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ABSTRACT

Proximal policy optimization (PPO) is one of the most popular state-of-the-art
on-policy algorithms that has become a standard baseline in modern reinforcement
learning with applications in numerous fields. Though it delivers stable perfor-
mance with theoretical policy improvement guarantees, high variance and high
sample complexity still remain critical challenges in on-policy algorithms. To
alleviate these issues, we propose Hybrid-Policy Proximal Policy Optimization
(HP30), which utilizes a trajectory replay buffer to make efficient use of trajecto-
ries generated by recent policies. Particularly, the buffer applies the "first in, first
out" (FIFO) strategy so as to keep only the recent trajectories to attenuate the data
distribution drift. A batch consisting of the trajectory with the best return and other
randomly sampled ones from the buffer is used for updating the policy networks.
The strategy helps the agent to improve its capability on top of the most recent best
performance and in turn reduce variance empirically. We theoretically construct the
policy improvement guarantees for the proposed algorithm. HP3O is validated and
compared against several baseline algorithms using multiple continuous control
environments. Our code is available herel
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Figure 1: Schematic diagram of HP30/HP30+: (left side) the trajectory replay buffer takes a "first
in, first out" (FIFO) strategy to keep only recent trajectories; batch consisting of the trajectory with
the best return (7*) and other randomly sampled ones from the buffer are used for updating the
actor/critic networks (off-policy approach); (right side) model updating still follows the on-policy
PPO method, hence, hybrid-policy PPO (HP30); for HP30+, 7* is also used to update the advantage
function

1 INTRODUCTION

Model-free reinforcement learning |Liu et al.| (2021)) has demonstrated significant success in many
different application areas, such as building energy systems Biemann et al.|(2021])), urban driving |Toro-
manoff et al.| (2020); [Saxena et al.| (2020), radio networks |[Kaur & Kumar| (2020), robotics [Polydoros
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& Nalpantidis| (2017)), and medical image analysis |Hu et al.| (2023). In particular, on-policy rein-
forcement learning approaches such as proximal policy optimization (PPO)|Schulman et al.|(2017);
Chang et al.| (2023) provide stable performance along with theoretical policy improvement guarantees
that involve a lower bound [Kakade & Langford| (2002) on the expected performance loss which
can be approximated using the generated samples from the current policy. These guarantees are
theoretically quite attractive and mathematically elegant, but the requirement of on-policy data and
the high variance nature demands significant data to be collected between every update, inevitably
causing the issue of high sample complexity and the behavior of slow learning.

Off-policy algorithms Zanette| (2023)); |Prudencio et al.|(2023), on the other hand, alleviate some of
these issues as they can leverage a replay buffer to store samples that enable more efficient policy
updates by reusing these samples. While the off-policy approach leads to better sample efficiency,
it causes another problem called data distribution drift|Zhang et al.| (2020b); [Lesort et al.| (2021]),
and most studies Lillicrap et al.| (2015); |[Dankwa & Zheng| (2019) have just overlooked this issue.
Furthermore, off-policy methods also suffer from high variance and even difficulty in convergence|Lyu
et al.| (2020) due to the exploration in training. Mitigating this issue |Bjorck et al.|(2021)) still remains
challenging due to the high variations of stored samples in the traditional replay buffer design.
However, it has been receiving considerable attention in recent studies [Liu et al.| (2020); | Xu et al.
(2019). Numerous previous attempts |[Zhang et al.|(2021); | Xu et al.|(2020); Papini et al.|(2018)) took
inspiration from supervised learning [Wang et al.| (2013); Johnson & Zhang|(2013) and specifically
made adjustments to the estimation of policy gradients to achieve variance reduction. However, this
involves auxiliary variables and complex estimation techniques, resulting in a more complicated
learning process. Another simple strategy to attenuate high variance is to leverage the advantage
function involving a baseline Jin et al.| (2023)); Mei et al.| (2022); [Wu et al.| (2018)), which can be
estimated by a parameterized model. Nevertheless, when the sampled data from the buffer has a large
distribution drift, learning the parameterized model can be defective, triggering a poor advantage
value. This naturally leads to the question:

Can we design a hybrid-policy algorithm by assimilating the low sample complexity from off-policy
algorithms into on-policy PPO for variance reduction?

Contributions. We provide an affirmative answer to the above question. In this work, we blend
off-policy and on-policy approaches to balance the trade-off between sample efficiency and training
stability. Specifically, we focus primarily on mitigating underlying issues of PPO by using a trajectory
replay buffer. In contrast with traditional buffers that keep appending all generated experiences, we
use a "first in, first out” (FIFO) strategy to keep only the recent trajectories to attenuate the data
distribution drift (as shown in Fig.[I)). A batch consisting of the trajectory with the best return (a.k.a.,
best trajectory, 7*) and other randomly sampled ones from the buffer is used for updating the policy
networks. This strategy helps the agent to improve its capability on top of the most recent ‘best
performance’ and in turn to also reduce variance. Additionally, we define a new baseline which is
estimated from the best trajectory selected from the replay buffer. Such a baseline evaluates how much
better the return is by selecting the present action than the most recent best one, which intuitively
encourages the agent to further improve the performance. More technical detail will be discussed in
Sectiond] Specifically, our contributions are as follows.

* We propose a novel variant of PPO, called Hybrid-Policy PPO (HP30), that combines the
advantageous features of on-policy and off-policy techniques to improve sample efficiency
and reduce variance. We also introduce another variant termed HP30+ that leverages a new
baseline to enhance the model performance. Please see Table [I]for a qualitative comparison
between the proposed and existing methods.

* We theoretically construct the policy improvement lower bounds for the proposed algorithms.
HP3O0 provably shows a new lower bound where policies are not temporally correlated,
while HP30+ induces a value penalty term in the lower bound, which helps reduce the
variance during training.

* We perform extensive experiments to show the effectiveness of HP3O/HP30+ across a
few continuous control environments. Empirical evidence demonstrates that our proposed
algorithms are either comparable to or outperform on-policy baselines. Though off-policy
techniques such as soft actor-critic (SAC) may still have better final returns for most tasks,
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our hybrid-policy algorithms have significantly more advantages in terms of run time
complexity.

Table 1: Qualitative comparison with PPO and its relevant variants

Method T.B. On/off-policy T.G.

PPO-ClipJin et al.| (2023)
PTR-PPOLiang et al.| (2021)
GePPOQueeney et al.| (2021)
Policy-on-off PPOFakoor et al.| (2020
P30Chen et al.| (2023))
Off-policy PPOMeng et al.| (2023)
HP30 (+) (ours)

N> X X% % N\ %
AN N N N R
AN R NN

T.B.: trajectory buffer; T.G.: theoretical guarantee.

2 RELATED WORKS

On-policy methods. On-policy algorithms aim at improving the policy performance monotonically
between every update. The work Kakade & Langford (2002) developing Conservative Policy
Iteration (CPI) for the first time theoretically introduced a policy improvement lower bound that
can be approximated by using samples from the present policy. In this regard, trust-region policy
optimization (TRPO) Schulman et al.[{(2015)) and PPO have become quite popular baseline algorithms.
TRPO solves a trust-region optimization problem to approximately obtain the policy improvement
by imposing a Kullback-Leibler (KL) divergence constraint, which requires solving a quadratic
programming that may be compute-intensive. On the contrary, PPO achieves a similar objective by
adopting a clipping mechanism to constrain the latest policy not to deviate far from the previous one
during the update. Their satisfactory performance in different applications |[Hu et al.| (2019); [Lele
et al.[(2020); Zhang et al.|(2022); Dutta & Upreti (2022); Bahrpeyma et al.| (2023); Nguyen et al.
(2024); [Zhang et al.| (2020a) triggers considerable interest in better understanding these methods Jin
et al.| (2023) and developing new policy optimization variants Huang et al.|(2021). Albeit numerous
attempts have been made in the above works, the high sample complexity due to the on-policy
behavior of PPO and its variants still obstructs efficient applications to real-world continuous control
environments, which demands the connection with off-policy methods.

Off-policy methods. To address the high sample complexity issue in on-policy methods, a common
approach is to reuse the samples generated by prior policies, which was devised in |[Hester et al.
(2018); Mnih et al.| (2013). Favored off-policy methods such as deep deterministic policy gradient
(DDPG) Lillicrap et al.[(20135)), twin delayed DDPG (TD3) |[Fujimoto et al.[(2018) and soft actor-critic
(SAC)|Haarnoja et al.|(2018) fulfilled this goal by employing a replay buffer to store historical data
and sampling from it for computing the policy updates. As mentioned before, such approaches
could cause data distribution drift due to the difference between the data distributions of current
and prior policies. This work will include an implementation trick to address this issue to a certain
extent. Kallus and Uehara developed a statistically efficient off-policy policy gradient (EOPPG)
method Kallus & Uehara (2020) and showed that it achieves an asymptotic lower bound that existing
off-policy policy gradient approaches failed to attain. Other works such as nonparametric Bellman
equation |Tosatto et al.| (2020) and state distribution correction Kallus & Uehara) (2020) were also
done with off-policy policy gradient.

Combination of on- and off-policy methods. Making efficient use of on-policy and off-policy
schemes is pivotal to designing better model-free reinforcement learning approaches. An early work
merged them together to come up with the interpolated policy gradient|Gu et al.|(2017)) for improving
sample efficiency. Another work |[Fakoor et al.| (2020) developed Policy-on-off PPO to interleave
off-policy updates with on-policy updates, which controlled the distance between the behavior and
target policies without introducing any additional hyperparameters. Specifically, they utilized a
complex gradient estimate to account for on-policy and off-policy behaviors, which may result in
larger computational complexity in low-sample scenarios. To compensate data inefficiency, Liang et
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al.Liang et al.|(2021) incorporated prioritized experience replay into PPO by proposing a truncated
importance weight method to overcome the high variance and designing a policy improvement loss
function for PPO under off-policy conditions. A more recent work (Chen et al.| (2023) probed the
insufficiency of PPO under an off-policy measure and explored in a much larger policy space to
maximize the CPI objective. The most related work to ours is |Queeney et al.| (2021)), where the
authors proposed a generalized PPO with off-policy data from prior policies and derived a generalized
policy improvement lower bound. They utilized directly the past trajectories right before the present
one instead of a replay buffer, which still maintains a weakly on-policy behavior. However, their
method may suffer from poor performance in sparse reward environments.

3 PROBLEM FORMULATION AND PRELIMINARY

Markov decision process. In this context, we consider an infinite-horizon Markov Decision Process
(MDP) with discounted reward defined by the tuple M = (S, A, p, r, po, ), where S indicates the
set of states, A signifies the set of actions, p : S x A — S is the transition probability function,
r: S x A — Ris the reward function, pg is the initial state distribution of environment, and
v is the discount factor. In this study, the agent’s policy is a stochastic mapping represented by
7 : § — A. Reinforcement learning aims at choosing a policy that is able to maximize the
expected discounted cumulative rewards J(m) = E-[>" 2, 7'r(ss, ar)], where 7 ~ 7 indicates
a trajectory sampled according to sg ~ po, a; ~ 7(|s¢), and s¢11 ~ p(:|st, ar). We denote by
d™ (s) a normalized discounted state visitation distribution such that d™ (s) = (1 —~) Y., ¥v'P(s; =
s|po, T, p). Hence, the corresponding normalized discounted state-action visitation distribution can be
expressed as d” (s, a) = d”(s)w (s, a). Additionally, we define the state value function of the policy
mas V7 (s) = Eror[D ooy 7(se, ar)|so = s|, the state-action value function, i.e., Q-function,
as Q7(s,a) = E o[> oo]v'7(st,ai)|s0 = s,ap = al, and the critical advantage function as
A™(s,a) = Q™ (s,a) — VT (s).

Policy improvement guarantee. The foundation of numerous on-policy policy optimization al-
gorithms is built upon a classic policy improvement lower bound originally established in Kakade
& Langford| (2002). With different scenarios Schulman et al.|(2015); /Achiam et al.|(2017); |Dai &
Gluzman| (2021)), the lower bound was refined to reflect diverse policy improvements, which can be
estimated by using the samples generated from the latest policy. For completeness, we present in
Lemma [I] the policy improvement lower bound from [Achiam et al.| (2017).

Lemma 1. (Corollary 1 inlAchiam et al.|(2017)) Suppose that the current time step is k and that the
corresponding policy is 7. For any future policy T, the following relationship holds true:

27C7,
WE(s,a)Nd"k [6(7T77rk)(5)]7 (H
where CT = maxXses|Eqor(|s)[A™ (s, a)]| and 6(m, 71, )(s) is the total variation distance between
the distributions m(-|s) and m(+]s).

I = T0) 2 T B [ A7 (50)] =

Lemmal|I]implies that the policy improvement lower bound consists of the surrogate objective loss
and the penalty term, which can be maximized by choosing a certain new policy 71 to guarantee
the policy improvement. However, directly maximizing such a lower bound could be computationally
intractable if the next policy 71 deviates far from the current one. Unless additional constraint
is imposed such as a trust region in TRPO [Schulman et al.| (2015}, which unfortunately requires a
complex second-order method to solve the optimization problem. Hence, PPO developed a simple
yet effective heuristic for achieving this.

Proximal policy optimization. PPO has become a default baseline in a variety of applications, as
mentioned above. It is favored because of its strong performance and simple implementation with
sound theoretical motivation given by the policy improvement lower bound. Intuitively, PPO attempts
to constrain the new policy close to the present one with a clipping heuristic, which results in the
most popular variant, PPO-clip [Jin et al.| (2023)). Particularly, the following objective is solved at
every policy update:

7(als)

mr(als)

A7 (s,0), clip(ZU 1 14 0am(s,0)), @)

Lzhp(ﬂ) = ]E(s,a)Nd"k [min( T (CL|S)
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where clip(a, b, ¢) = min(max(a, b), ¢). The clipping function plays a critical role in this objective
as it consistently enforces the probability ratio between the current and next policies in a reasonable
range between [1 — ¢, 1 + ¢]. The outer minimization in Eq. provides the lower bound guarantee for
the surrogate loss in Eq.[I] In practice, one can set a small learning rate and a large number of time
steps to generate sufficient samples to allow PPO to perform stably and approximate Eq. 2} However,
due to its on-policy approach, high variance is a significant issue such that an extremely large number
of samples may be required in some scenarios to make sure the empirical objective is able to precisely
estimate the true objective in Eq.[2] which naturally causes the high sample complexity issue. This
motivates us to leverage off-policy techniques to alleviate such an issue, while keeping the theoretical
policy improvement.

4 HYBRID-PoOLICY PPO (HP30)

To achieve better sample efficiency of PPO, historical samples generated by previous policies are
reused for policy updates, as done in off-policy algorithms. This inevitably results in a distribution
drift between policies, which essentially disproves the policy improvement lower bound in Lemma ]
In this context, to fix this issue, we will extend Lemma [I] to assimilate off-policy samples in a
principled manner to derive a new policy improvement lower bound that works for our proposed
algorithm, HP30. HP3O (and its variant HP30+) takes a hybrid approach that effectively synthesizes
on-policy trajectory-wise policy updates and off-policy trajectory replay buffers. Algorithm [I]shows

Algorithm 1 HP30O(+)

1: Input: initializations of 0y, ¢¢, and trajectory replay buffer R, the number of episodes K, the
number of time steps in each episode T, the number of epochs for updates

2: fork=1,2,...., K do

3: Run policy Ty, tO generate a trajectory T = (30, ag, 71,81, .., ST—1,07—-1, rT)

4: Append 7 to R and discard the oldest one 7~ > FIFO strategy
5: Sample a random minibatch 5 from the trajectory replay buffer R
6.
7
8

Select the best action trajectory 7;; from the trajectory replay buffer and add it to B
for each trajectory j = 1,2, ..., |B|: do
fort=0,1,....,T —1do

. Gl =S L
10: end for
11: end for .
12: Compute advantage estimates A7 = G, — Vj(s¢) > HP30
13: Compute V7 (s;) using 7; and advantage estimates AT* = Gy — V7 (s;) > HP30+
14: for eachepoche = 1,2, ..., E do
15: Compute the clipping loss Eq.[2]
16: Compute the mean square loss £V (¢) = — 4 ST (G — Vi (s0))?
17: Update g, with VoLP(0) by Adam
18: Update Vy, with V4LV (¢) by Adam
19: end for
20: end for

21: return mg,. and V.

the algorithm framework for HP30 and HP30O+ (blue line represents the only difference for HP30+).
We denote the actor and critic by § € R and ¢ € R" respectively such that the parameterized policy

function is 7y and the parameterized value functionis Vy = E, ., Zszt ¥ =tr(s1,a;)|s¢ | . Denote

by 7;; = argmax_.p ZtT:O 77 (st, ar) the best action trajectory selected from the replay buffer R at
the current episode k.

In most existing off-policy algorithms, the size of the replay buffer is fixed with a large number
to ensure that a diverse set of experiences is captured. With this approach, though the random
minibatch sampling allows the agent to learn from past experience, a large-size replay buffer may
cause significant data distribution drifts. Additionally, a large replay buffer means that it takes more
time for the buffer to fill up, especially in environments requiring extensive exploration. Hence,



Under review as a conference paper at ICLR 2025

we apply the FIFO strategy and discard old trajectories empirically to attenuate the issue (Line 4
in Algorithm[I). The recently proposed off-policy PPO Meng et al.|(2023) indeed uses off-policy
data, but it does not employ a trajectory buffer as we do. In our approach, the trajectory buffer is an
essential component because it allows us to store and process complete sequences of state-action
pairs (trajectories) rather than isolated transitions. This will preserve the temporal coherence and
enhance stability. Line 5 is to sample from the trajectory replay buffer R, which is different from
the reuse of N samples generated from prior policies in |(Queeney et al.| (2021), where the past
immediate sample trajectories were used without random sampling. We note that a replay buffer
in the proposed algorithm enhances the agent’s performance by providing access to a more diverse
set of experiences and highlighting the most impactful trajectories. Line 6 signifies the core part
of HP3O as the best action trajectory 7; indicates the best return starting from state s, within the
buffer. Line 7 through Line 12 calculate the rewards to go for each time step ¢ in each trajectory and
obtain the total reward to go at each time step over all trajectories. One may wonder how to calculate
the the return G if trajectories have varying lengths in some environments. In this work, we store
different lengths of trajectories directly in the buffer and do not pad them. This approach preserves
the natural variation in trajectory lengths that can occur in different environments. Although the
length differ, we still compare the returns of these trajectories to identify the best one while ensuring
the comparison remains consistent and fair. Particularly, line 13 is a key step in the proposed HP30+.

V7 (s4) = By ZZT:t 7' =tr(si,a;)|s¢ | induced by the current best action trajectory ;" sets

the best state value among all trajectories from R. A7* in Line 13 signifies how much better the
return G is by taking action a; than the best value we have obtained most recently. Intuitively, this
"encourages" the agent to improve its performance in the next step on top of V7 (). While V7% (s;)
can be theoretically calculated as above, in practice, to make sure that there always exists a best
value for use, V7 (s¢) is calculated by using a norm distance between the current trajectory and best
trajectories to ensure V7% has the best return since s;. If the reward to go from s; in the best trajectory
is lesser, the current trajectory is used to replace the best one for V7% (s¢) calculation. Please see
Appendix for more detail about the data structures of the proposed algorithms.

Remark 1. We remark on the sampling method adopted in this work to obtain the trajectories apart
from the best trajectory for update. We begin by randomly sampling a set of trajectories from our
trajectory buffer. This set is specifically designed to include the best action trajectory, with the
remaining trajectories selected randomly from the buffer. From the set of trajectories obtained by
random sampling, we then apply uniform sampling. The resulting minibatch is used for training. This
approach balances leveraging high-performing trajectories while maintaining exploration across
the broader trajectory space, helping to reduce the risk of overfitting. However, we recognize
that assigning a score to trajectories based on the loss function could offer additional benefits.
Prioritizing trajectories|Hou et al.|(2017)) that result in higher losses could help the agent focus on
challenging experiences, potentially improving learning efficiency by addressing areas where the
policy requires more refinement. This could also help in stabilizing training by emphasizing learning
from mistakes, thereby potentially reducing the variance in policy updates. In fact, integrating a
prioritized experience replay strategy could be a promising direction for future work.

S5 THEORETICAL ANALYSIS

This section presents a theoretical analysis of the proposed HP30 and HP30O+. We first derive a new
policy improvement lower bound for HP30 and then present a different bound for HP30+ to indicate
the value penalty term. All proofs are deferred to the Appendix. To incorporate prior policies in the
policy improvement lower bound, we need to extend the conclusion in Lemma|[I] which quantifies
the improvement for two consecutive policies. In|Queeney et al.|(2021)), policies prior to the present
policy 7y, in chronological order were used. However, in our study, this order has been broken due to
the random sampling from the replay buffer, which motivates us to derive a relationship among the
current, future, and prior policies independent of the chronological order. Before the main result, we
first present an auxiliary technical lemma.

Lemma 2. Consider a current policy m, and any reference policy 7. We then have, for any future
policy ,

1 m(als) ,x, 203,
J(m) = J(mg) > mE(S’a)NdM[WT(aB)A (s,a)] — WESN(”T [0(m, 7 )(s)], (B)
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where CTand 6(m, 7, )(s) are defined as in Lemma

Remark 2. Lemmal[2]implies that now the visitation distribution, the probability ratio of the surrogate
objective, and the maximum value of the total variation distance depend on the reference policy .,
which essentially extends Lemmall|to a more generalized case. However, the improvement is still for
the two consecutive policies Ty, and T as the advantage function in the surrogate objective and C7,
rely on the latest policy my,. Lemma2|does not necessarily require , to be the last policy prior to
7 as in|Queeney et al.|(2021), which paves the way for establishing the policy improvement for |B|
prior policies sampled randomly from the replay buffer R.

Theorem 1. Consider prior policies |B| randomly sampled from the replay buffer R with indices
i =0,1,...,|B| = 1. For any distribution v = [v1, vz, ..., v|5|] over the |B| prior policies, and any
future policy m generated by HP30O in Algorithm[I] the following relationship holds true

7(als)

J(m) = J(m) > ﬁEM [E(s,a)~dr: [WA” (s,a)]] —

VO3, €

—k 4
TEE @

where C7, is defined as in Lemma

Remark 3. I7 is observed that the conclusion from Theorem([l|is similar to one of the main results
in|Queeney et al.|(2021). The significant difference is that m; is not the same as 7, _; in|Queeney et al.
(2021). It is technically attributed to Lemma2] where the reference policy m, may not have a close
temporal relationship with . Also, the advantage function has not been changed yet. Empirically
speaking, for each minibatch B, we have added the best trajectory in it, which essentially expedites
the learning process. Additionally, Theorem [I| has an extra expectation operator over multiple
trajectories on the first term of the right side in Eq. | leading to the smaller variance, compared to
only one trajectory in Lemmal[l] We would also like to point out that Theorem[I]| shows the policy
improvement lower bound by sampling a mini-batch of trajectories associated with prior policies
from the buffer, which is consistent with what has been done in Algorithm|[I] In HP30+, we use it as
a baseline to replace V(s) and have surprisingly found that this leads to an extra term that penalizes
the state value to reduce the variance.

We first define A™(s,a) = Q™(s,a) — V™ (s) and G™(s) = V™ (s) — V7™(s). It is immediately
obtained that A™(s,a) = A™(s,a) + G (s). Hence, if we utilize the state value induced by the
best trajectory at the moment as the baseline, there exists a value gap G™(s) between A” (s, a) and
fl”(& a). One may argue that the advantage fl”(s, a) is negative all the time, which implies the
present action is not favorable such that the new policy should be changed to yield a lower probability
for the current action and state. However, this is not always true as V™ (s) is not the globally
optimal value, while it is approximately the optimal value up to the current time step over the last
|B| episodes. The motivation behind A™ (s, a) is that the new baseline V™ () becomes the driving
force to facilitate the performance improvement between every update. We are now ready to state the
policy improvement lower bound with the new baseline as follows.

Lemma 3. Consider a current policy 7y, and any reference policy m,.. We then have, for any future
policy ,

i w(als) 207
J(m) — J(mp) > ——FE(s.a)udrr A" (s,0)] — ——Esger [0(m, 7 ) (8
(0= J01) > B GRS 0.0 = (g i)
2vC'T
T =y e [0(m, ) (s)],
where C';:k = maxs€5|EaNﬂ(_‘s)[A”k(s,a)], d(m,m)(s) is defined as in Lemma (I} C™ =

maxs€3|V’Tl: (s) = VT (s)|.

With Lemma 3|in hand, we have another main result in the following.
Theorem 2. Consider prior policies |B| randomly sampled from the replay buffer R with indices
i =0,1,...,|B| = 1. For any distribution v = [v1, vz, ..., v|5|] over the |B| prior policies, and any
future policy m generated by HP30+ in Algorithm([l} the following relationship holds true
m(als) Am( 1 27@'&6 2vC™k ¢
R C R e (R o

Q)

1
J —J >7Ei~vEsa~’fi
(M) =) 2y BB Lo ary

where CA';Tk and C™ are defined as in Lemma
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Remark 4. Theorem[2]describes the policy improvement lower bound for HP30+, which provides
the theoretical guarantees when reusing trajectories generated by prior policies rigorously. The

extra term on the right-hand side 2&?:;; in the above inequality is not the penalty term between two

policies, while it is a value gap between the current state value and the most recent best value. As
V7 (s) is time-varying, this acts as a "guide" to the current one V™ not deviating too far away from

Ve (8). Equivalently, the term 2&3{’;; can be regarded as a regularization from the critic network,

which assists in enhancing the overall agent performance and reducing the variance. We also include
some technical discussion regarding whether our approach will cause overfitting and the adoption of
the worst trajectories in Appendix[A-3] and[A.6

6 EXPERIMENTS

The experimental evaluation aims to understand how the sample complexity and stability of our
proposed algorithms compare with existing baseline on-policy and off-policy learning algorithms.
Concretely, we conduct the comparison between our methods and prior approaches across challenging
continuous control environments from the Gymnasium benchmark suite |Brockman et al.| (2016).
While easy control tasks can be solved by various algorithms, the more complex tasks are typically
sample intensive with on-policy algorithms|Schulman et al.|(2017)). Additionally, the high variance
of the algorithms negatively impacts stability and convergence. Furthermore, though some off-policy
algorithms enjoy high sample efficiency, the actual run time can be impractically large, which impedes
its applications to real-world tasks. As our proposed hybrid-policy learning algorithms are developed
on top of PPO, we mainly compare our methods to PPO, another popular on-policy method A2C|Peng
et al.|(2018), and P30 |Chen et al.|(2023)) (a modification of PPO to leverage both on- and off-policy
principles). We acknowledge that SAC, a fully off-policy algorithm, may achieve comparatively
higher returns in most of the continuous control problems at the expense of much longer training
time and with careful hyperparameter tuning. Hence, we also compare with SAC in terms of variance
reduction and run time complexity. As shown in Table(1] there are other off-policy versions of PPO.
However, the corresponding code bases are either inaccessible or problematic, which has prevented us
from performing head-to-head comparisons. More details about hyperparameter settings are deferred
to the Appendix.

6.1 COMPARATIVE EVALUATION

Figure [2| shows the total average return during training for HP30, PPO, A2C, and P30. Each
experiment includes five different runs with various random seeds. The solid curves indicate the
mean, while the shaded areas represent the minimum and maximum returns over the five runs.
Notably, P30 was not implemented for the Lunar Lander environment due to a problematic dimension
mismatch in the original code base. Clearly, the results show that, overall, HP30 is comparable to or
outperforms all baselines across diverse tasks with smaller variances, which supports our theoretical
claims. For instance, in the HalfCheetah environment, our method demonstrates a sharper average
slope compared to the baseline, particularly in the later stages of training, where PPO shows a more
flattened curve. This indicates that our method continues to learn effectively with fewer samples. In
the Hopper environment, P30 performs slightly better than HP30O but at the cost of extremely large
reward variance, indicating an unstable training process. In the Swimmer environment, while A2C
and P30 learn slowly and make almost no progress, HP30 achieves the highest reward with very
low variance, as suggested by Remark [3] Generally, HP30 learns more stably than all baselines by
dequeuing the buffer to suppress the instability caused by data distribution drift in most environments.
Interestingly, Figure [3shows that HP30+ outperforms all baselines in terms of variance reduction.
Additionally, P30 shows notably strong performance in the Walker environment. This is primarily
attributed to the adoption of a new baseline that provides guidance for the agent to progress during
training. The learning trajectories are always around the best trajectory from the buffer. Essentially,
the value penalty term in the policy improvement lower bound from Theorem 2]regularizes the policy
evaluation. Additional results are included in the Appendix.

6.2 ABLATION STUDY

The experimental results in the previous section imply that algorithms based on the hybrid-policy
approach can outperform the conventional on-policy methods on challenging control tasks. In this
section, we further compare all policy optimization algorithms to SAC for variance reduction and run
time complexity. We also inspect the robustness of the algorithms against variations of trajectories.
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Figure 2: Training curves (over 1M steps) on continuous control benchmarks. HP3O (dark blue)
performs consistently across all tasks and is comparable to or outperforming other baseline methods.
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Figure 3: Training curves on Walker and HalfCheetah environments. HP30+ (black) performs with
the smallest variance.
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Figure 4: Comparison of Normalized Standard Deviation and Runtime for 1 million steps.

Variance. Figure da shows the comparison of the relative standard deviation of the ultimate average
return (at 1M steps) for different algorithms. It suggests that, on average, HP3O achieves the lowest
relative standard deviation (which is the ratio of the standard deviation to the average reward over five
runs at the last step). This implies that hybrid-policy algorithms have more advantages in regularizing
the learning process to maintain stability compared to typical on-policy algorithms. Intuitively, as
the policy and environment change over time, the use of replay buffer helps mitigate this issue by
providing a more stationary training dataset. The buffer contains a mix of experiences collected under
different policies, instead of the only current policy from PPO, which helps in reducing the variance
in updates. SAC attains a relatively small standard deviation according to Figure 4] (also, on average,
the maximum reward reported in the Appendix). This is not surprising since the maximum entropy
principle can significantly help meaningful exploration to achieve the highest return. However, this
comes at the cost of runtime complexity.

Run time complexity. As shown in Figure [db] the run time for all algorithms is presented (all
methods are implemented with the same hardware). SAC requires much more run time to explore and
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then converge, which may impede its applications to solving real-world problems. P30 achieves the
lowest run time complexity while performing worse than HP30. However, our proposed approaches
take approximately the same training time as PPO but with higher sample efficiency, as shown in
Figure[2] Thus, HP3O/HP30+ are able to achieve a desirable trade-off in practice between sample
efficiency and training time. These experiments used a local machine with an NVIDIA RTX 4090.

Robustness. We also compute the explained variance|LaHuis et al.| (2014)) for all algorithms under
consideration for evaluating robustness. Please check the Appendix[A.2|for more details about this
metric. Intuitively, it quantifies how good a model is to explain the variations in the data. Therefore,
the higher the explained variance of a model, the more the model is able to explain the variations in
trajectories. Essentially, the data in this work are trajectories produced by different policies, leading to
a data distribution drift. Therefore, explained variance can, to some extent, be viewed as an indicator
of how well an algorithm is robust against the data distribution drift. Figure [5|shows the explained
variances for HP30 and PPO in the HalfCheetah environment for five different runs with different
random seeds. HP30 has the highest explained variance over all runs suggesting that it is more robust
against the variations of trajectories during learning. While for PPO, its explained variance can reach
large negative values during training, which indicates the training instability when the trajectories
vary significantly.
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Figure 5: Explained Variance for HalfCheetah for PPO and HP30

6.3 LIMITATIONS

Though theoretical and empirical results have shown that the proposed HP30 outperforms the
popular baseline PPO over diverse control tasks, some limitations need to be discussed for potential
improvement in the future. First, HP3O/HP30+ require more hyperparameter tuning for the trajectory
replay buffer, which can impact model performance compared to PPO. It has been acknowledged that
hyperparameter tuning is critical for reinforcement learning such that for the hardest benchmarks, the
already narrow basins of effective hyperparameters may become prohibitively small for our proposed
algorithms, leading to poor performance. Second, in sparse reward environments, dequeuing the
trajectory replay buffer can result in insufficient learning. Unlike the traditional replay buffer, which
stores all experiences, our design requires the buffer to discard old trajectories so that the potential
data distribution drift can be alleviated. This may cause a problem that good trajectories may only be
learned once. Thus, the tradeoff between data distribution drift and learning frequency for the buffer
needs to be investigated more in future work. Finally, there remains substantial room for performance
improvement for the proposed algorithms compared to SAC. Further work in algorithm design is
required to ensure HP3O/HP30+ is on par with SAC but with low variance. The current ones can be
regarded as one of the first steps toward bridging the gap between on-policy and off-policy methods.

7 CONCLUSION AND BROADER IMPACTS

In this work, we presented a novel hybrid-policy reinforcement learning algorithm by incorporating a
replay buffer into the popular PPO algorithm. Specifically, we utilized random sampling to reuse
samples generated by the prior policies to improve the sample efficiency of PPO. We developed HP30
and theoretically derived its policy improvement lower bound. Subsequently, we designed a new
advantage function in HP30+ and presented a modified lower bound to provide theoretical guarantees.
We investigated the stationary point convergence for HP30O and used several continuous control
environments and baselines to showcase the superiority of the proposed algorithms. Additionally, we
focused on variance reduction while maintaining high reward returns, encouraging the community to
consider both high rewards and variance reduction. The theoretical claims of higher sample efficiency
and variance reduction were empirically supported.

10
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A APPENDIX

In this section, we present additional analysis and experimental results as a supplement to the main
contents. To conveniently refer to the theoretical results, we repeat the statements for all lemmas and
theorems.

A.1 ADDITIONAL THEORETICAL ANALYSIS

Lemma 4. (Lemma 6.1 in|Kakade & Langford (2002)) For any policies 7 and 7, we have

J(#) = J (1) = —— i, [Far( o[ A7(s, )] ™

Lemma 4 signifies the cumulative return difference between two policies, 7 and 7.

Lemma 5. Consider any two policies  and 7. Then the total variation distance between the state
visitation distributions d" and d™ is bounded by

§(d™, d™) < %Ewﬁ [5(r, 7)(s)], (8)
where §(, 7)(s) is defined in Lemmall|

The proof follows similarly from|Achiam et al.|(2017). Next we present the proof for Lemma 2.

Lemma 2: Consider a present policy 7y, and any reference policy 7,.. We then have, for any future
policy m,

1 m(als) 27Cr,
J(m) = J(mi) = ﬁﬂi@,a)ww[m(als)fl <sya>]—Wmmamxs)l, ©)

where C7 and 0(m,7,)(s) are defined as in Lemma

Proof. The proof is similar to the proof of Lemma 7 in|Queeney et al.| (2021). We start from the
equality in Lemma 4 by adding and subtracting the term

1
mEsmad’”' [Ea~w(~|s) [Aﬂ-k (57 a)” (10)
O
With this, we obtain the following relationship:
1 -
J(m) = J(m) = ﬁEsNdwT [anw(.‘s) [A™* (s,a)]]
1 s s
+ 7 Bonar [Bann( 1) [A™ (5, 0)]] = Esnarr [Eann(1s) [A™ (s, a)]])
v
1 (11)
> ﬁESNdﬂr [Ea~7r(~\s) [AWk (57 CL)H
1 Tl Tk
- ﬁlESNd« [Eanr(1s)[A™ (s, 0)]] = Esmarr [Eann(.1s)[A™ (s, a)]]|
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The last inequality follows from the Triangle inequality. Subsequently, we can bound the second term
of the last inequality using Holder’s inequality:

1
i UESNd" [anﬂ(»|s) [Aﬂk (57 a)]] —Egarr []Ea~7r(»|s) [Aﬂk (57 a)]] |
! (12)

1 T us s
< 7197 = A B [A™ (5, @)oo,

where d™ and d"" both signify the state visitation distributions. In light of the definition of total
variation distance and Lemma 3] the following relationship can be obtained accordingly

2y

|7 = d™ | = 28(d",d™) < 7B [3(m, 7)(5)] (13)
Y

Also note that
H]E(LNTI'('ls) [AWk (5’ a)] ”OO = maX|Ea~7r(~\s) [Aﬂk (37 a)] = C;rrk (14)
Hence, substituting Eq. [13] and Eq. [14] into Eq. [12] and combining Eq. [T1] yields the following
inequality:
27C7,
— T B [0(m, m)(8)]. (15)
(1—7)?

Finally, without loss of generality, we assume that the support of 7 is contained in the support of 7,
for all states, which is true for common policy representations used in policy optimization. We can
rewrite the first term on the right hand side of the last inequality as

J(ﬂ') — J(ﬂ'k) > %Eswd‘”r []EIINTI'("S) [Am" (57 CL)” -

1 1 m(als)
—E g anﬂ' -|s AT 5 =——=RE s,a)~dmr
[ e [Eanr(s)[A™ (s, a)]] T s [wr(aIS)

which leads to the desirable results.

A" (s,a)], (16)

Theorem 1: Consider prior policies |B| randomly sampled from the replay buffer R with indices
i =0,1,...,|B| — 1. For any distribution v = [v1,va, ..., v|5] over the |B]| prior policies, and any
future policy 7 generated by HP30 in Algorithm [I] the following relationship holds true

1 m(als) ~CF €
J(m) — J(mk) > ——Einu[E(s,a)~dmi A" (s,a)]] — —2, 17)
() = ) 2 BB [ A7 G ol =
where C7, is defined as in LemmalT}
Proof. Based on the definition of total variation distance, we have that
1
Buas 3(m,m0) (9] = B3 [ fr(als) = m(als)idal. 18)
aA

We still make the assumption that the support of 7 is contained in the support of 7 for all states,
which is true for the common policy representations used in policy optimization. Then, by multiplying
and dividing by 7 (al|s), we can observe that

Esrams [6(m, i) (5)] = E[% / . wk(a|s)|;(&f2) ~ 1|da]
’ (19)
1 w(als) €
- §E(S»G)Ndwk [Iﬂ'k(a|3) - ]-H < 5

The last inequality follows from the setup of PPO. With prior policies 7;,7 = 0, 1,2, ..., |B| — 1, we
assume that the support of 7 is contained in the support of 7; for all states, which is true for common
policy representations used in policy optimization. Based on Lemma 2] we can obtain

1 m(als)  x, 203,
J(m) — J(mg) > EE(&G)N,F,-, [m(a|s)A (s,a)] — W]E,;Ndwi [0(m, ;) (s)]. (20)
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Consider policy weights v = [v1,va, ..., v|5] over the policies in the minibatch B. Thus, for any
choice of distribution v, the convex combination determined by v of the |B| lower bounds given by
the last inequality yields the lower bound

1 m(als)
J -J > 7Ei~v E s,a)~d™i ATE )
(71') (ﬂ-k) =1 — [ (s,a)~d [m(a|s) (S a’)]]
27CT @h
- 77”“1}31‘,\,1, [Eswd”i [5(7‘-7 WZ)(S)]]

(1—=79)?
Combining Eq. [T9] and Eq. 21} with some mathematical manipulation, results in the desirable
conclusion. Now we’re ready to prove Lemma 3. O

Lemma 3: Consider a present policy 7, and any reference policy m,.. We then have, for any future
policy ,

— A Eane [6(m, ) (3)] (22)

— T RBge [6(m, ) (5)),

where CA‘;T,C = maXseS|Ea~w(-|s)[A7rk(57a)]
maxses|V7k (s) — V™ (s)|.

, 0(m,m,)(s) is defined as in Lemma |, C™ =

Proof. Due to Lemmal([l] we have

J(m) = J(m) = ﬁEM [Eomr (15 [A™ (s, a)]]
- %EM” [Eqnr(9[@7(s,a) = VT (s)]] (23)
- ﬁEM” [Eamn(s)[@ (s,0) = VT (s) + Vi (s) = V™ (s)]].

Let A™ (s,a) = Q™ (s,a) — V™ (s) and G™ (s) = V™ (s) — V™ (s) such that
1 - 1 i
J(m) = J(my) = ﬁEsr\zd” [Eamr(ls)[A™(s,a)]] + EESNW Eanr(ls)[G™(s)]]. (24
Define ||G™ () 0o = Max,es|V ™ (s) — V™ (s)| = C™. Follow similarly the proof from Lemma
we can attain the relationship as follows:

1 AT 1 T
J(m) — J(mp) > mEswd"r [Eanr(-1s)[A™ (s, a)]] + EESN(HT [G™*(s)]

cr
- e 07 7)) =
_ (iry—C:;ESNdﬂr [6(m, 7)(8)]-

The fact that min,es|V ™ (s) — V™ (s)| = 0 retains the desirable result.

Theorem 2: Consider prior policies |B| randomly sampled from the replay buffer R with indices
i =0,1,...,|B| — 1. For any distribution v = [v1,va, ..., v|5] over the |B]| prior policies, and any
future policy 7 generated by HP30+ in Algorithm [I] the following relationship holds true
QVCA';T’C € 29CT*e
(1=72 Q=7

m(als) ix

AT (s, a)]] -

1
J(TF) - J(Tl'k) Z EEZ‘N'D [E(S’a)mdﬂ-i [ (26)

mi(als)

where C’j{k and C™* are defined as in Lemma
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Proof. Following the proof techniques in Theorem [I]and combining the conclusion from Lemma 3]
obtains Eq. 26 O

A.2 ADDITIONAL EXPERIMENTAL RESULTS

Definition of explained variance. The explained variance (EV) measures the proportion to which
a mathematical model accounts for the variation of a given data set, which can be mathematically
defined in the following:

Var(y —9)

EV =1-—
v Var(y)

. 27)

where y is the groundtruth and g is the prediction. EV values typically vary from O to 1. In some
scenarios, the value may be a large negative number, which indicates a poor prediction of y. Explained
variance is a well-known metric in reinforcement learning, particularly for assessing the accuracy
of value function predictions. In our experiment, explained variance was used to evaluate how
well the value function predicts actual returns. The different runs correspond to separate training
instances with different random seeds. The explained variance score is a risk metric that measures
the dispersion of errors in a dataset. A score closer to 1.0 is better, as it indicates smaller squares of
standard deviations of errors.

A.3 EXPLAINED VARIANCE FOR OTHER ENVIRONMENTS

Explained variance is a well-known metric in reinforcement learning, particularly for assessing the
accuracy of value function predictions. In our experiment, explained variance was used to evaluate
how well the value function predicts actual returns. The different runs correspond to separate training
instances with different random seeds.
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Figure 6: Explained Variance for Hopper HP30
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Figure 7: Explained Variance for Hopper for PPO
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Figure 9: Explained Variance for Walker for PPO
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Figure 10: Explained Variance for Swimmer HP30
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Figure 11: Explained Variance for Swimmer for PPO
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Figure 15: Explained Variance for LunarLander for PPO

SAC TRAINING BENCHMARKS

The following plots showcase the benchmark training results obtained by using the SAC policy. In
some environments, SAC shows a relatively large variance. A notable disadvantage of SAC is that it
only works with continuous action spaces.
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Figure 16: Training curves for SAC in LunarLander environment
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Figure 20: Training curves for SAC in Walker environment
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Figure 21: Training curves for SAC in Swimmer environment

TRAINING RESULTS FOR OTHER ENVIRONMENTS

The following plots present the training curves obtained by training both the baseline algorithms and
our policy. These results further support our claim in the main paper that our policy reduces variance
while maintaining a high reward at the end.

A.4 EXPERIMENTAL CONFIGURATION

Experiments were performed on a local machine with an Intel Core i7-14700 CPU, 128 GB of RAM,
and NVIDIA RTX 4090 GPU. We provide detailed information on our algorithms’ hyperparameters
for all environments in our GitHub repository, which will be released once the paper is published.

A.5 RISK OF OVERFITTING?

In our approach, each set of sampled trajectories includes the current best action trajectory in the
buffer, but we use a uniform distribution to sample mini-batch data points from all the trajectories
rather than only focusing on the best one. Additionally, the number of sampled trajectories is a
tunable parameter that we adjust based on the specific environment. Therefore, we ensure that the
model is exposed to a diverse set of experiences, which also helps mitigate the risk of overfitting.
Another important point is that our trajectory buffer operates on a FIFO (FirstIn-First-Out) basis.

24



Under review as a conference paper at ICLR 2025

Cartpole
-@- HP30

500 PPO

- A2c

400

300

Rewards

200

100

0 20000 40000 60000 80000 100000

Global Steps

Figure 22: Training curves (over 100k steps) on the classical Cartpole environment.

As newer trajectories are added to the buffer, the oldest ones are replaced. This buffer maintains a
dynamic structure where trajectories are continually updated to reflect the most recent learning and
also helps to reduce distribution drift. We expect that these newer trajectories are more likely to be
better-performing as they are generated from the most current learned policy. All these techniques
are implemented in our buffer and help to balance exploration with prioritizing higher-performing
trajectories while also reducing the risk of overfitting.

A.6 INCORPORATION OF THE WORST TRAJECTORIES

In our approach, we prioritize leveraging higher-performing trajectories to optimize the agent’s
learning efficiency and to accelerate convergence toward optimal policies. This focus allows the agent
to reinforce successful behaviors more effectively. However, we understand the concern regarding
forgetting catastrophic behaviors, which could potentially lead to the agent’s catastrophic behaviors.
In practice, the FIFO buffer and uniform sampling from the sampled trajectories make sure that
a diverse range of experiences, including suboptimal or catastrophic behaviors, are preserved to
some extent within the buffer. This diversity helps the agent to maintain a broad understanding
of the environment, including both successful and unsuccessful strategies. Additionally, while we
do not explicitly prioritize the worst trajectories, our approach does not entirely discard them. By
maintaining a diverse buffer, the agent is still exposed to these behaviors, which can serve as alerting
examples. This exposure helps the agent learn to avoid repeating such catastrophic actions without
the need to focus on the worst trajectories explicitly. We believe this balance allows the agent to focus
on learning from successful strategies while still retaining an understanding of less optimal behaviors,
reducing the risk of catastrophic forgetting.

A.7 DATA STORAGE FOR RL TRAINING

* Trajectory Buffer: Stores complete trajectories 7 as sequences of (¢, as, 7't, St41)-

— Data Types: Arrays of states, actions, rewards, and next states.
— Dimensions:
# States s;: Typically R™ where n is the dimension of the state space.
* Actions a;: Depends on the action space, usually R where m is the dimension of
the action space.
Rewards r;: Scalar values.
Next states s¢41: Same as states s;.

* ¥
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