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ABSTRACT

Vision Language Models (VLMs) have demonstrated remarkable capabilities in various
open-vocabulary tasks, yet their zero-shot performance lags behind task-specific fine-
tuned models, particularly in complex tasks like Referring Expression Comprehension
(REC). Fine-tuning usually requires ‘white-box’ access to the model’s architecture and
weights, which is not always feasible due to proprietary or privacy concerns. In this
work, we propose LLM-wrapper, a method for ‘black-box’ adaptation of VLMs
for the REC task using Large Language Models (LLMs). LLM-wrapper capitalizes
on the reasoning abilities of LLMs, improved with a light fine-tuning, to select the most
relevant bounding box matching the referring expression, from candidates generated
by a zero-shot black-box VLM. Our approach offers several advantages: it enables the
adaptation of closed-source models without needing access to their internal workings,
it is versatile as it works with any VLM, it transfers to new VLMs and datasets, and
it allows for the adaptation of an ensemble of VLMs. We evaluate LLM-wrapper
on multiple datasets using different VLMs and LLMs, demonstrating significant
performance improvements and highlighting the versatility of our method. While LLM-
wrapper is not meant to directly compete with standard white-box fine-tuning, it
offers a practical and effective alternative for black-box VLM adaptation. The code and
the checkpoints are available at https://github.com/valeoai/LLM_wrapper.

1 INTRODUCTION

Vision Language Models (VLMs), a class of foundation models (Bommasani et al., 2021), trained on large-
scale and diverse tasks and datasets, have shown remarkable abilities to solve various open-vocabulary tasks,
as image captioning (Xiao et al., 2024; Li et al., 2023), visual question answering (Alayrac et al., 2022; Liu
et al., 2023; Li et al., 2023), text-image retrieval (Radford et al., 2021; Zhai et al., 2023; Li et al., 2023), object
detection (Liu et al., 2024c; Xiao et al., 2024; Cheng et al., 2024), or semantic segmentation (Ding et al.,
2023; Xiao et al., 2024). Recent VLMs show promising zero-shot generalization abilities to new tasks and
data domains (Wei et al., 2022; Alayrac et al., 2022). However, there is still a significant performance gap
between zero-shot VLMs and those that have been specifically trained or adapted for a particular task and
data domain. This work focuses on the challenging open-vocabulary detection task of Referring Expression
Comprehension (REC) (Mao et al., 2016), which involves localizing an object in an image based on a
complex textual query, requiring both spatial and semantic reasoning. While zero-shot VLMs can typically
detect most objects mentioned in the query with reasonably accurate bounding boxes and labels, they
struggle to identify only the described object. Moreover, VLMs often have difficulty understanding complex
descriptions that involve relations between objects, attributes, or negations (Xie et al., 2023; Yao et al., 2024).

To improve performance, VLMs are typically fine-tuned on the specific REC task and corresponding
datasets. This fine-tuning is usually done in a ‘white-box’ manner, with full access to the model’s
architecture and weights for back-propagation. However, this process requires expertise to design
fine-tuning objectives and optimize hyper-parameters, specific to each VLM and downstream task.
Moreover, white-box fine-tuning is not always feasible. Some models are closed-source, either because
they are proprietary and released behind APIs (Ren et al., 2024a), or because they are trained on private
data, making their weights and gradients inaccessible. While companies may provide APIs for adapting
proprietary models, e.g., (OpenAI, 2024), these solutions are limited to predefined scopes and require
sharing data with external private companies, raising legal and privacy concerns.
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Table 1: Comparison between white-box fine-tuning and LLM-wrapper on the REC task.

Classic white-box fine-tuning LLM-wrapper

Model access Needs complete access (loss, archi-
tecture, weights, gradients)

Only needs a forward call of a frozen
black-box VLM

Fine-tuning knowledge Specific for each VLM Agnostic to the choice of VLM and
LLM, and parameter-efficient

Specificity of adaptation None Leverages LLM semantic reasoning
Fine-tuning generalization Limited: no ensembling, no transfer

to new VLMs or datasets
Flexible: supports ensembling and
transfers across VLMs and datasets

Expected performances Best results Good results

To address these challenges, we explore ‘black-box’ adaptation of VLMs, where only forward calls to
the model are possible. We propose LLM-wrapper, a new method for the black-box adaptation of
VLMs for the REC task, by using an LLM to reason on the VLM’s outputs. This approach builds on
the recent development of Large Language Models (LLMs) (Touvron et al., 2023; Jiang et al., 2024;
Mesnard et al., 2024), which have shown interesting reasoning capabilities. The underlying idea is that
a zero-shot black-box VLM can generate high-quality labeled bounding boxes, and that LLM-wrapper
can then leverage the semantic and spatial reasoning abilities of the LLM (Lian et al., 2024a;b) to ‘reason’
on such outputs, further enhanced with a light fine-tuning. As illustrated in Figure 1, our method involves
translating VLM’s outputs into a natural language prompt and feeding it to the LLM. The LLM is then
tasked with identifying the box that best matches the referring expression from the given candidates.

LLM-wrapper offers several advantages, summarized in Table 1. First, since the adaptation is done
in a black-box manner, it removes the need for back-propagation through the VLM and allows for the
adaptation of closed-source models, without requiring access to the model’s architecture, weights, or
gradients. This makes black-box fine-tuning versatile and easy to use, as it can be applied to any model
without requiring specific model knowledge or assumptions about the model’s architecture. Additionally,
as the adaptation is delegated to the LLM via text, LLM-wrapper retains the pre-trained knowledge
of the original VLM. We find that LLM-wrapper transfers well to other VLMs, generalizes to model
updates, and can adapt effectively to new datasets without additional fine-tuning. Finally, LLM-wrapper
enables the adaptation of an ensemble of VLMs, leveraging the flexibility of text-based adaptation to
handle varying numbers of bounding boxes, thereby combining strengths from multiple models.

We experiment with LLM-wrapper on three classic REC datasets — RefCOCO, RefCOCO+
(Kazemzadeh et al., 2014), RefCOCOg (Mao et al., 2016) — and on Talk2Car (Deruyttere et al., 2019), us-
ing two notably different VLMs — Grounding-DINO (Liu et al., 2024c) and Florence-2 (Xiao et al., 2024).
Additionaly, we evaluate LLM-wrapper on the recent and challenging HC-RefLoCo (Wei et al., 2024)
benchmark. We also experiment with two LLMs for the adaptation: Mixtral 8x7B (Jiang et al., 2024) and
Llama 3 8B (Dubey et al., 2024). While LLM-wrapper is not meant to outperform standard white-box
fine-tuning, we show that LLM-wrapper significantly enhances the VLM’s performances, across all
combinations of VLMs, LLMs and datasets, thus demonstrating the versatility of our method. Notably,
on RefCOCOg and Talk2Car, our most challenging benchmarks with respect to semantic understanding,
LLM-wrapper improves the results of zero-shot VLMs with gains ranging from +8.7 up to +18.3 P@1.

2 RELATED WORK

Referring Expression Comprehension (REC) and Vision Language Models (VLMs). Referring
Expression Comprehension (REC) (Kazemzadeh et al., 2014; Mao et al., 2016; Qiao et al., 2021) is the task
of identifying objects in an image based on referring expressions. Typically, REC involves selecting the best
region from a set of region proposals extracted from the image, guided by a referring expression. This task
is challenging because the referring expression can range from a short phrase (Kazemzadeh et al., 2014)
to a long sentence that may require multi-step reasoning (Mao et al., 2016). REC is distinct from similar
tasks such as visual grounding (Rohrbach et al., 2016), where multiple object regions described by multiple
noun phrases must be localized in an image. It also differs from object detection (Girshick, 2015), which
uses predefined categories instead of natural language expressions. The recent surge of interest in VLMs,
starting from CLIP (Radford et al., 2021) to the recent Florence-2 (Xiao et al., 2024) has significantly
improved performance on tasks requiring both vision and language. For REC, several approaches have

2



Published as a conference paper at ICLR 2025

Prompt
“You are a helpful AI assistant, capable 
of understanding spatial information. 
In an image, there are 7 boxes: 

In box 0: ‘flower’ with xyxy coordinates 
`[402, 181, 603, 224]',
In box 1: ‘plate with flower details’ with 
xyxy coordinates `[5, 212, 502, 587]', 
In box 2: ‘yellow bowl’ with xyxy 
coordinates `[1182, 211, 1582, 452]',
[...]

Which box is best matching `The plate 
with flower details next to the yellow 
bowl' ? Answer with just the index of the 
best box. No explanation. 
Answer:”
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  Query: 'The plate with flower
 details next to the yellow bowl'
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Figure 1: Illustration of LLM-wrapper. Our method adapts a black-box VLM for the REC task. The
VLM output is translated into natural language to prompt an LLM. The latter is tasked with identifying the
box that best matches the query among the given candidates. The LLM must learn to identify the query’s
subject and to disambiguate the correct object from distractors (e.g., several plates with ‘flower details’).

used VLMs. For instance, Grounding-DINO (Liu et al., 2024c) relies on multiple stages of modality fusion
to align visual and textual features, while Florence-2 (Xiao et al., 2024) is a sequence-to-sequence model
trained on a huge collection of data. However, despite being trained on extensive amounts of image-text
data (e.g., 126 million images with 500 million to 3.6 billion annotations for Florence-2), these models’
zero-shot performances on REC are sub-optimal compared to their performances when including REC
data in their training set or when fine-tuned (see Section 4.2). Our approach, LLM-wrapper, addresses
this clear limitation in a black-box manner, without the need to re-train the VLM with task-specific data.

VLM adaptation. While retraining the entire VLM on a new task or data domain is computationally
expensive (Liu et al., 2023; Wang et al., 2023; Chen et al., 2023; Xiao et al., 2024), fine-tuning offers
a more efficient alternative. However, even fine-tuning can be costly. To address this, parameter-efficient
fine-tuning, e.g., LoRa (Hu et al., 2022), DoRa (Liu et al., 2024a), or VeRa (Kopiczko et al., 2024), and
soft prompt (Li & Liang, 2021) learning have been proposed. These methods avoid updating the model’s
pre-trained weights but require access to the model’s architecture and gradients.

A few recent methods propose strategies to adapt VLMs when back-propagation through the VLM is not fea-
sible (Ouali et al., 2023; Yu et al., 2023; Liu et al., 2024b; Oh et al., 2023; Wan et al., 2024). Both Ouali et al.
(2023) and Yu et al. (2023) focus on CLIP-based methods and adapt the VLM by learning either a feature
projection or soft prompts. They however require access to the inner representations, which is generally not
possible with APIs. Liu et al. (2024b) optimize the input prompt template, but also focuses on CLIP-based
models. Instead, we target all VLMs that perform open-vocabulary detection, e.g., Grounding-DINO and
Florence-2. Oh et al. (2023) adapt a VLM in a black-box manner by modifying the image input. However,
this method is designed to address visual domain gaps and is not directly applicable to adapt a VLM to
a new task. Moreover, it requires multiple API calls for each training image. Finally, Wan et al. (2024)
introduce an adaptation method for frozen VLMs, applicable to REC. For each candidate bounding box,
they perform a VLM inference to compute the probability of the input text based on a modified image where
the box has been blacked out. The candidate that achieves the highest probability contrast with respect to the
unmodified input image is chosen. Though training-free, this approach requires the access to the model’s
output probability distribution and performs an additional VLM inference for each candidate bounding box.
In this work, we propose a strategy to adapt VLMs, and more specifically open-vocabulary detectors, to a
new task, in a complete black-box fashion. Our method does not require access to the model’s intermediate
representations, output distribution, or gradients, runs a single inference/API call for each (text-image) input
pair, and enables adaptation to a new task (REC in our case) that the VLM was not originally trained for.

3 LLM-WRAPPER: BLACK-BOX SEMANTIC-AWARE ADAPTATION OF VLMS.

We present LLM-wrapper, a novel LLM-based approach to adapt VLMs for the REC task. We detail the
general idea in Section 3.1, the prompt construction in Section 3.2 and the LLM fine-tuning in Section 3.3.
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3.1 GENERAL IDEA

Our method wraps the open-vocabulary detections of a frozen black-box VLM with an LLM that reasons
over these outputs. An overview is presented in Figure 1. Given a complex textual query, LLM-wrapper
leverages the fact that detection-oriented VLMs can typically localize well most nouns of the query, even
if they struggle with the reasoning step required to precisely select the object of interest among several
distractors. Therefore, LLM-wrapper delegates the reasoning task to an LLM, which has interesting
abilities to handle difficult text queries, including attributes, negation, and relational or spatial descriptions
of objects. As the gradients of the black-box VLM are not accessible, we propose to adapt its outputs
with the LLM. It gives us access to the LLM gradients and we can thus specialize the LLM for the task,
with a simple and light fine-tuning, performed on the outputs of the VLM to learn to select the right box
among them. Overall, LLM-wrapper only requires black-box access to the VLM, whereas standard
fine-tuning strategies need white-box access to perform back-propagation. This makes our approach more
flexible and applicable in scenarios where the internal workings of the VLM are not accessible.

3.2 PROMPT CONSTRUCTION

The key idea of our method is to convert the VLM’s outputs into natural language. To achieve this, we
list all predicted outputs in the LLM prompt, including their box coordinates, labels, and, when applicable,
prediction scores (displayed below in light gray). This allows the ‘blind’ LLM, which only reads text,
to understand the scene and reason about the image. The prompt then reminds the query and asks the LLM
to select the best matching box. For instance, given the query (in green in Figure 1), and the associated
outputs (e.g., ‘flower’, ‘plate with flower details’, ‘yellow bowl’, etc.), we ask the LLM for the best
matching box index, as follows:

You are a helpful AI assistant, capable of understanding spatial information.
In an image, there are 7 boxes:
* In box 0: ‘flower’ with xyxy coordinates ‘[402, 181, 603, 224]’ with score 0.92,
* In box 1: ‘plate with flower details’ with xyxy coordinates ‘[5, 212, 502, 587]’ with score 0.88,
* In box 2: ‘yellow bowl’ with xyxy coordinates ‘[1182, 211, 1582, 452]’ with score 0.86,
* [...]
Which box is best matching ‘The plate with flower details next to the yellow bowl’ ?
Answer with just the index of the best box. No explanation.
Answer:

3.3 FINE-TUNING THE LLM

While a zero-shot LLM can already reason on the new task to some extent, we find that fine-tuning the
LLM significantly improves performances on the task. Therefore, we fine-tune the LLM for prompt
completion with a cross-entropy loss, using the prompt described above. Specifically, the expected answer
for the LLM is the index of the best box proposal, corresponding to the closest match to the known
ground truth box. To build the training dataset, we use the REC training data, which consists of (image,
query) pairs and ground truth boxes. The detection outputs (boxes, labels, scores), used to create the
training prompts, are inferred using the VLM being adapted. We only keep the samples where at least
one of the VLM box proposals has an Intersection over Union (IoU) with the ground truth box higher
than 0.5, ensuring no noisy samples. To make LLM-wrapper robust to any shortcut learning based
on the box order, we randomly permute the order of the box proposals in the prompt during training.

We leverage the extensive literature on LLM fine-tuning to specialize the LLM of LLM-wrapper.
Specifically, we use LoRA (Hu et al., 2022), which introduces additive updates to the model’s activations,
parameterized by low-rank modules. Doing so reduces the number of new parameters to learn while
preserving the LLM’s general knowledge. We also use flash attention (Dao et al., 2022) and 4-bit
quantization (Dettmers et al., 2024), making LLM-wrapper trainable on a single 40GB-A100 GPU
in less than 7 hours. This approach makes the training efficient in terms of compute and very simple to
implement in practice. Overall, we find that LLM-wrapper is not very sensitive to the choice of the
few hyper-parameters introduced (see Section 4.4).
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4 EXPERIMENTS

In this section we present the experimental validation of LLM-wrapper. We first state our protocol
in Section 4.1. In Section 4.2, we show how LLM-wrapper improves VLMs. We then conduct further
analysis of LLM-wrapper’s benefits in Section 4.3. We finally conduct ablation studies showcasing
LLM-wrapper’s robustness in Section 4.4.

4.1 EXPERIMENTAL SETUP AND TECHNICAL DETAILS

4.1.1 REFERRING EXPRESSION COMPREHENSION (REC) TASK

Datasets. We evaluate LLM-wrapper on the REC task. In REC, given an input pair (image,
query), a model is expected to predict a single bounding box around the object described in the query, as
illustrated in Figure 1. We use three standard datasets for REC: RefCOCO, RefCOCO+ (Kazemzadeh et al.,
2014), and RefCOCOg (Mao et al., 2016) which is more challenging as it contains longer descriptions
(8.3 words in average). We also use the driving, non human-centric, Talk2Car (Deruyttere et al., 2019)
REC dataset. Additionally, we evaluate LLM-wrapper on HC-RefLoCo (Wei et al., 2024) for zero-shot
dataset transfer experiments. All of these datasets contain multiple distractor objects for the given text
query. Dataset statistics are given in Table 2. Table 2: Dataset statistics.

Split Size # words

Dataset used train val test / query

RefCOCO unc 120,624 10,834 10,752 3.5
RefCOCO+ unc 120,191 10,758 10,615 3.5
RefCOCOg umd 80,512 4,896 9,602 8.3
Talk2Car — 8,348 1,163 2,447 11.0
HC-RefLoCo — — 13,360 31,378 84.6

Metric. We measure performance with the
standard precision@1 (P@1) metric, de-
scribed in (Qiao et al., 2021). A true posi-
tive is defined when the predicted box has
an Intersection-Over-Union (IoU) greater
than 0.5 with the ground truth box. The
metric is averaged over the evaluation set.

4.1.2 THE VLMS

We evaluate the impact of LLM-wrapper on two different VLMs. In all cases, we use the official model
checkpoints and unless specified otherwise, we use the model versions that are not fine-tuned for the REC
task, meaning that the models have not been exposed to any of the RefCOCO/+/g and Talk2Car datasets.
Using the model setup described below, we feed from 2 to 45 boxes to LLM-wrapper per prompt.

Grounding-DINO (GD) (Liu et al., 2024c) aligns visual queries with text through stages of modality
fusion and contrastive learning. Initially designed for open-vocabulary grounding, the model produces
900 bounding boxes, achieving a high recall but an under-performing precision on the REC task. For
REC, we use GD by selecting the bounding box with the highest score relative to any token in the query.
However, this method sometimes selects boxes based on query parts unrelated to the main object, such
as other nouns in the sentence. To address this, we introduce Grounding-DINO-REC (GDrec), a more
targeted approach for REC. GDrec identifies the query’s subject, defined as the first noun group detected
by SpaCy’s dependency parser (Honnibal et al., 2020), and selects the bounding box that scores best against
it. GDrec outperforms GD on RefCOCO/+/g datasets, and particularly on RefCOCOg, where the noun
identification is more challenging, with e.g., +9.1 P@1 (test) for zero-shot models as shown in Table 3. To
ensure a rather short prompt, we limit the number of box proposals by setting the box confidence score
threshold to 0.15 for GDrec and to 0.2 for GD. GD / GDrec, not fine-tuned, use a SwinT(T) backbone
while the fine-tuned versions are based on SwinB(B), as they are the only publicly available models. We
also run experiments on a subset of RefCOCOg using Grounding-DINO 1.5 (Ren et al., 2024a) (GD-1.5),
a recent detector behind API (online at: Grounding-DINO-1.5-API), which provides 300 free API
calls. GD-1.5 extends GD with a larger backbone, ViT-L (Fang et al., 2024), and training dataset.

Florence-2 (Flo2) (Xiao et al., 2024) is a sequence-to-sequence multi-task model. We use the Florence-2
Large version from Hugging Face. It is composed of a DaViT vision encoder (Ding et al., 2022) and a
multi-modal encoder-decoder. Flo2 can be prompted to deal with different grounding tasks. To evaluate
Flo2 on the REC task without adaptation, we use the box predicted for the ‘open vocabulary detection’
task. For LLM-wrapper’s adaptation of Flo2, we keep and concatenate the boxes predicted for both
the ‘open vocabulary detection’ and the ‘phrase grounding’ task modes.
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Table 3: Main results of LLM-wrapper on the REC task, in P@1↑, on RefCOCO/+/g and Talk2Car
datasets. ‘(T)’ and ‘(B)’ stand for the ‘SwinT’ and ‘SwinB’ backbones respectively.

Model RefCOCOg RefCOCO RefCOCO+ Talk2Car
Adaptation access VLM LLM val-umd test-umd val-unc test-unc val-unc test-unc val test

∅ (zero-shot) GD(T) 60.09 59.32 50.69 50.94 51.65 51.79 55.37 58.44
Fine-tuning White-box GD(B) 78.51 77.99 83.86 84.12 73.46 73.46 N/A N/A
LLM-wrapper Black-box GD(T) Mixtral 77.57 ↑17.5 77.05 ↑17.7 74.61↑23.9 73.46↑22.5 60.32↑8.7 60.08↑8.3 64.75 ↑9.4 67.14 ↑8.7
LLM-wrapper Black-box GD(T) Llama3 78.12 ↑18.0 77.36 ↑18.0 74.78↑24.1 73.98↑23.0 64.18↑12.5 63.82↑12.0 65.95 ↑10.6 68.61 ↑10.2
∅ (zero-shot) GDrec(T) 67.61 68.37 51.82 52.12 53.28 53.16 47.64 51.04
Fine-tuning White-box GDrec(B) 80.19 79.85 83.84 84.21 73.68 73.58 N/A N/A
LLM-wrapper Black-box GDrec(T) Mixtral 78.47 ↑10.9 77.92 ↑9.6 72.61↑20.8 71.48↑19.4 63.79↑10.5 63.69↑10.5 63.89 ↑16.3 66.78 ↑15.7
LLM-wrapper Black-box GDrec(T) Llama3 78.25 ↑10.6 78.01 ↑9.6 73.97↑22.2 73.07↑21.0 64.13↑10.9 64.08↑10.9 63.97 ↑16.3 66.45 ↑15.4
∅ (zero-shot) Flo2 67.91 66.16 55.94 57.21 53.31 54.26 46.78 47.53
Fine-tuning White-box Flo2 90.32 91.02 93.07 93.42 88.19 88.49 N/A N/A
LLM-wrapper Black-box Flo2 Mixtral 78.96 ↑11.1 77.69 ↑11.5 68.85↑12.9 68.21↑11.0 57.58↑4.3 58.26↑4.0 61.65 ↑14.9 65.14 ↑17.6
LLM-wrapper Black-box Flo2 Llama3 78.76 ↑10.9 78.03 ↑11.9 71.74↑15.8 71.91↑14.7 62.63↑9.3 62.73↑8.5 61.74 ↑15.0 65.84 ↑18.3

4.1.3 THE LLMS AND THEIR FINE-TUNING

Our main experiments are conducted using two different LLMs: Mixtral 8x7B Instruct (Jiang et al., 2024)
(v0.1) and Llama 3 8B Instruct (AI@Meta, 2024) with Hugging Face’s implementation. We use Hugging
Face’s supervised fine-tuning pipeline (SFT) (HuggingFace, 2024), that allows to implement the training
choices discussed in Section 3. Specifically, for a same LoRA’s rank r, we train 352M parameters for
Llama 3 8B (which is 4.20% of the model original size) and 114M parameters for Mixtral 8x7B (which
is 0.24% of its original size). To further study the impact of the LLM scale, we also experiment with
two additional families of models, Gemma 2 (Gemma, 2024) and GPT-Neo (Gao et al., 2021). The latter
is a class of LLMs, based on a replication of the GPT-3 architecture, trained on the large curated Pile
dataset (Gao et al., 2021), and which was not ‘instructed’ (Ouyang et al., 2022). We train LLM-wrapper
with Adam (Kingma, 2014), with a batch-size of four, until convergence. We discuss in Section 4.4 the
sample efficiency of LLM-wrapper. Unless stated otherwise, we use a learning rate of 10−5 and a
rank of r=128 for LoRA. These hyper-parameters work consistently across four datasets, two LLMs
and two VLMs, demonstrating the robustness of LLM-wrapper. We study the performance robustness
of LLM-wrapper for different hyper-parameters in Section 4.4. We provide ablations quantifying the
impact of trainable parameters count in Appendix C and statistics on invalid LLM outputs in Appendix D.

4.2 LLM-WRAPPER CAN ADAPT VLMS TO THE REC TASK

In Table 3, we report the performances of VLMs on the REC task in three settings: zero-shot off-the-shelf
VLM, after classic white-box fine-tuning, and after black-box adaptation with LLM-wrapper. The
results are obtained by adapting the VLM using exclusively the training data specific to each benchmark.

Our first observation confirms that while VLMs demonstrate remarkable zero-shot performance on new
tasks and datasets, their performance is still significantly lower than models specifically adapted to the
given task (white-box fine-tuning). As shown in Table 3, for GD, GDrec and Flo2, there is a notable
gap in performance, ranging from -11.5 to -37.1 P@1, between the zero-shot and fine-tuned versions.

Interestingly, we observe that for all combinations of VLMs and LLMs, LLM-wrapper can adapt VLMs
to the new REC task, despite the black-box setting. For instance, on RefCOCOg, LLM-wrapper brings
improvements over the zero-shot models ranging from +9.6 to +18.0 P@1. Notably, while our proposed
variant GDrec outperforms GD by large margins in a zero-shot setting (e.g., +9.1 P@1-test) due to better
subject identification, both models perform similarly when adapted with LLM-wrapper. This shows
that LLM-wrapper particularly improves VLMs that lack abilities useful for the task, such as subject
identification for GD. On RefCOCO, LLM-wrapper improves again by significant margins zero-shot
VLMs, e.g., +23.0 P@1 (test) for GD with Llama 3 8B. Given that textual queries in RefCOCO are very
short (3.5 words on average), subject identification is relatively easy. Therefore, these gains indicate that
LLM-wrapper greatly helps to disambiguate the object of interest from the distractors. On RefCOCO+,
the improvement brought by LLM-wrapper is lower but still significant (between +4.0 and +12.5 P@1).
This is expected as RefCOCO+ is designed to exclude location words, and most referring expressions are
thus purely appearance-based descriptions (Qiao et al., 2021) where LLM-wrapper brings less value
for adaptation. On the driving Talk2Car dataset, LLM-wrapper’s results remain consistent with those
observed on the classic human-centric RefCOCO/+/g benchmarks, with score boosts provided for all
VLM/LLM combinations, ranging from +8.7 up to +18.3 P@1.
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          LLM-wrapper
          Flo2
          Ground truth

(a) “Person on the skateboard”
l

(b) “The tie at the second from the
left”

(c) “Green plant behind a table
visible behind a lady’s head”

(d) “She said something about a big
sign on a fence. Maybe that is her !

Pull over here by this person and we
will find out”

(e) “Try to get in front of the car that
passed us on the left. He is driving

like a madman”
l

(f) “My friend said she would be
standing on the corner waiting for me,
I think that might be her, will you stop

there ?”

Figure 2: Qualitative results of Flo2 on RefCOCOg (first row) and Talk2Car (second row), before
and after adaptation with LLM-wrapper, provided with queries as captions. Adapting Flo2 (in
orange) with LLM-wrapper (using Llama 3 8B, in blue) leads to improved reasoning and box selection.

We present some qualitative results in Figure 2, where we show predictions from Flo2 before and after
adaptation with LLM-wrapper, using Llama 3 8B. We observe that adaptation with LLM-wrapper
enables better subject identification (Fig. 2a, Fig. 2d), spatial understanding (Fig. 2b, Fig. 2e), relational
reasoning (Fig. 2a, Fig. 2c) and avoids selecting a more visible object when the ground truth is comparatively
small (Fig. 2d, Fig. 2f). We display additional qualitative results, including failure cases, in Appendix E.

LLM-wrapper is not designed to outperform classic white-box fine-tuning but demonstrates competitive
performance in some settings. For example, with GD and GDrec on RefCOCOg, LLM-wrapper
achieves comparable results despite using a smaller vision backbone. Additionally, LLM-wrapper can
complement white-box fine-tuning by adapting VLMs already optimized for the REC task. As shown
in Appendix A, applying LLM-wrapper on top of fine-tuned models does not degrade performances
and, in some cases, provides a slight boost. This highlights LLM-wrapper’s compatibility with state-
of-the-art methods and its ability to enhance existing adaptations. Finally, in Appendix B, we extend our
evaluation to the related task of Referring Expression Segmentation, leading to consistent score boosts.

4.3 BENEFITS OF WRAPPING VLMS’ OUTPUTS WITH LLM-WRAPPER

Ensembling VLMs. One advantage of LLM-wrapper is its free-text input format, which allows adapting
to various inputs. Indeed, we show that LLM-wrapper can learn to ensemble outputs from different
VLMs, as shown in Table 4. Specifically, we concatenate the predictions of the two VLMs in the prompt
described in Section 3. The results show that when ensembling GDrec and Flo2, scores are boosted by

Table 4: Results of VLMs ensembling using LLM-wrapper with Llama 3 8B, in P@1↑ on Ref-
COCOg using ‘umd’ splits. (Comparable findings for Mixtral).

Adaptation VLM P@1 - val ↑ P@1 - test ↑
∅ (zero-shot VLM) GDrec 67.61 68.37
∅ (zero-shot VLM) Flo2 67.91 66.16
LLM-wrapper GDrec 78.25 78.01
LLM-wrapper Flo2 78.76 78.03

LLM-wrapper Flo2 + GDrec 81.25 80.13
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Query: “A bottle of wine between the vegetables”

          Ground truth

(a) Ground truth

          Flo2

(b) All candidates of Flo2

         GDrec

(c) All candidates of GDrec

          LLM-wrapper

(d) Final pred. of LLM-wrapper

          Flo2

(e) Final pred. of Flo2

         GDrec

(f) Final pred. of GDrec

Figure 3: Visualizations of the candidates and predictions for the query “A bottle of wine between the
vegetables”. We visualize the ground truth (a) and the set of box candidates generated by Flo2 (b) and
GDrec (c). In the second row, we visualize the final predictions of Flo2 (e) and GDrec (f) and in (d)
the prediction of LLM-wrapper applied on the ensemble of both VLMs’ outputs, using Llama 3 8B.
We observe that LLM-wrapper discards the distractor bottle and selects the correct object.

+2.5 P@1 (val-umd) and +2.1 P@1 (test-umd) when compared to those obtained with the best-performing
VLM adapted with LLM-wrapper, namely Flo2. This demonstrates that LLM-wrapper is capable
of reasoning on multiple sources and leveraging the strengths of different models.

Indeed, we observe that Flo2 has a high precision, while GD and GDrec have lower precision but high
recall. We show in Figure 3 a qualitative example where LLM-wrapper leverages the complementarity
of the two models. The figure displays predictions from Flo2 (Fig. 3e), GDrec (Fig. 3f), and LLM-
wrapper ensembling predictions from Flo2 and GDrec (Fig. 3d). We observe that while Flo2 fails
to detect the target object as a possible candidate (Fig. 3b), the additional proposals from GDrec (Fig. 3c)
enable LLM-wrapper to find the correct object (Fig. 3a) that each independent model missed.

Transferring a trained LLM-wrapper to a new VLM. Another advantage of using text as the input
format is that LLM-wrapper does not rely on model-specific activation values, making it transferable
from one VLM to another. For instance, LLM-wrapper can be fine-tuned on Flo2 and transferred
to GD or GDrec. This is illustrated in Table 5, where, for instance, when fine-tuned on GDrec’s or
Flo2’s outputs, transferring it at inference time to the other model’s outputs gives an increase from +5.1
to +6.9 P@1 over zero-shot VLMs. This shows that during fine-tuning, LLM-wrapper learns spatial
and semantic notions that generalize to other models. This capacity of LLM-wrapper is particularly
useful for private models, such as GD-1.5 (Ren et al., 2024a), where creating the training set can be
expensive – for instance, getting predictions for RefCOCOg train would cost ≈ $1,600 ($20 per 1,000 API

Table 5: Results of LLM-wrapper when using different VLMs’ outputs during fine-tuning and
inference, in P@1↑ on RefCOCOg using ‘umd’ splits. Results obtained with Llama 3 8B. Comparable
findings for Mixtral. †Scores obtained on a subset of 300 samples from RefCOCOg val-umd.

VLM VLM P@1 - val ↑ P@1 - val ↑ P@1 - test ↑
Adaptation (fine-tuning) (inference) (subset 300) (full) (full)

∅ (zero-shot VLM) ∅ GDrec 66.00† 67.61 68.37
LLM-wrapper Flo2 GDrec 74.00† ↑8.0 73.90 ↑6.3 73.45 ↑5.1
∅ (zero-shot VLM) ∅ Flo2 71.67† 67.91 66.16
LLM-wrapper GDrec Flo2 75.33† ↑3.7 73.86 ↑6.0 73.03 ↑6.9
∅ (zero-shot VLM) ∅ GD-1.5 47.67† — —
LLM-wrapper GDrec GD-1.5 76.67† ↑29.0 — —
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Table 6: LLM-wrapper performance on zero-shot dataset transfer. Results obtained with Llama 3 8B.
‘FT’ stands for ‘fine-tuning’. With †, Flo2 is fine-tuned using ‘a collection of public supervised data on a
wide range of downstream tasks’, including but not limited to RefCOCO/+/g (Xiao et al., 2024).

Adaptation VLM Fine-tuning Data Inference Data P@1 - val ↑ P@1 - test ↑
∅ (zero-shot VLM) Flo2 — HC-RefLoCo 48.04 47.39
White-box FT Flo2 RefCOCO/+/g† HC-RefLoCo 56.75 ↑8.7 55.62 ↑8.2
LLM-wrapper Flo2 RefCOCOg HC-RefLoCo 66.93 ↑18.9 66.45 ↑19.1
∅ (zero-shot VLM) Flo2 — RefCOCO 55.94 57.21
LLM-wrapper Flo2 RefCOCO RefCOCO 71.74 ↑15.8 71.91 ↑14.7
LLM-wrapper Flo2 RefCOCOg RefCOCO 69.00 ↑13.1 68.88 ↑11.7
∅ (zero-shot VLM) Flo2 — RefCOCO+ 53.31 54.26
LLM-wrapper Flo2 RefCOCO+ RefCOCO+ 62.63 ↑9.3 62.73 ↑8.5
LLM-wrapper Flo2 RefCOCOg RefCOCO+ 61.00 ↑7.7 61.07 ↑6.8

calls). To illustrate this use case, we use a RefCOCOg val subset corresponding to 300 free API calls to
GD-1.5. When LLM-wrapper is fine-tuned on GDrec’s outputs and applied on GD-1.5’s outputs
for inference, results are boosted by a significant +29.0 P@1. To ensure that the val-subset reflects the full
val set’s difficulty, we evaluate GDrec and Flo2 on both sets. The results are consistent, confirming
that the val-subset is a good proxy for the full set and that the performance gains from LLM-wrapper
on GD-1.5 are significant This showcases how LLM-wrapper can be used on private models or on
continuously updated versions of models without the need to re-train it with each model update.

Transferring a trained LLM-wrapper to new datasets. LLM-wrapper demonstrates strong gen-
eralization across datasets, reducing the need for training data and resources on new target domains.
To demonstrate this property, we adapt Flo2 with LLM-wrapper on RefCOCOg and evaluate it on
RefCOCO and RefCOCO+. Results in Table 6 show substantial gains over zero-shot Flo2, with improve-
ments up to +13.1 P@1 on RefCOCO and +7.7 P@1 on RefCOCO+. Although slightly below results from
direct fine-tuning on target datasets, these improvements demonstrate LLM-wrapper’s ability to transfer
knowledge effectively. To test generalization to more complex scenarios, we evaluate Flo2 adapted
with LLM-wrapper using RefCOCOg on HC-RefLoCo, a benchmark with no training split and longer,
more complex, referring expressions, with an average length of 84 words. LLM-wrapper achieves
+18.9 and +19.1 P@1 improvements on the validation and test sets, respectively, compared to zero-shot
Flo2. Interestingly, when white-box fine-tuned Flo2 is transferred to HC-RefLoCo, its performance
boost over zero-shot Flo2 is less than half of that achieved by LLM-wrapper. These results highlight
LLM-wrapper’s ability to handle in a zero-shot setting complex referring expressions despite being
fine-tuned on ten times shorter expressions. More details on the impact of input complexity on performance
are given in Appendix C.2. Qualitative examples on HC-RefLoCo are shown in Appendix E.1.

4.4 ABLATION STUDIES

Unless specified otherwise, we run ablations on RefCOCOg val-umd, using GD’s outputs and Llama 3 8B.

Impact of LLM scale. In Figure 4a, we report the P@1 REC performance (y-axis) for various LLM
sizes (x-axis). We observe that LLM-wrapper is effective across all model families, and that the gain
in performance positively correlates with the LLM size. Indeed, though the sub-billion model, GPT-Neo
139M, slightly boosts the P@1 performance of GD zero-shot (+2.2 P@1), this increase is only incremental
when compared to Llama 3 8B’s gains (+18.0 P@1). Further analysis shows a Pearson correlation of 0.88
between the LLM’s original performance on reasoning benchmarks, measured by the HellaSwag score
(Zellers et al., 2019), and REC performance (details in Appendix C.1). Overall, these findings demonstrate
that larger, more capable LLMs are substantially more effective, while smaller models offer only limited
improvements.

Robustness to hyper-parameters. In Figure 4b, we show that LLM-wrapper is not overly sensitive to
the value of the LoRA rank, which controls the number of fine-tuned parameters. In the explored range,
r∈{12,64,128,192}, corresponding to fine-tuning{0.41%, 2.15%, 4.20%, 6.18%} of total parameters,
the performance varies by only ±0.4 P@1. We provide a more in-depth analysis of the impact of the
number of fine-tuned parameters on performance in Appendix C.1. Similarly, we observe in Figure 4c that
LLM-wrapper is loosely sensitive to the learning rate choice for values in {10−6,5×10−6,10−5}. With
learning rate values higher that 10−5, we observe unstable training behaviors.
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Figure 4: Study of LLM-wrapper’s sensitivity to hyper-parameters. Impact on LLM-wrapper’s
performances (with GD on RefCOCOg) of the (a) LLM scale; (b) LoRA rank r; and (c) learning rate.

Ablation on the number of training samples. Figure 5 displays the P@1 REC performance on RefCOCOg
val with respect to the number of training samples, when fine-tuning Llama 3 8B on RefCOCOg train. It
shows a sharp increase in P@1 for all VLMs (most impressive for GD) during the first 30k samples, which
takes ∼2h of training in our setting. Thus, even with a restricted amount of samples, LLM-wrapper
can boost performances. In the extreme case of no training samples for the LLM, i.e., a zero-shot LLM,
we observe on Table 7 that in most settings the VLM and the VLM + zero-shot LLM have very similar
results. This follows the observation that, while LLMs have an extensive general knowledge, they may lack
off-the-shelf reasoning (Kazemi et al., 2023; Fu et al., 2024).

0K 20K 40K 60K 80K 100K 120K
# of fine-tuning samples

58

62

66

70

74

78

P@
1 GD + zero-shot LLM

GD + LLM-wrapper
GDrec + zero-shot LLM
GDrec + LLM-wrapper
Flo2 + zero-shot LLM
Flo2 + LLM-wrapper

Figure 5: Performance (P@1) of LLM-wrapper on
RefCOCOg (val) with respect to the number of training
samples. We fine-tune Llama 3 8B on RefCOCOg (train).

P@1-val↑ P@1-test↑

VLM VLM
only

+ LLM
zero-shot

VLM
only

+ LLM
zero-shot

GD 60.09 58.05 59.32 58.47
GDrec 67.61 67.48 68.37 68.17
GD-1.5 47.67† 59.00† — —
Flo2 67.91 67.69 66.16 66.44

Table 7: Results of wrapping the VLM’s
outputs with a zero-shot LLM. ‘VLM only’
are the scores of the VLM without any adap-
tation, and ‘+ LLM zero-shot’ corresponds to
LLM-wrapper without any fine-tuning of
the LLM (Llama 3 8B here). † see Table 5.

5 CONCLUSION

This work introduces LLM-wrapper, a simple approach for the black-box adaptation of VLMs to
the REC task, that leverages an LLM to reason on VLMs’ outputs, translated into natural language. We
demonstrate that LLM-wrapper significantly boosts the performance of VLMs, for several combinations
of LLMs and VLMs, and, in some settings, even bridges the gap to classic fine-tuning. We also show
how LLM-wrapper can ensemble predictions from different VLMs to leverage their respective strengths
and how it can transfer across VLMs and to out-of-domain datasets. Thanks to efficient and well-studied
methods for LLM fine-tuning, LLM-wrapper is simple to use in practice, requiring limited hyper-
parameter tuning, and computationally efficient. Future works include relying on fewer examples to
fine-tune LLM-wrapper, and applying LLM-wrapper to different tasks, such as text-video retrieval
(Fang et al., 2021).

Limitations. LLM-wrapper comes with some limitations. First, an additional inference cost is intro-
duced by integrating LLM reasoning on VLM outputs. Second, the effectiveness of LLM-wrapper
relies on the quality of the underlying VLM since diverse and accurate bounding boxes are crucial for
success. Third, bounding box information alone (box coordinates and labels) may not be sufficient for
LLM-wrapper to ‘understand’ the scene in some cases. Examples are shown in Appendix E.2. To
address this issue, a promising direction is to enhance LLM-wrapper by using the LLM to identify
missing visual information and suggest augmented queries for the VLM. This would help disambiguate
cases where additional visual cues are needed.
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A ADDITIONAL RESULTS: LLM-WRAPPER ON ALREADY REC-TUNED VLMS

We explore the use of LLM-wrapper on VLMs that are already optimized to deal with the REC task.
This supplementary experiment aims to confirm whether LLM-wrapper is compatible with pre-existing
REC-specific adaptations. Our analysis includes VLMs from our main experiments after white-box fine-
tuning on REC data i.e., GD SwinB, GDrec SwinB and Flo2 fine-tuned. We also include an additional
VLM, Kosmos-2 (Peng et al., 2023), that is directly designed to ground referring expressions. For each
candidate VLM, we compare P@1 scores, with and without additional LLM-wrapper adaptation using
RefCOCOg-train (umd) data. The evaluation is made on RefCOCOg val-umd and test-umd and results are
shown in Table 8.

Table 8: Results of LLM-wrapper on the REC task, when applied to already REC-adapted VLMs,
in P@1↑. ‘FT’ stands for ‘fine-tuning’ and ‘(B)’ for the ‘SwinB’ backbone. † marks results
directly taken from Contrastive Region Guidance (CRG) paper (Wan et al., 2024).

RefCOCOg
Adaptation VLM LLM val-umd test-umd

White-box FT GD(B) N/A† 66.30†

White-box FT + CRG (Wan et al., 2024) GD(B) N/A† 69.60† ↑3.30
White-box FT GD(B) 78.51 77.99
White-box FT + LLM-wrapper GD(B) Mixtral 82.31 ↑3.80 82.15 ↑4.16
White-box FT + LLM-wrapper GD(B) Llama3 82.76 ↑4.25 82.61 ↑4.62
White-box FT GDrec(B) 80.19 79.85
White-box FT + LLM-wrapper GDrec(B) Mixtral 82.58 ↑2.39 81.95 ↑2.10
White-box FT + LLM-wrapper GDrec(B) Llama3 81.66 ↑1.47 81.47 ↑1.62
White-box FT Flo2 FT 90.32 91.02
White-box FT + LLM-wrapper Flo2 FT Mixtral 90.40 ↑0.08 90.92 ↓0.10
White-box FT + LLM-wrapper Flo2 FT Llama3 90.50 ↑0.18 91.03 ↓0.01
Designed for REC Kosmos-2 60.60 61.41
Designed for REC + LLM-wrapper Kosmos-2 Mixtral 62.03 ↑1.43 62.59 ↑1.18
Designed for REC + LLM-wrapper Kosmos-2 Llama3 62.09 ↑1.49 62.39 ↑0.98

While the performance gains are modest — an expected outcome as the VLMs are already adapted and
optimized for the REC task —, it is important to note that LLM-wrapper avoids degrading performances
by any significant value and, in some cases, achieves a slight improvement of up to +4.6 P@1. These
results highlight the compatibility of LLM-wrapper with any state-of-the-art VLM, whether previously
fine-tuned on REC data or not.

Evaluating LLM-wrapper, when applied to GD SwinB, also allows for direct comparison with related
work Contrastive Region Guidance (CRG) (Wan et al., 2024), mentioned in Section 2. As shown in the
first 5 rows of Table 8, LLM-wrapper displays both higher final scores and bigger score boosts than
CRG on RefCOCOg test set, while remaining fully black-box and requiring a single VLM inference per
input (text query, image) pair.

B EVALUATING LLM-WRAPPER ON REFERRING EXPRESSION SEGMENTATION

We explore the use of LLM-wrapper on Referring Expression Segmentation (RES). This task, closely
related to REC, consists in outputting a segmentation mask — instead of a bounding box — based on a
(text query, image) input pair. Following Ren et al. (2024b), we use Segment Anything (SAM) (Kirillov
et al., 2023) to convert predicted bounding boxes into segmentation masks. As for metrics, we follow
Kazemzadeh et al. (2014); Mao et al. (2016); Lai et al. (2024) and compute cIoU (cumulative intersection
over cumulative union on all referring expressions) and gIoU (average of referring expression-based IoUs,
which is less biased in favor of large objects). This experiment aims to extend LLM-wrapper to new
visual tasks, beyond REC. Moreover, the use of IoU-based metrics (instead of P@1 in REC) further tests
the robustness of our predicted outputs.
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Table 9: Results of LLM-wrapper on the Referring Expression Segmentation (RES) task,
in cIoU/gIoU↑, alongside SOTA RES-specific models. ‘FT’ stands for ‘fine-tuning’, ‘(T)’ and
‘(B)’ for the ‘SwinT’ and ‘SwinB’ backbones. † indicates results directly taken from cited
papers. Finally, ‘SAM’ indicates the use of Segment Anything (Kirillov et al., 2023) to convert bounding
boxes into segmentation masks.

RefCOCOg (umd)
cIoU gIoU

Method VLM LLM val test val test

LISA-7B FT (Lai et al., 2024) 67.9† 70.6† N/A N/A
GLaMM (Rasheed et al., 2024) 74.2† 74.9† N/A N/A

Zero-shot VLM + SAM GD(T) 40.90 41.37 50.56 50.46
Zero-shot VLM + LLM-wrapper + SAM GD(T) Mixtral 57.80 ↑16.9 58.00 ↑16.6 64.71↑14.2 65.01↑14.6
Zero-shot VLM + LLM-wrapper + SAM GD(T) Llama3 57.86 ↑17.0 58.59 ↑17.2 65.12↑14.6 65.42↑15.0
White-box FT + SAM GD(B) 57.93 58.53 65.62 65.96
White-box FT + LLM-wrapper + SAM GD(B) Mixtral 62.42 ↑4.5 63.39 ↑4.9 68.54 ↑2.9 69.04↑3.1
White-box FT + LLM-wrapper + SAM GD(B) Llama3 62.44 ↑4.5 63.84 ↑5.3 68.81↑3.2 69.41↑3.5
Zero-shot VLM + SAM Flo2 48.12 47.04 57.24 56.19
Zero-shot VLM + LLM-wrapper + SAM Flo2 Mixtral 59.38 ↑11.3 58.49↑11.5 66.17↑8.9 65.59↑9.4
Zero-shot VLM + LLM-wrapper + SAM Flo2 Llama3 59.53↑11.4 59.58 ↑12.5 66.07↑8.8 66.00↑9.8
White-box FT + SAM Flo2 FT 70.73 72.61 74.81 75.93
White-box FT + LLM-wrapper + SAM Flo2 FT Mixtral 70.81 ↑0.1 72.50↓0.1 74.87↑0.1 75.89↓0.04
White-box FT + LLM-wrapper + SAM Flo2 FT Llama3 70.92 ↑0.2 72.61 74.96↑0.2 75.94↑0.01

In Table 9, we show results of LLM-wrapper and of SOTA RES-specific methods — pixel grounding
Large Multimodal Models (LMMs). The latter approach integrates image encoding information into
LMMs, using vision-language projections and vocabulary augmentation with specialized tokens related to
segmentation masks (Lai et al., 2024) or image region encodings (Rasheed et al., 2024). They are designed
and trained, in a white-box end-to-end manner, to output fine-grained segmentation masks. Contrasting
with this approach, LLM-wrapper is a model-agnostic black-box adaptation framework that emphasizes
object-level reasoning. Table 9 shows that LLM-wrapper improves cIoU/gIoU scores in almost all
cases, in accordance with our REC results in Table 3 and Table 8. Note that LLM-wrapper’s RES
scores depend on the VLM being adapted and on SAM’s box-to-mask conversion performance.

C ADDITIONAL ABLATIONS ON POSSIBLE VARIABLES IMPACTING
PERFORMANCES

C.1 IMPACT OF THE NUMBER OF FINE-TUNED PARAMETERS ON PERFORMANCE

Our ablation study on LoRA’s rank r, presented in Figure 4b, shows the P@1 variations for different r
values. As the number of trainable parameters scales linearly with LoRA’s rank r, this analysis highlights
how trainable parameters count impacts performance. To ablate more precisely this aspect, we analyze
the impact of the number of fine-tuned parameters on the P@1 performance in Table 10. In this table,
we also report the original performance of the respective LLMs on the standard MMLU benchmark
(Hendrycks et al., 2021) and HellaSwag (Zellers et al., 2019), a benchmark for LLM commonsense
reasoning evaluation. As part of our analysis, we also compute the Pearson correlation between the P@1
scores and other variables from Table 10 and summarize results in Table 11.

Table 11 shows that the absolute number of fine-tuned parameters has only a loose correlation with
performance (pearson=-0.07). This supports findings from Table 10 showing the limited impact of the
number of fine-tuned parameters, such as:

• Variations in LoRA’s rank r do not have a large effect on the P@1 score of Llama3 8B on
RefCOCOg (cf Table 10, rows 1 to 4).

• Llama3 8B (r=64, 176M trainable parameters) and Mixtral 8×7B (r=128, 114M trainable
parameters) yield very similar P@1 scores (77.72 vs. 77.57), despite Llama3 8B fine-tuning
a much higher percentage (2.15% vs. 0.24%) of parameters. The similarity of results, despite

16



Published as a conference paper at ICLR 2025

Table 10: Impact of the number of trainable parameters on the performances of GD adapted by
LLM-wrapper and evaluated on RefCOCOg.

Trainable Total Trainable P@1 LLM LLM
LLM Rank (r) params params params % (val splits) MMLU HellaSwag
Llama3 8B 12 33M 8.1B 0.41 % 77.84 66.6 82
Llama3 8B 64 176M 8.2B 2.15% 77.72 66.6 82
Llama3 8B 128 352M 8.4B 4.20 % 78.12 66.6 82
Llama3 8B 192 529M 8.6B 6.18% 77.70 66.6 82
Mixtral 8x7B 128 114M 46.8B 0.24 % 77.57 70.6 84.4
Gemma-2 9B 128 465M 9.7B 4.79 % 74.12 71.3 81.9
Gemma-2 2B 128 199M 2.8B 7.08 % 70.51 52.2 72.9

Table 11: Pearson Correlation with LLM-wrapper’s P@1 for various variables.

Variable Pearson Correlation with P@1
LLM Total Params (count) 0.33
LLM Trainable Params (count) -0.07
LLM Trainable Params (%) -0.64
LLM MMLU score 0.72
LLM HellaSwag score 0.88

different fine-tuning settings, could then be due to architectural differences, with Mixtral being a
Mixture of Experts model.

• Gemma-2 9B (r=128, 465M trainable params) underperforms compared to Llama3 8B (r=64,
176M trainable params), even though its setting includes fine-tuning more than double the number
of parameters.

These findings suggest that the architecture of the LLM and training specifics may have more influence on
performances. Furthermore, our analysis finds a strong correlation between LLM-wrapper’s P@1 scores
and the LLM’s performances on reasoning tasks, with a Pearson correlation of 0.88 with HellaSwag. In
conclusion, the number of fine-tuned parameters has a small impact, but the LLM’s architecture and original
performance on reasoning tasks play a more significant role on LLM-wrapper’s REC performance.

C.2 IMPACT OF INPUT COMPLEXITY ON LLM-WRAPPER’S PERFORMANCE
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(b) Number of candidate boxes.
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(c) Box label redundancy.
Figure 6: Study of LLM-wrapper’s sensitivity to input complexity. LLM-wrapper’s performance
in P@1 on subsets of the data with varying levels of complexity, coming from the query (number of noun
groups in the query) or the box listing in the prompt (number of candidate boxes and box label redundancy,
defined as the highest number of boxes with the same label detected for a query). LLM-wrapper is
used with Flo2 and subsets are aggregated from RefCOCO/+/g and Talk2Car val sets.

In Figure 6, we aggregate results from RefCOCO/+/g and Talk2Car val sets to show LLM-wrapper’s
P@1 scores on different data subsets. These subsets are split based on varying levels of input complexity,
with respect to the number of noun groups in the query (Fig. 6a), the number of candidate boxes in the
prompt (Fig. 6b) and the redundancy of box labels (Fig. 6c). We first study in Figure 6a, LLM-wrapper’s
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P@1 performances when the the number of noun groups1 increases. For both Llama 3 8B and Mixtral,
we see that LLM-wrapper is robust to, and even benefits from, increasing textual complexity, with
stable scores around 67 P@1 for 0 to 9 noun groups, and 100 P@1 for 10 to 11 noun groups. We then
display in Figure 6b how performance evolves with respect to the number of boxes listed in the prompt.
LLM-wrapper is robust to an increasing number of candidates, with a P@1 around 66 for 2 to 15
boxes, and only a few performance variations for more than 8 boxes. Finally, we test a finer-grained
notion of box label redundancy, defined as the highest number of boxes with the same label detected for a
query. Figure 6c shows how performance changes based on this redundancy. For both Llama 3 8B and
Mixtral, a clear decreasing tendency is observed on the performance as more boxes share a same label,
in particular when that is the case for more than 6 boxes. This study indicates that LLM-wrapper is
robust to increasing levels of input query and box listing complexity, as long as the detected boxes display
diversified labels.

D FAILURE CASE ANALYSIS

A failure case arises when the LLM does not succeed in producing the index of a candidate bounding box
as output. This happens if the LLM outputs a non-integer value or an integer that is out of range with
respect to the candidate boxes’ list. However, these issues are very rare. In our experiments, a fine-tuned
LLM-wrapper shows 0% of non-integer output instances, and only the issue of out of range integer
generation remains. In Table 12, we report the percentage of instances where the output integer is out
of range, when Flo2 is adapted with LLM-wrapper, using Mixtral or Llama 3 8B. We observe that
such issues occur in less than 0.3% of instances. In these rare cases, we use a simple fallback strategy: the
best-ranked box from the zero-shot VLM is used as prediction. For qualitative examples of failure cases due
to reasoning issues, rather than generation issues, intuitions and visualizations are given in Appendix E.2.

Table 12: Percentages of out of range integer generation when using LLM-wrapper on Flo2.
† indicates that results are obtained while using a transferred LLM-wrapper, trained on RefCOCOg.

RefCOCOg RefCOCO RefCOCO+ Talk2Car HC-RefLoCo
Method LLM val test val test val test val test val test
LLM-wrapper Mixtral 0.04% 0.03% 0.01% 0% 0.02% 0.03% 0% 0% — —
LLM-wrapper Llama3 0% 0% 0.30% 0.22% 0.06% 0.09% 0% 0% 0%† 0%†

E ADDITIONAL QUALITATIVE EXAMPLES

In this section, we use LLM-wrapper with Flo2 and a Llama3 8B fine-tuned on RefCOCOg data.

E.1 QUALITATIVE SUCCESS CASES ON COMPLEX QUERIES

We show qualitative examples of LLM-wrapper’s successes against white-box fine-tuned Flo2 on
HC-RefLoCo in Figure 7 and Figure 8. In these examples, LLM-wrapper is able to properly process
more than 10 candidate boxes, aligned with long and complex queries, to identify the correct box, while
white-box fine-tuned Flo2 is predicting distractor objects.

E.2 QUALITATIVE FAILURE CASES

We display qualitative examples of LLM-wrapper’s failures against zero-shot Flo2 on RefCOCOg.
In particular, as mentioned in Section 5, the main failure case of LLM-wrapper occurs when bounding
box coordinates and labels alone are insufficient to ground certain expressions that require additional visual
cues. We give various examples showing this type of failure in Figure 9. For instance, LLM-wrapper is
missing visual information on the zebra’s head direction in Fig. 9a, on the relative position of the curtains
and chairs in Fig. 9b and on the position of each person with respect to the camera in Fig. 9c.

1Noun groups in text queries are identified using Spacy’s noun chunksmethod (Honnibal et al., 2020).
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Query: “This individual appears to be a woman with long, straight blonde hair that drapes over her right shoulder.
She is wearing a light-colored, possibly cream or pale yellow blazer. The woman is engaged in an activity where she is
bringing a clear glass, which she holds in her right hand, towards her mouth as if to take a sip of a beverage. Her left
hand is not visible in the image. She is positioned on the far left in the group of people captured in the photograph.”

(a) Ground truth (b) All 13 candidates from Flo2

(c) Final pred. of LLM-wrapper (d) Final pred. of fine-tuned Flo2

Figure 7: First qualitative result of LLM-wrapper tuned on RefCOCOg, evaluated on HC-RefLoCo.
LLM-wrapper takes multiple candidates from zero-shot Flo2 as inputs (in orange in Fig. 7b) to identify
the best box (in blue, in Fig. 7c), while white-box fine-tuned Flo2 fails (in red in Fig. 7d).

Query: “The individual is a middle-aged man with short, dark hair, appearing startled or comically alarmed. He is
wearing a pale dress shirt and is positioned as if emerging from a mirror, with his left side showing.”

(a) Ground truth (b) All 10 candidates from Flo2

(c) Final pred. of LLM-wrapper (d) Final pred. of fine-tuned Flo2

Figure 8: Second result of LLM-wrapper evaluated on HC-RefLoCo. Same legend as Figure 7.
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(a) Query: “Zebra whose head is not
facing down.”

l

(b) Query: “Chair without the curtain
on it”

l

(c) Query: “A man with his back
turned toward the camera, enjoying a

conversation with a friend.”

Figure 9: Visualizations on RefCOCOg of LLM-wrapper’s main failure case. LLM-wrapper’s
predictions are in blue vs. zero-shot Flo2’s predictions in orange. In these three examples, LLM-
wrapper fails to identify the best candidate box as coordinates and labels are not providing enough visual
cues for the LLM to choose correctly. For instance, LLM-wrapper is missing visual information on
the zebra’s head direction (Fig. 9a), on the relative position of the curtains and chairs (Fig. 9b) and on the
position of each person with respect to the camera (Fig. 9c).

Going beyond LLM-wrapper’s main failure scenario, we add visualizations of corner failure cases in
Figure 10. They illustrate possible issues hindering the LLM’s reasoning, i.e., when no proper candidate
box is identified by the zero-shot VLM in the first place (Fig. 10a), when the VLM fails to detect important
contextual objects, necessary to ‘perceive’ the scene and localize the object of interest (Fig. 10b), when rich
candidate boxes exist but without adequate labels (Fig. 10c).

(a) Query: ‘Black and white dog with
pointy ears.’

l

(b) Query: ‘Dark chicken closest to
the fence.’

l

(c) Query: ‘The head and shoulders
and one leg of a goat closest to the
dog.’

Figure 10: Visualizations of three corner failure cases of LLM-wrapper on RefCOCOg. As we use
LLM-wrapper to adapt a zero-shot Flo2, we show on the first row in orange, for each sample, the
respective Flo2’s candidate boxes that LLM-wrapper takes as inputs. In the second row, we visualize
the prediction of LLM-wrapper in blue, chosen among Flo2’s candidates, as well as the ground truth
box. We observe that the LLM reasoning can be hindered if candidate boxes are missing the object of
interest (the correct dog in Fig. 10a), necessary contextual objects (the fence in Fig. 10b) or proper labels
(goats are detected but not properly labeled in Fig. 10c, bringing confusion with respect to the scene
description).
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