factor
Transformation Sparsity Type Sparsity 1x 1.41x 2x 3.16x

Low Rank, Linear Structured 0% 74.1 74.3 74.3 73.4
Low Rank, Non-Linear Structured 0% 76.8 76.5 76.0 75.3

Sparse Wide

N:M Block Sparse
(Hubara et al., 2021)

4:8-T 77.1
2:8-T 78.4

1:8-T 78.1

Unstructured Sparse
(Evci et al., 2020)

50% 79.1
75% 79.5
90% 80.1

B.3.4 EVALUATION ON DOWNSTREAM TASKS

COCO OBJECT DETECTION

This dataset contains 118K training, 5K validation (minival), and 20K test-dev images. We
adopt the standard single-scale training setting Lin et al. (2017a) where there is no additional data
augmentation beyond standard horizontal flipping. For training and testing, the input images are
resized so that the shorter edge is 800 pixels Lin et al. (2017a). The model is trained with a batch size
of 16, using the SGD optimizer with a momentum of 0.9 and weight decay of 1⇥10�4. We follow the
standard 1x schedule (12 epochs) using a step learning rate schedule, with a 10x decrease at epochs 8
and 11, an initial learning rate warmup of 500 steps starting from a learning rate of 2⇥10�5, and a
peak learning rate of 0.01.

Table 14: Object detection results on COCO minival in the RetinaNet framework. Sparse Wide
IFT configurations of RetinaNet outperform the dense baseline by a large margin on all metrics while
using similar FLOPs.

Backbone AP AP50 AP75 APS APM APL

Dense 29.3 46.2 30.9 14.7 31.5 39.6
Sparse Wide (50%) 31.3 49.0 33.0 16.6 34.0 42.0
Sparse Wide (75%) 32.8 51.0 34.8 17.3 35.8 43.3
Sparse Wide (90%) 34.5 53.5 36.5 18.6 37.6 45.3

CITYSCAPES SEMANTIC SEGMENATION

Setup We follow the same training protocol as Zhao et al. (2017), where the data is augmented
by random cropping (from 1024 ⇥ 2048 to 512 ⇥ 1024), random scaling in the range [0.5, 2], and
random horizontal flipping. The model is trained with a batch size of 16, using the SGD optimizer
with a momentum of 0.9 and weight decay of 5⇥10�4. We follow the 80K iterations setup from
MMSegmentation with an initial learning rate of 0.01 annealed using a poly learning rate schedule to
a minimum of 1⇥10�4. Similar to most setups that tune hyperparameters Zhao et al. (2017); Liu
et al. (2021c); Wang et al. (2020b) for reporting the best results, we tune the learning rate for all our
models. All our results are reported using a learning rate of 0.03 for the sparse backbones and 0.01
for the dense baseline.

C NATURAL LANGUAGE PROCESSING: EXPERIMENTAL SETTINGS

C.1 DETAILS FOR GPT END-TO-END TRAINING

Our end-to-end training setup for GPT-3 on WikiText-103 follows a similar procedure to Dao et al.
(2022). We use a batch size of 512 and train with the AdamW optimizer for 100 epochs. Also, we use
a learning rate warmup for 10 epochs and a weight decay of 0.1. To discover good hyperparameters,
we perform a grid search to discover an appropriate learning rate among {8e-3, 6e-3, 5.4e-3, 1.8e-3,

18



Under review as a conference paper at ICLR 2024

Table 15: Semantic segmentation results on the Cityscapes val set using DeepLabV3+. Sparse Wide
IFT configurations ResNet-18 backbones outperform the dense baseline on all metrics while using
similar FLOPs.

Backbone mIoU mAcc

Dense 76.72 84.40
Sparse Wide (50%) 77.90 85.12
Sparse Wide (75%) 78.92 85.68
Sparse Wide (90%) 79.10 86.01

6e-4, 2e-4, 6e-5} that led to the best perplexity for a given compute budget on the validation set. In
Table 16, we outline the architecture configurations for the original dense model and its Sparse Wide
IFT 50% and 75% variants.

Table 16: Sizes and architecture definitions of the dense GPT-3 Small model and its Sparse Wide IFT
variants.

Model Transformation Sparsity nlayers dmodel dff nheads dhead

GPT-3 Small Dense 0% 12 768 3072 12 64
GPT-3 Small Sparse Wide 50% 12 1092 4344 12 64
GPT-3 Small Sparse Wide 75% 12 1536 6144 12 64

WikiText-103 End-to-End Training Results We highlight that in Table 17, the Sparse Wide IFT
GPT-3 Small at 50% sparsity attains a better perplexity on WikiText-103 while using 2.4x fewer
training FLOPs than the GPT-3 Medium dense model. In this setup, using Sparse Wide transformation
does not change the FLOP of the dense layer, but this leads to a slight increase in the attention FLOPs.
This explains the 1.17x increase in FLOPs between the GPT-3 Small Sparse Wide at 50% sparsity
and the dense GPT-3 Small model. Note, out of all the Sparse-IFT transformations, this increase only
occurs in the Sparse Wide IFT.

Table 17: Details on the total training FLOPs for each GPT-3 model tested. We note that the reported
FLOPs per sequence (seq) include both forward and backward passes. The reported perplexity (lower
is better) is on the WikiText-103 test set over 3 random seeds.

Model Transformation Sparsity Total
Seqs

Total FLOPs/
Seq

Total
FLOPs

Total
exaFLOPs Perplexity

GPT-3 Small Dense 0% 2.28e6 8.763e11 2.0011e18 2.00 20.8 ± 0.3
GPT-3 Small Sparse Wide 50% 2.28e6 1.029e12 2.3498e18 2.35 20.4 ± 0.2

GPT-3 Medium Dense 0% 2.28e6 2.4845e12 5.6734e18 5.67 20.5 ± 0.2

C.2 DETAILS FOR SPARSE PRE-TRAINING AND DENSE FINE-TUNING (THANGARASA ET AL.,
2023)

We provide an extended set of results that showcase the added benefit of using Sparse-IFT transforma-
tions. Here, we apply the Sparse Pre-training and Dense Fine-tuning (SPDF) framework introduced
by Thangarasa et al. (2023). In this setup, all models are pre-trained under a similar FLOP budget.
However, during the fine-tuning stage, Sparse-IFT models have extra representational capacity which
can be enabled by allowing the zeroed weights to learn (i.e., dense fine-tuning). Even though the
fine-tuning FLOPs are more than the original dense model, we leverage Sparse-IFT method’s extra
capacity to obtain accuracy gains on the downstream task. To ensure a fair baseline, we also compare
dense fine-tuning to sparse fine-tuning (i.e., pre-trained model remains as-is) similar to Thangarasa
et al. (2023).

19



Under review as a conference paper at ICLR 2024

C.2.1 SPDF ON BERT

Experimental Setup We train BERT models using the open-source LAMB (You et al., 2020) im-
plementation provided by Nvidia (2019a). In this setup, BERT is pre-trained on the BookCorpus (Zhu
et al., 2015) and Wikipedia datasets in two phases. In the first phase, models are trained for 82%
of total iterations with a sequence length of 128. In the second phase, models are trained for the
remaining 18% of iterations with sequence length 512. We use a batch size of 8192 and 4096 in
phase 1 and phase 2, respectively. Table 18 shows details of the size and architecture of the BERT
Small model. For finetuning models on SQuADv1.1 (Rajpurkar et al., 2016), we train for two epochs
with AdamW optimizer and use a grid search to tune the learning rate and batch size.

Table 18: Size and architecture of the BERT Small model, which is trained using the setup from Nvidia
(2019a)

Model nparams nlayers dmodel nheads dhead

BERT Small 29.1M 4 512 8 64

SPDF on SQuADv1.1 Results We evaluate BERT Small with Sparse Wide, Sparse Parallel, and
Sparse Factorized members of the Sparse-IFT family. All transformations, except Sparse Parallel,
perform comparably to the dense baseline on SQuAD. Unlike CV architectures, BERT initializes
the layers with a normal distribution, which has an adverse effect when layers undergo shape
transformations (e.g., changes in depth Zhang et al. (2019), or width Yang et al. (2022)). In our initial
experiments, we found changing the initialization of BERT enables other families to outperform
the dense baseline. In addition to initialization, BERT training has over six hyperparameters. We
leave optimizing and analyzing the effect of these hyperparameters on Sparse-IFT for future work
and restrict our current scope to demonstrating gains without tuning any hyperparameters. Using
the Sparse Parallel IFT with 50% sparsity leads to a 0.7% improvement in the exact match (EM)
accuracy over the dense baseline (see Table 19).

Table 19: Evaluation of Sparse Parallel IFT for pre-training BERT Small. We report EM (higher is
better) obtained by sparse fine-tuning and dense fine-tuning BERT models on SQuADv1.1, respec-
tively.

Dense Transformation Fine-Tuning Method 0.50 0.75

70.6 Sparse Parallel Sparse 70.7 69.9
Dense 71.3 70.8

C.2.2 SPDF ON GPT

Pre-training Experimental Setup Here, we pre-train the models on the Pile Gao et al. (2020)
dataset. To train all GPT models, we use AdamW optimizer Loshchilov & Hutter (2017) with
�1 = 0.9, �2 = 0.999 and ✏ = 10�8. The global norm is clipped at 1.0, and a weight decay of 0.1
is used. There is a learning rate warmup over the first 375M tokens, followed by a cosine decay to
10% of the peak learning rate. We follow the recently published Chinchilla Hoffmann et al. (2022)
recommendations for obtaining loss-optimal pre-trained baseline configurations of models. The
context window size is 2048 following Brown et al. (2020). Table 20 shows a detailed breakdown of
the model architectures, learning rate, and training settings. In Table 16, we outline the architecture
configurations for Sparse Wide IFT 50% and 75% variants.

Table 20: Size, architecture, and learning hyperparameters (batch size and learning rate) of the GPT-3
Small model, which is trained using Chinchilla optimal configurations (⇡ 20 tokens per parameter)

Model nparams nlayers dmodel nheads dhead Batch Size Learning Rate Training Tokens

GPT-3 Small 125M 12 768 12 64 256 6⇥10�4 2.5B

20



Under review as a conference paper at ICLR 2024

Fine-tuning Experimental Setup We finetune the Sparse Wide IFT variants of GPT-3 Small on
the WikiText-103 (Merity et al., 2017) dataset following the setup presented in (Rae et al., 2021). We
finetune for ten epochs and perform early stopping once the models overfit. We performed a grid
search to discover an appropriate learning rate that led to the best perplexity for a given compute
budget. More specifically, on the dense baseline and Sparse Wide IFT variants, we use a batch size of
32 and select the best learning rate among {5e-3, 3e-3, 1e-3, 3e-4, 1e-4, 3e-5, 1e-5} on the validation
set.

In Tables 16, 18, and 20, nparams is the total number of trainable parameters, nlayers is the number
of decoder layers, and dmodel is the base size of the model. The feedforward bottleneck is four times
the base size, i.e., dff = 4⇥ dmodel. Finally, nheads is the number of attention heads, and dhead is
the dimension of each attention head.

SPDF on WikiText-103 Results Here, we pre-train a GPT-3 Small architecture with Sparse Wide
IFTs at 50% and 75% sparsity. Post pre-training, we finetune our models on WikiText-103. The
GPT-3 Small 75% Sparse Wide model reduces the perplexity (PPL) by a noticeable 1.3 points
compared to dense (refer to Table 21).

Table 21: Evaluation of Sparse Wide IFT for pre-training GPT-3 Small. We report perplexity
(lower is better) obtained by sparse fine-tuning and dense fine-tuning GPT models on Wikitext-103,
respectively.

Dense Transformation Fine-Tuning Method 0.50 0.75

15.9 Sparse Wide Sparse 15.6 16.0
Dense 15.1 14.6

21


	Introduction
	Method
	Training with Dense Matrices is FLOP Inefficient
	Setup
	Sparse Iso-FLOP Transformations
	Members of Sparse-IFT
	Cardinality of Search Space

	Experiments 
	Implementation Details
	Results and Ablations on CIFAR-100
	Results with Efficient Architectures
	Results on ImageNet
	Transfer Learning with Sparse-IFT
	Results on GPT End-to-End Training

	Related Work
	Conclusion
	Additional Methodology Details
	Sparse-IFT for Convolutional Layers 
	Sparse-IFT for Depthwise Convolution Layers


	Computer Vision: Experimental Settings 
	Importance of Non-linearity
	Computer Vision: Pre-Training Settings 
	Computer Vision 
	Sparse-IFT vs. Extended Sparse Training Schedules
	Sparse-IFT on Efficient Computer Vision Architectures
	Evaluation of Sparse-IFT with Structured Sparsity
	Evaluation on downstream tasks 


	Natural Language Processing: Experimental Settings 
	Details for GPT End-to-End Training
	Details for Sparse Pre-training and Dense Fine-tuning thangarasa2023spdf
	SPDF on BERT
	SPDF on GPT



