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Wide field-of-view imaging with hyperbolic metalenses using a Restormer network
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1. Introduction
Metasurfaces, particularly metalenses, have rev-

olutionized optics by enabling ultra-thin, multi-
functional components that outperform traditional
bulky lenses. Metalenses achieve this by manipulat-
ing light at the nanoscale, enabling the replication
of complex phase profiles while maintaining a com-
pact form factor. This unique capabilitymakes them
highly valuable for applications in imaging, sensing,
and optical metrology [1, 2]. Among metalens de-
signs, thosewith ahyperbolic phaseprofile standout
for their exceptional on-axis focusing efficiency and
diffraction-limited performance [3]. However, their
utility in imaging is hindered by significant off-axis
aberrations, which restrict the field-of-view (FOV)
and limit practical applications [4].
These aberrations result in images with spatially

varying blur artifacts that cannot be deblurred using
traditional approaches such asWiener filtering. Iter-
ative algorithms for spatially varying deconvolution
have been developed [5], but thesemethods are slow,
sensitive to calibrations, and unable to remove noise
[6]. Recent efforts have shifted toward deep-learning
algorithms to correct spatially varying aberrations
[7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. However, train-
ing these neural networks often requires the time-
consuming curation of experimental datasets and is
prone to overfitting to specific imaging conditions
(lighting, field-of-view, etc.).
In this work, we present a neural network-

enabled, reference-free hyperbolic metalens cam-
era capable of wide FOV imaging. By employing
a Restormer neural network [17] trained on sim-
ulated datasets using the eigen-point-spread func-
tion (eigenPSF) method [5], we eliminate the need
for experimental data curation and ensure robust-
ness across varying imaging conditions. Our ap-
proach achieves aberration-free imaging over a 54°
FOV, demonstrating exceptional performance in
both low-light and close-up imaging scenarios. This
work bridges the gap between hardware limitations
and software solutions, paving the way for practi-
cal, high-performance metalens-based imaging sys-
tems.

2. Results

Fig. 1: Schematic for computational deblurring
using the Restormer architecture trained on
eigenPSF-simulated images.

Fig. 1 shows the schematic of our computational
deblurring approach for hyperbolic metalens imag-
ing. To properly characterize the image formation
model, we first measured the PSFs of our hyper-
bolic metalens camera at different angles of inci-
dence (AOI) ranging from 0◦ to 40◦ (Fig. 1a). These
imaging PSFs are computationally rotated to popu-
late a PSF map that covers the full extent of an im-
age corresponding to anangular FOVof 54◦ as shown
in Fig. 1b. The eigenPSF method uses this PSF map
to simulate spatially varying blur applied to ground
truth images fromGoogle’s Open Images dataset [18,
19]. Each simulated blurred image is corrupted with
noise by augmenting a measured flatfield through
random rotations and flips. A Restormer network is
then trainedusing these 3500 simulated images as in-
put, and their corresponding ground truth images as
the desired output (Fig. 1c).
Fig. 2a,c shows the raw measurements from our
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Fig. 2: Deblurring images from the hyperbolic met-
alens camera using the trained, reference-free
Restormer network. The (a) measured and (b) de-
blurred images of scenes taken around a lab. The
(c) measured and (d) deblurred images of printed
photos placed before the camera. All images have
the same angular FOV of 54◦.

hyperbolic metalens camera and the corresponding
results of Restormer deblurring on the images. The
characteristic aberrations due to the hyperbolic lens
phase profile are evident in the sharp features at the
center of the image and the increasing comaat larger
incidence angles. Despite spatially varying aberra-
tions in the measurements, the trained Restormer
network is able to deblur the full FOV of the im-
ages in real-time (∼50ms per image), recovering fea-
tures even toward the edges of the images. By us-
ing a reference-free dataset, we avoid overfitting to
specific imaging conditions during the training of
the Restormer network. This is evident in the simi-
lar quality of deblurring frombothmeasurements of
lab scenes (dimmer) and printed photos (brighter) in
Fig. 2b,d.
Our findings suggest that the field of view (FOV)

in hyperbolic metalens imaging could be further

extended by leveraging advances in computational
power to train on larger image sizes. Additionally,
the diffraction-limited resolution of the hyperbolic
lens along the optical axis remains underutilized due
to current limitations in detector pixel sizes and the
large bandwidth of the illumination source. With fu-
ture improvements in hardware, this work has the
potential to open new pathways toward achieving
high-resolution, wide-FOV imaging with hyperbolic
metalenses.
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