
A Datasets

A.1 Shapes3d

Shapes3d is a dataset (see Burgess and Kim (2018) and the Tensorflow Datasets package) consisting
of 64× 64× 3 RGB images of objects having six independent features (floor color, wall color, object
color, scale, shape, and orientation), see Figure 2. In this paper, we use four shapes (cube, cylinder,
sphere, and rounded cylinder) and four object colors (red, orange, yellow, and green), totaling 192000
images.

A.2 Obverter

The obverter dataset (Bogin et al. (2018)) is available at the following address: https://github.
com/benbogin/obverter. The original dataset consists of 128× 128× 3 RGB images of objects
having eight colors and five shapes. In this paper, we used four colors (blue, cyan, gray, green) and
four shapes (box, cylinder, ellipsoid, sphere), see Figure 2. We have generated 1000 samples for each
color-shape combination using a generation script available at the dataset repository, hence the total
number of images is 160000. Since the qualitative results were similar, and in the interest of brevity,
we report results for the obverter only for the main experiment (Appendix D.1).

B Experimental setup

B.1 Architecture

The network consists of three main parts: the sender, the receiver, and the noisy discrete channel
between them see Figure 8. The sender network consists of two convolutional layers (with 8 filters,
kernel 3× 3, stride 1, and elu activation function), each coupled with a 2× 2 max pool layer with
stride 2. The last max pool layer’s output is passed through two dense layers (with 64 neurons and
elu activation) and a linear classifier with softmax for each symbol. The noisy channel layer consists
of a dense layer with |As| neurons, a fixed weights matrix, and a log activation function. This is
followed by a Gumbel softmax layer. The receiver network takes two encoded symbols as input and
concatenates them to obtain one input vector s. Consequently, s and 1− s are passed to the dense
layers, the result is summed up and processed by the elu activation function and two dense layers
(similarly to Kaiser and Bengio (2018)). There are two linear classifiers with a softmax layer at the
output: one for the shape and one for the color. Each dense layer in the receiver has 64 neurons.

B.2 Hyperparameters and training

For training, we used λKL = 0.01, λl2 = 0.0003, an Adam optimizer (with β1 = 0.9, β2 = 0.999),
learning rate 0.0001, and a batch size of 64. The same set of hyperparameters was used for all
the experiments. The hyperparameters were chosen on the original obverter dataset available at
the repository referenced in Appendix A.2. We used a grid search over parameters: learning rate
(1e− 2, 1e− 3, 1e− 4, 3e− 4), kl regularization coefficient (1e− 1, 1e− 2, 2e− 2, 3e− 2, 1e−
3, 3e−3, 5e−3, 1e−4), the number of CNN’s filters (8, 16), the CNN’s filter sizes (3×3, 5×5), the
sender’s embedding size (32, 64), l2 regularizer weight (1e−2, 1e−3, 3e−3, 1e−4, 3e−4, 1e−6),
and the number of neurons in receiver’s dense layers (32, 64).

Each experiment was run on 100 seeds and had 200000 network updates. The dataset was split into
the training set (90% of the total) and on the test set (remaining 10% of the dataset). The evaluation
was done every 2000 updates on the test set.

B.3 Infrastructure used

The typical configuration of a computational node used in our experiments was: the Intel Xeon
E5-2697 2.60GHz processor with 128GB memory. On a single node, we ran 4 or 5 experiments at the
same time. A single experiment (single seed) takes about 5 hours. We did not use GPUs; we found
that with the relatively small size of the network (see Appendix B.1) it offers only slight wall-time
improvement while generating substantial additional costs.
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Figure 8: The architecture of the neural network. Here |As| = 5.

C Training pipeline

C.1 Detailed derivation

The dataset of images observed by the sender is denoted byD. Each element ofD has K independent
features f1, . . . , fK (here we consider K = 2). Both the sender and the receiver are modeled as
neural networks (sθ and rψ, respectively; for details see Appendix B). The sender network takes an
image from D as input and returns a distribution over the space of messages of length L (here we
assume L = K = 2). We assume that conditionally on the image, the symbols in the message are
independent and take values in a finite alphabet As = {1, . . . , ds}. We furthermore assume, that
features are enumerated with Af = {1, . . . , df} and the receiver’s alphabet is Ar = {1, . . . , dr}.
Formally, sθ(img) = (siθ(img))Ki=1, where siθ(img) = (sij,θ(img))dsj=1 ∈ P(As)

8 represents the
probability distribution corresponding to the ith symbol. Define a function noise : P(As)→ Rds
as follows:

noise(x) = log(Wx), (4)
where W ∈ Rds×ds is a fixed matrix, such that Wx > 0 and Wx ∈ P(As), for any x ∈ P(As)

9.
The second condition on W is satisfied, for instance, by a family of stochastic matrices; several

examples are also given at the end of this section. In this paper, we use W defined as

Wij =

{
1− ε, i = j,
ε

ds−1 , i 6= j.

Let ŝiθ(img) denote the logits of ith symbol distribution which passes through the noisy channel:

ŝiθ(img) = noise(siθ(img)).

Suppose further that gi = (gi1, . . . , g
i
ds

) is a vector of i.i.d. Gumbel(0, 1) random variables and define
the following functions:

gumbel sample(x; g) = arg max
i

(xi + gi),

gumbel softmax(x; τ, g)i =
exp((xi + gi)/τ)∑k
j=1 exp((xj + gj)/τ)

.

8P(A) = {p ∈ R|A| : pi ≥ 0,
∑
i∈A pi = 1}.

9We could also define noise for all x ∈ Rm, for some m, by first applying softmax to x, and then using
equation 4.

16



Let

m̂i = gumbel softmax(ŝiθ(img); τ, gi) ∈ Rds .

The receiver neural network is denoted as rψ(m) = (riψ(m))Ki=1, where riψ(m) = (rij,ψ(m))dj=1 ∈
P(Ar) represents the probability distribution on Ar, corresponding to the ith feature.

In the Straight-Through mode (see Jang et al. (2016)), rψ takes m̂ as input half of the time, and the
remaining half of the time, it takes m̃. Here

m̃ = stop gradient(m− m̂) + m̂,

mi = one hot(ωi) ∈ Rds ,
ωi = gumbel sample(siθ(img); gi) ∈ Ads ,

i.e. (ω1, . . . , ωK) is a sampled noisy message. The neural networks are trained using the following
loss function:

L = Lxent + λKLLKL + λl2Ll2 .
The cross-entropy loss is defined as

Lxent = −E(img,f1,...,fK)∼D

[
K∑
i=1

log rfi,ψ(m̃(img))

]
.

Furthermore, LKL = Ex∼D
[∑K

i=1 KL(U(As)||siθ(x))
]

and Ll2 = ||θ||2 + ||ψ||2, where U(As)
denotes the uniform distribution of As. The KL loss incentives the language to be a one-to-one
mapping.

C.2 Alternative noise architecture

The above implementation of noise is not the only one possible. We can apply noise after the message
is formed. Denote the uncorrupted sender’s message

mi = gumbel softmax(log siθ(img); τ, gi) ∈ Rds .

Further, let ρi be uniformly sampled random permutations ofAs and εi are Bernoulli random variables
such that P(εi = 1) = ε = 1− P(εi = 0), with ε > 0. We define the noise matrices

Ni = εiP
ρi + (1− εi)I,

where P ρi is the permutation matrix corresponding to ρi and I is the identity matrix. The corrupted
message is then given by

m̂i = Nimi.

Above we assume that m̂i,mi is encoded in the one-hot vector form ∈ Rds . We note that this
particular implementation of the noise has the advantage of being differentiable using the standard
autograd methods.10

D Detailed results

Each experiment was run on 100 seeds. When presenting results we give 95%-confidence intervals,
bootstrapped using 4000 resamples.

D.1 Main experiment

The results for the shapes3d dataset are is visualized in Figure 9 (which is the copy of Figure 4 placed
here for convenience), and numerical results are summarized in Table 1. Similarly, for the obverter
dataset, the results can be found in Figure 10 and in Table 2. From the qualitative perspective, the
results for the obverter dataset are similar to the ones obtained for the shapes3d dataset. Having said

10We cannot differentiate the random sampling of ρi, εi but we can differentiate multiplication with respect to
Ni.
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that, we can see that overall the metrics are more stable (resulting in narrower confidence intervals),
the best performing noise level is slightly different (0.12), and the density evolution of topo across
different noise levels appears to be smoother.

Figure 9: Shapes3d dataset. Top panel: average value of metrics for various noise levels. The shaded area
corresponds to bootstrapped 95%-confidence intervals. Bottom panel: kernel density estimators for metrics and
noise levels across seeds. Here topo stands for topographic similarity, conf for conflict count, cont for context
independence, pos for positional disentanglement and acc for accuracy.

Figure 10: Obverter dataset. Top panel: average value of metrics for various noise levels. The shaded area
corresponds to bootstrapped 95%-confidence intervals for this estimator. Bottom panel: kernel density estimators
for metrics and noise levels across seeds. Bottom panel: kernel density estimators for metrics and noise levels
across seeds. Here topo stands for topographic similarity, conf for conflict count, cont for context independence,
pos for positional disentanglement and acc for accuracy.

As observed in Section 5.1, there is an interesting and non-trivial interplay between compositionality
and accuracy. In Figure 11 we visualize topographic similarity behavior when conditioned on
experiments with high accuracy (for shapes3d; for the obverter see Figure 12). We can see an increase
in the metrics values across all noise levels with the increase of accuracy. For example, for noise 0.1
and threshold 0.85, topo equals 0.91, four percentage points higher than for unconditional case. We
can see that increasing the threshold also strengthen the impact of noise on compositionality (which
can be seen by increasing the profile of topo plots). Additionally, the count curves for smaller noises
dominate the ones for higher noises. Notice, however, that the number of experiments exceeding
some accuracy threshold declines as the threshold increases. For example, there are 80 experiments
with noise level 0.1 exceeding the threshold of 0.85 accuracy, but only 4 with noise level 0.3. This
implies that conclusions for high accuracy thresholds should be treated with care.
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Figure 11: Shapes3d dataset. Top left: The values of topo computed for each noise level (hues) and on seeds
exceeding a certain accuracy threshold (x-axis). Vertical dashed lines represent three cross-sections, visualized
in the bottom panel. Top right: Similar to the left panel, but instead of topo we visualize the number of seeds with
accuracy at least as a given threshold (x-axis). Vertical dashed lines represent three cross-sections, visualized in
the bottom panel. Bottom: Each of the plots represents a cross-section of the plots in the top panel, taken at
points 0.80, 0.85, and 0.90, respectively. On the left axis of each figure is the range of topo, whereas on the right
axis is the number of seeds with accuracy exceed the corresponding level. On the x-axis are the noise levels.
The scatter plot with 95%-confidence intervals represents the values of topo. The gray dashed line represents the
number of seeds with accuracy exceeding a given threshold, for each of the noise levels.

Figure 12: Obverter dataset. Top left: The values of topo computed for each noise level (hues) and on seeds
exceeding a certain accuracy threshold (x-axis). Vertical dashed lines represent three cross-sections, visualized
in the bottom panel. Top right: Similar to the left panel, but instead of topo we visualize the number of seeds with
accuracy at least as a given threshold (x-axis). Vertical dashed lines represent three cross-sections, visualized in
the bottom panel. Bottom: Each of the plots represents a cross-section of the plots in the top panel, taken at
points 0.80, 0.85, and 0.90, respectively. On the left axis of each figure is the range of topo, whereas on the right
axis is the number of seeds with accuracy exceed the corresponding level. On the x-axis are the noise levels.
The scatter plot with 95%-confidence intervals represents the values of topo. The gray dashed line represents the
number of seeds with accuracy exceeding a given threshold, for each of the noise levels.

For the main experiment, we also provide pair-plots for all metrics and three noise levels: 0.0, 0.1,
and 0.2, see Figure 13 and Figure 14 for the shapes3d and the obverter datasets, respectively. It shows
the Spearman correlation between metrics, broken down to noise levels (color-coded circles in the
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upper triangle of the grid) as well as for the entire group (white circle in the upper triangle of the
grid). We can see in Figure 13 that the metrics are highly correlated (the negative correlation with
conflict count follows by definition of the metric, see Section 4.5). For zero-noise (blue color), we
see that accuracy is high irrespective of the compositionality metrics, resulting in an almost vertical
line. Looking at the topo-acc cell, we can see that for mediocre accuracy values, the noise level
0.2 (yellow color) tends to score higher in topo metrics than the noise level 0.1 (green color). This
relation reverses for accuracy values closer to 1.0. For topo-conf and topo-pos cells, we see a visible
linear correlation, with the effect weakening slightly for higher noise levels. At the topo-cont cell, a
lot of the mass of all noise levels is occupied in the center, but the noise level 0.1 more frequently
stays in the upper right corner. Similar observations can be done for Figure 14.

Figure 13: Shapes3d dataset. The lower triangle of the grid: color-coded scatter plot for experiments with
different noise levels. The upper triangle of the grid: visualization of Spearman correlation between metrics. The
large circle with white fill shows the correlation of metrics value without a split into noise levels. The smaller
color-coded circles represent the in-group correlation. Diagonal: kernel density estimators for each metric and
noise level. Here topo stands for topographic similarity, conf for conflict count, cont for context independence,
pos for positional disentanglement and acc for accuracy.
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Figure 14: Obverter dataset. The lower triangle of the grid: color-coded scatter plot for experiments with
different noise levels. The upper triangle of the grid: visualization of Spearman correlation between metrics. The
large circle with white fill shows the correlation of metrics value without a split into noise levels. The smaller
color-coded circles represent the in-group correlation. Diagonal: kernel density estimators for each metric and
noise level. Here topo stands for topographic similarity, conf for conflict count, cont for context independence,
pos for positional disentanglement and acc for accuracy.
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noise topo conf cont pos acc

0.00 0.79
[0.76, 0.82]

4.08
[3.21, 4.94]

0.168
[0.161, 0.175]

0.57
[0.51, 0.63]

0.97
[0.96, 0.98]

0.02 0.80
[0.78, 0.82]

4.26
[3.46, 5.08]

0.166
[0.160, 0.172]

0.52
[0.47, 0.58]

0.98
[0.98, 0.98]

0.04 0.80
[0.77, 0.82]

4.78
[3.92, 5.64]

0.165
[0.159, 0.171]

0.51
[0.45, 0.57]

0.95
[0.93, 0.96]

0.06 0.84
[0.81, 0.86]

3.31
[2.52, 4.15]

0.173
[0.167, 0.179]

0.62
[0.57, 0.68]

0.93
[0.90, 0.95]

0.08 0.86
[0.83, 0.88]

3.22
[2.40, 4.06]

0.179
[0.173, 0.184]

0.66
[0.60, 0.73]

0.91
[0.88, 0.93]

0.10 0.87
[0.84, 0.90]

3.49
[2.64, 4.41]

0.183
[0.177, 0.188]

0.69
[0.63, 0.76]

0.89
[0.87, 0.92]

0.12 0.87
[0.84, 0.89]

3.58
[2.71, 4.47]

0.184
[0.179, 0.189]

0.69
[0.62, 0.75]

0.88
[0.86, 0.90]

0.14 0.85
[0.83, 0.88]

3.99
[3.16, 4.87]

0.180
[0.175, 0.186]

0.67
[0.60, 0.73]

0.87
[0.85, 0.89]

0.16 0.84
[0.82, 0.87]

4.49
[3.66, 5.36]

0.180
[0.174, 0.185]

0.67
[0.61, 0.73]

0.84
[0.82, 0.87]

0.18 0.81
[0.79, 0.84]

5.63
[4.78, 6.52]

0.171
[0.164, 0.177]

0.62
[0.56, 0.68]

0.80
[0.77, 0.82]

0.20 0.80
[0.77, 0.82]

6.32
[5.45, 7.22]

0.166
[0.159, 0.173]

0.60
[0.54, 0.66]

0.75
[0.72, 0.78]

0.22 0.78
[0.76, 0.81]

6.78
[5.97, 7.64]

0.165
[0.158, 0.172]

0.62
[0.56, 0.68]

0.71
[0.68, 0.74]

0.24 0.77
[0.75, 0.79]

7.01
[6.24, 7.83]

0.163
[0.156, 0.169]

0.62
[0.57, 0.68]

0.68
[0.65, 0.71]

0.26 0.74
[0.72, 0.76]

7.97
[7.25, 8.71]

0.158
[0.152, 0.164]

0.60
[0.55, 0.66]

0.62
[0.59, 0.65]

0.28 0.75
[0.73, 0.77]

7.58
[6.88, 8.32]

0.161
[0.154, 0.168]

0.65
[0.59, 0.70]

0.62
[0.59, 0.65]

0.30 0.74
[0.72, 0.76]

7.80
[7.08, 8.54]

0.161
[0.155, 0.168]

0.67
[0.62, 0.73]

0.59
[0.56, 0.62]

Table 1: Shapes3d dataset. Results for the metrics for selected noise levels. Shown in square brackets are
bootstrapped 95%-confidence intervals. Here topo stands for topographic similarity, conf for conflict count, cont
for context independence, pos for positional disentanglement and acc for accuracy.
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noise topo conf cont pos acc

0.00 0.71
[0.67, 0.74]

5.54
[4.73, 6.37]

0.153
[0.147, 0.159]

0.45
[0.40, 0.50]

0.95
[0.94, 0.97]

0.02 0.74
[0.72, 0.76]

6.15
[5.36, 6.91]

0.152
[0.146, 0.157]

0.38
[0.33, 0.43]

0.98
[0.98, 0.98]

0.04 0.78
[0.76, 0.80]

5.19
[4.42, 5.97]

0.160
[0.155, 0.165]

0.45
[0.39, 0.50]

0.97
[0.97, 0.98]

0.06 0.79
[0.77, 0.82]

4.36
[3.61, 5.14]

0.164
[0.158, 0.170]

0.52
[0.46, 0.58]

0.92
[0.90, 0.94]

0.08 0.83
[0.80, 0.85]

3.58
[2.84, 4.32]

0.172
[0.166, 0.177]

0.59
[0.54, 0.65]

0.91
[0.89, 0.94]

0.10 0.85
[0.82, 0.88]

3.30
[2.54, 4.09]

0.177
[0.171, 0.183]

0.64
[0.58, 0.70]

0.91
[0.89, 0.93]

0.12 0.86
[0.84, 0.89]

3.14
[2.39, 3.93]

0.182
[0.177, 0.188]

0.70
[0.64, 0.76]

0.90
[0.87, 0.92]

0.14 0.86
[0.83, 0.88]

3.50
[2.69, 4.31]

0.181
[0.175, 0.187]

0.69
[0.62, 0.75]

0.88
[0.86, 0.90]

0.16 0.86
[0.83, 0.88]

3.87
[3.02, 4.74]

0.180
[0.174, 0.186]

0.67
[0.60, 0.73]

0.87
[0.85, 0.90]

0.18 0.82
[0.80, 0.85]

4.73
[3.93, 5.55]

0.171
[0.164, 0.178]

0.63
[0.58, 0.69]

0.82
[0.79, 0.85]

0.20 0.80
[0.78, 0.82]

6.34
[5.46, 7.22]

0.164
[0.157, 0.171]

0.60
[0.54, 0.65]

0.75
[0.72, 0.78]

0.22 0.78
[0.76, 0.80]

7.22
[6.39, 7.99]

0.161
[0.154, 0.168]

0.60
[0.54, 0.65]

0.69
[0.65, 0.72]

0.24 0.76
[0.75, 0.78]

7.66
[6.98, 8.30]

0.157
[0.150, 0.164]

0.62
[0.57, 0.66]

0.62
[0.59, 0.65]

0.26 0.74
[0.73, 0.76]

8.42
[7.91, 8.88]

0.151
[0.144, 0.157]

0.59
[0.55, 0.63]

0.57
[0.55, 0.60]

0.28 0.74
[0.73, 0.75]

8.81
[8.33, 9.27]

0.149
[0.142, 0.156]

0.60
[0.57, 0.64]

0.54
[0.52, 0.57]

0.30 0.73
[0.72, 0.74]

8.94
[8.47, 9.41]

0.149
[0.142, 0.156]

0.64
[0.60, 0.67]

0.51
[0.49, 0.53]

Table 2: Obverter dataset. Results for the metrics for selected noise levels. Shown in square brackets are
bootstrapped 95%-confidence intervals. Here topo stands for topographic similarity, conf for conflict count, cont
for context independence, pos for positional disentanglement and acc for accuracy.
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D.2 Different number of symbols

This section presents detailed results for the case when the message space has 16 = 4× 4 elements
(4-symbol alphabet; see Figure 15 and Table 3) and 64 = 8× 8 elements (8-symbol alphabet; see
Figure 16 and Table 4). In the former case, the results are more variable. For topo, this can be
seen from a bimodal shape of its distribution and wide confidence intervals, particularly for small to
medium values of noise. This makes it statistically hard to distinguish values of topo in this noise
range. For larger values of noise (greater than 0.16), topo starts to visibly decline. Similar behavior
can be seen for other metrics.

Interestingly, for the latter experiment, with 64 = 8 × 8 messages, the story is different. While
topographic similarity values for the small noise regime (up to 0.08) do not improve over the baseline
value, this behavior changes for medium to large values of noise. In this range, we can observe a
visible increase in the topo, peaking at 0.88 with a noise level of 0.24.

Figure 15: 4× 4. Top panel: average value of metrics for various noise levels (on shapes3d dataset).
The shaded area corresponds to bootstrapped 95%-confidence intervals for this estimator. Bottom
panel: kernel density estimators for metrics and noise levels across seeds. Here topo stands for
topographic similarity, conf for conflict count, cont for context independence, pos for positional
disentanglement and acc for accuracy.

Figure 16: 8x8. Top panel: average value of metrics for various noise levels. The shaded area
corresponds to bootstrapped 95%-confidence intervals for this estimator. Bottom panel: kernel
density estimators for metrics and noise levels across seeds. Here topo stands for topographic
similarity, conf for conflict count, cont for context independence, pos for positional disentanglement
and acc for accuracy.
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noise topo conf cont pos acc

0.00 0.74
[0.69, 0.78]

6.45
[5.30, 7.57]

0.154
[0.146, 0.161]

0.59
[0.52, 0.67]

0.71
[0.66, 0.75]

0.02 0.73
[0.69, 0.77]

6.48
[5.44, 7.48]

0.154
[0.148, 0.160]

0.57
[0.51, 0.64]

0.66
[0.60, 0.72]

0.04 0.75
[0.71, 0.79]

5.93
[4.88, 6.96]

0.155
[0.148, 0.162]

0.62
[0.56, 0.69]

0.65
[0.59, 0.71]

0.06 0.76
[0.71, 0.80]

5.94
[4.92, 6.99]

0.156
[0.149, 0.163]

0.59
[0.52, 0.66]

0.65
[0.59, 0.70]

0.08 0.74
[0.71, 0.78]

6.19
[5.20, 7.19]

0.157
[0.151, 0.163]

0.61
[0.55, 0.68]

0.63
[0.58, 0.68]

0.10 0.72
[0.69, 0.75]

7.00
[6.12, 7.87]

0.153
[0.147, 0.159]

0.61
[0.55, 0.67]

0.60
[0.56, 0.63]

0.12 0.75
[0.72, 0.78]

6.90
[5.95, 7.82]

0.159
[0.154, 0.165]

0.65
[0.59, 0.71]

0.63
[0.60, 0.67]

0.14 0.71
[0.69, 0.73]

8.20
[7.34, 9.02]

0.155
[0.149, 0.160]

0.60
[0.54, 0.65]

0.59
[0.57, 0.62]

0.16 0.73
[0.71, 0.75]

8.01
[7.10, 8.91]

0.159
[0.153, 0.165]

0.62
[0.56, 0.68]

0.62
[0.59, 0.65]

0.18 0.72
[0.70, 0.74]

8.18
[7.34, 9.01]

0.153
[0.147, 0.159]

0.64
[0.59, 0.70]

0.60
[0.57, 0.63]

0.20 0.71
[0.69, 0.72]

8.93
[8.23, 9.63]

0.149
[0.143, 0.155]

0.63
[0.58, 0.68]

0.56
[0.53, 0.59]

0.22 0.70
[0.69, 0.72]

9.38
[8.67, 10.09]

0.147
[0.140, 0.153]

0.62
[0.57, 0.67]

0.54
[0.51, 0.56]

0.24 0.69
[0.68, 0.70]

9.86
[9.23, 10.46]

0.147
[0.141, 0.153]

0.62
[0.57, 0.67]

0.51
[0.49, 0.53]

0.26 0.69
[0.68, 0.70]

9.87
[9.29, 10.45]

0.146
[0.140, 0.153]

0.64
[0.58, 0.69]

0.49
[0.47, 0.52]

0.28 0.68
[0.67, 0.70]

10.15
[9.60, 10.72]

0.142
[0.136, 0.149]

0.66
[0.61, 0.71]

0.47
[0.45, 0.49]

0.30 0.68
[0.67, 0.69]

10.32
[9.78, 10.86]

0.141
[0.135, 0.148]

0.68
[0.63, 0.73]

0.46
[0.44, 0.48]

Table 3: 4x4. Results for the metrics for selected noise levels. Shown in square brackets are
bootstrapped 95%-confidence intervals. Here topo stands for topographic similarity, conf for conflict
count, cont for context independence, pos for positional disentanglement and acc for accuracy.
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noise topo conf cont pos acc

0.00 0.79
[0.77, 0.82]

2.77
[2.17, 3.39]

0.173
[0.166, 0.178]

0.48
[0.42, 0.54]

0.98
[0.98, 0.98]

0.02 0.74
[0.73, 0.76]

2.99
[2.43, 3.55]

0.160
[0.155, 0.166]

0.36
[0.32, 0.40]

0.98
[0.98, 0.98]

0.04 0.75
[0.73, 0.76]

3.62
[3.02, 4.22]

0.161
[0.156, 0.167]

0.34
[0.30, 0.39]

0.98
[0.98, 0.98]

0.06 0.74
[0.73, 0.76]

3.90
[3.33, 4.49]

0.159
[0.153, 0.165]

0.33
[0.28, 0.37]

0.98
[0.98, 0.98]

0.08 0.77
[0.75, 0.79]

3.94
[3.33, 4.57]

0.165
[0.160, 0.171]

0.37
[0.32, 0.42]

0.98
[0.98, 0.98]

0.10 0.80
[0.78, 0.82]

3.74
[3.10, 4.38]

0.173
[0.167, 0.179]

0.43
[0.37, 0.50]

0.98
[0.98, 0.98]

0.12 0.83
[0.80, 0.85]

3.60
[2.90, 4.32]

0.182
[0.176, 0.189]

0.50
[0.43, 0.56]

0.98
[0.98, 0.98]

0.14 0.84
[0.82, 0.86]

3.82
[3.09, 4.59]

0.186
[0.179, 0.192]

0.51
[0.44, 0.58]

0.98
[0.98, 0.98]

0.16 0.83
[0.81, 0.86]

4.35
[3.59, 5.11]

0.184
[0.177, 0.190]

0.49
[0.42, 0.56]

0.97
[0.97, 0.98]

0.18 0.85
[0.83, 0.87]

4.13
[3.34, 4.95]

0.189
[0.182, 0.195]

0.53
[0.46, 0.60]

0.97
[0.96, 0.97]

0.20 0.86
[0.84, 0.88]

3.97
[3.24, 4.73]

0.189
[0.182, 0.195]

0.56
[0.49, 0.63]

0.95
[0.94, 0.96]

0.22 0.86
[0.84, 0.89]

3.72
[3.01, 4.48]

0.190
[0.183, 0.196]

0.59
[0.53, 0.66]

0.94
[0.93, 0.96]

0.24 0.88
[0.85, 0.90]

3.47
[2.73, 4.25]

0.192
[0.185, 0.198]

0.65
[0.58, 0.72]

0.93
[0.91, 0.95]

0.26 0.87
[0.85, 0.89]

3.84
[3.11, 4.62]

0.190
[0.183, 0.197]

0.66
[0.59, 0.72]

0.90
[0.87, 0.92]

0.28 0.85
[0.83, 0.87]

4.18
[3.51, 4.89]

0.188
[0.181, 0.194]

0.66
[0.60, 0.73]

0.86
[0.83, 0.88]

0.30 0.85
[0.82, 0.87]

4.15
[3.48, 4.85]

0.186
[0.179, 0.193]

0.68
[0.62, 0.74]

0.84
[0.81, 0.86]

Table 4: 8x8. Results for the metrics for selected noise levels. Shown in square brackets are
bootstrapped 95%-confidence intervals. Here topo stands for topographic similarity, conf for conflict
count, cont for context independence, pos for positional disentanglement and acc for accuracy.

D.3 Variable noise

In this section, we present detailed results for variable noise experiments. More precisely, at
the beginning of training the noise is kept at some initial level ε0 ∈ {0.0, 0.15} and after T ∈
{200, 700, 1200, 1700, 2200, 2700} warmup network updates it is changed to a value, εT , and kept
there for the rest of the training. The results are presented in Figure 17 and Table 5 (ε0 = 0.0, εT =
0.15), Figure 18 and Table 6 (ε0 = 0.0, εT = 0.1), and Figure 19 and Table 7 (ε0 = 0.15, εT = 0.1).

For ε0 = 0.0, εT = 0.15 case, we see that topo increases from 0.85 for T = 200, to 0.9 for T = 2700,
and the transition is reflected both in the density profile as well as the confidence intervals. The effect
for ε0 = 0.0, εT = 0.1 is weaker and the variance in the results is quite high. There seems to be a
negligable effect for the case ε0 = 0.15, εT = 0.1.
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Figure 17: Variable noise with ε0 = 0.0, εT = 0.15. Top panel: average value of metrics for various
warmup levels (T ). The shaded area corresponds to bootstrapped 95%-confidence intervals for this
estimator. Bottom panel: kernel density estimators for metrics and noise levels across seeds. Here
topo stands for topographic similarity, conf for conflict count, cont for context independence, pos for
positional disentanglement and acc for accuracy.

Figure 18: Variable noise ε0 = 0.0, εT = 0.1. Top panel: average value of metrics for various
warmup levels (T ). The shaded area corresponds to bootstrapped 95%-confidence intervals for this
estimator. Bottom panel: kernel density estimators for metrics and noise levels across seeds. Here
topo stands for topographic similarity, conf for conflict count, cont for context independence, pos for
positional disentanglement and acc for accuracy.
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Figure 19: Variable noise ε0 = 0.15, εT = 0.1. Top panel: average value of metrics for various
warmup levels (T ). The shaded area corresponds to bootstrapped 95%-confidence intervals for this
estimator. Bottom panel: kernel density estimators for metrics and noise levels across seeds. Here
topo stands for topographic similarity, conf for conflict count, cont for context independence, pos for
positional disentanglement and acc for accuracy.

warmup topo conf cont pos acc

200 0.85
[0.82, 0.87]

4.06
[3.25, 4.89]

0.180
[0.175, 0.185]

0.67
[0.61, 0.73]

0.85
[0.83, 0.88]

700 0.85
[0.82, 0.87]

4.21
[3.39, 5.07]

0.179
[0.173, 0.184]

0.68
[0.62, 0.73]

0.84
[0.82, 0.87]

1200 0.89
[0.86, 0.91]

3.14
[2.37, 4.00]

0.186
[0.181, 0.191]

0.75
[0.69, 0.81]

0.89
[0.87, 0.91]

1700 0.89
[0.86, 0.91]

3.12
[2.36, 3.99]

0.185
[0.180, 0.190]

0.75
[0.68, 0.81]

0.88
[0.86, 0.91]

2200 0.89
[0.86, 0.91]

3.40
[2.53, 4.34]

0.185
[0.178, 0.190]

0.73
[0.65, 0.79]

0.89
[0.87, 0.92]

2700 0.90
[0.88, 0.93]

2.82
[2.03, 3.70]

0.188
[0.181, 0.193]

0.77
[0.71, 0.84]

0.91
[0.89, 0.93]

Table 5: Variable noise with ε0 = 0.0, εT = 0.15. Results for the metrics for various warmup levels
(T ). Shown in square brackets are bootstrapped 95%-confidence intervals. Here topo stands for
topographic similarity, conf for conflict count, cont for context independence, pos for positional
disentanglement and acc for accuracy.
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warmup topo conf cont pos acc

200 0.87
[0.84, 0.90]

3.28
[2.47, 4.12]

0.182
[0.176, 0.187]

0.69
[0.63, 0.75]

0.90
[0.88, 0.92]

700 0.86
[0.84, 0.89]

3.35
[2.56, 4.17]

0.179
[0.173, 0.184]

0.68
[0.62, 0.73]

0.90
[0.87, 0.92]

1200 0.88
[0.86, 0.91]

2.89
[2.12, 3.70]

0.184
[0.179, 0.189]

0.72
[0.66, 0.78]

0.91
[0.88, 0.93]

1700 0.88
[0.85, 0.90]

3.14
[2.28, 4.04]

0.181
[0.175, 0.187]

0.70
[0.65, 0.76]

0.91
[0.89, 0.93]

2200 0.89
[0.86, 0.92]

2.69
[1.85, 3.54]

0.183
[0.177, 0.189]

0.74
[0.68, 0.80]

0.92
[0.90, 0.94]

2700 0.89
[0.86, 0.92]

2.56
[1.78, 3.40]

0.183
[0.176, 0.189]

0.74
[0.68, 0.80]

0.92
[0.90, 0.94]

Table 6: Variable noise with ε0 = 0.0, εT = 0.1. Results for the metrics for various warmup levels
(T ). Shown in square brackets are bootstrapped 95%-confidence intervals. Here topo stands for
topographic similarity, conf for conflict count, cont for context independence, pos for positional
disentanglement and acc for accuracy.

warmup topo conf cont pos acc

200 0.86
[0.83, 0.88]

3.73
[2.85, 4.63]

0.181
[0.175, 0.186]

0.67
[0.61, 0.73]

0.88
[0.85, 0.90]

700 0.85
[0.82, 0.87]

3.91
[3.04, 4.76]

0.178
[0.172, 0.183]

0.65
[0.59, 0.71]

0.88
[0.85, 0.90]

1200 0.85
[0.83, 0.88]

3.63
[2.81, 4.46]

0.180
[0.175, 0.185]

0.66
[0.59, 0.72]

0.88
[0.86, 0.90]

1700 0.85
[0.82, 0.88]

3.77
[2.90, 4.61]

0.179
[0.174, 0.184]

0.65
[0.59, 0.71]

0.88
[0.86, 0.90]

2200 0.85
[0.82, 0.87]

3.86
[2.99, 4.71]

0.179
[0.173, 0.184]

0.64
[0.58, 0.70]

0.88
[0.85, 0.90]

2700 0.84
[0.81, 0.87]

3.94
[3.08, 4.76]

0.177
[0.171, 0.183]

0.62
[0.56, 0.69]

0.88
[0.86, 0.90]

Table 7: Variable noise with ε0 = 0.15, εT = 0.1. Results for the metrics for various warmup levels
(T ). Shown in square brackets are bootstrapped 95%-confidence intervals. Here topo stands for
topographic similarity, conf for conflict count, cont for context independence, pos for positional
disentanglement and acc for accuracy.
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D.4 Sensitivity with respect to small architecture changes

This section provides details for experiments aiming to check the impact of small architecture change
in CNN (Figure 20, Table 8) and the dense layers in the agents’ network (Figure 21, Table 9). In the
former experiment, we change the number of filters in the sender’s CNN architecture from two layers
with 8 filters, to two layers with 16 filters. This results in the slight change of topographic similarity
profile with the highest average value of 0.86 for noise range 0.14 significantly outperforming the
zero-noise case (0.79). For the second experiment, we added a dense layer (with 64 neurons) to the
receiver’s architecture. This again shows improvement of compositionality due to noise, although the
noise in the range [0.08, 0.16] performs roughly the same.

Figure 20: Bigger CNN. Top panel: average value of metrics for various noise levels. The shaded area
corresponds to bootstrapped 95%-confidence intervals for this estimator. Bottom panel: kernel density
estimators for metrics and noise levels across seeds. Here topo stands for topographic similarity, conf
for conflict count, cont for context independence, pos for positional disentanglement and acc for
accuracy.

Figure 21: Bigger dense layer. Top panel: average value of metrics for various noise levels. The
shaded area corresponds to bootstrapped 95%-confidence intervals for this estimator. Bottom panel:
kernel density estimators for metrics and noise levels across seeds. Here topo stands for topographic
similarity, conf for conflict count, cont for context independence, pos for positional disentanglement
and acc for accuracy.
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noise topo conf cont pos acc

0.00 0.79
[0.76, 0.82]

4.23
[3.34, 5.11]

0.168
[0.160, 0.174]

0.56
[0.49, 0.62]

0.98
[0.97, 0.98]

0.02 0.81
[0.78, 0.83]

4.47
[3.63, 5.34]

0.166
[0.160, 0.172]

0.51
[0.45, 0.57]

0.98
[0.98, 0.98]

0.04 0.80
[0.78, 0.83]

4.53
[3.66, 5.42]

0.166
[0.160, 0.172]

0.53
[0.47, 0.60]

0.95
[0.93, 0.96]

0.06 0.84
[0.81, 0.87]

3.35
[2.56, 4.22]

0.175
[0.169, 0.181]

0.63
[0.57, 0.69]

0.92
[0.89, 0.94]

0.08 0.85
[0.83, 0.88]

3.32
[2.52, 4.18]

0.178
[0.172, 0.184]

0.65
[0.58, 0.71]

0.90
[0.88, 0.93]

0.10 0.85
[0.83, 0.88]

3.86
[2.99, 4.76]

0.178
[0.172, 0.183]

0.63
[0.57, 0.70]

0.89
[0.86, 0.91]

0.12 0.86
[0.83, 0.89]

4.06
[3.13, 4.95]

0.179
[0.173, 0.185]

0.65
[0.58, 0.72]

0.88
[0.85, 0.90]

0.14 0.86
[0.84, 0.89]

3.90
[3.00, 4.81]

0.181
[0.176, 0.186]

0.67
[0.61, 0.73]

0.88
[0.86, 0.90]

0.16 0.84
[0.82, 0.87]

4.64
[3.70, 5.59]

0.176
[0.170, 0.182]

0.63
[0.56, 0.70]

0.85
[0.83, 0.87]

0.18 0.83
[0.80, 0.85]

5.17
[4.22, 6.08]

0.174
[0.168, 0.180]

0.62
[0.56, 0.69]

0.82
[0.80, 0.85]

0.20 0.80
[0.78, 0.83]

6.26
[5.32, 7.17]

0.168
[0.162, 0.174]

0.59
[0.53, 0.65]

0.77
[0.75, 0.80]

0.22 0.80
[0.78, 0.82]

6.04
[5.21, 6.85]

0.167
[0.161, 0.173]

0.65
[0.59, 0.70]

0.74
[0.72, 0.77]

0.24 0.80
[0.78, 0.82]

6.26
[5.46, 7.04]

0.166
[0.160, 0.172]

0.65
[0.59, 0.71]

0.72
[0.69, 0.75]

0.26 0.77
[0.75, 0.79]

6.95
[6.19, 7.66]

0.161
[0.155, 0.168]

0.66
[0.61, 0.72]

0.66
[0.62, 0.69]

0.28 0.76
[0.74, 0.78]

7.65
[6.91, 8.38]

0.161
[0.154, 0.167]

0.66
[0.60, 0.72]

0.62
[0.59, 0.66]

0.30 0.75
[0.73, 0.77]

7.81
[7.08, 8.55]

0.160
[0.153, 0.166]

0.66
[0.60, 0.73]

0.61
[0.57, 0.64]

Table 8: Bigger CNN. Results for the metrics for selected noise levels. Shown in square brackets are
bootstrapped 95%-confidence intervals. Here topo stands for topographic similarity, conf for conflict
count, cont for context independence, pos for positional disentanglement and acc for accuracy.
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noise topo conf cont pos acc

0.00 0.76
[0.72, 0.80]

4.42
[3.45, 5.38]

0.162
[0.155, 0.169]

0.56
[0.49, 0.62]

0.93
[0.91, 0.95]

0.02 0.80
[0.77, 0.83]

4.10
[3.30, 4.92]

0.167
[0.160, 0.173]

0.55
[0.50, 0.61]

0.96
[0.95, 0.98]

0.04 0.78
[0.76, 0.81]

4.65
[3.83, 5.42]

0.167
[0.161, 0.173]

0.54
[0.47, 0.59]

0.90
[0.88, 0.93]

0.06 0.82
[0.79, 0.85]

3.62
[2.80, 4.48]

0.173
[0.167, 0.179]

0.62
[0.56, 0.68]

0.86
[0.83, 0.90]

0.08 0.86
[0.83, 0.88]

3.14
[2.33, 3.97]

0.180
[0.174, 0.185]

0.69
[0.63, 0.75]

0.87
[0.84, 0.90]

0.10 0.85
[0.83, 0.88]

3.27
[2.48, 4.09]

0.179
[0.173, 0.185]

0.69
[0.63, 0.75]

0.86
[0.83, 0.88]

0.12 0.86
[0.83, 0.88]

3.56
[2.76, 4.42]

0.180
[0.175, 0.186]

0.68
[0.62, 0.74]

0.87
[0.84, 0.89]

0.14 0.86
[0.83, 0.88]

3.95
[3.14, 4.87]

0.180
[0.174, 0.186]

0.67
[0.61, 0.74]

0.86
[0.84, 0.89]

0.16 0.85
[0.82, 0.87]

4.31
[3.46, 5.21]

0.177
[0.171, 0.183]

0.67
[0.61, 0.73]

0.84
[0.81, 0.86]

0.18 0.82
[0.80, 0.85]

5.42
[4.46, 6.36]

0.173
[0.167, 0.179]

0.65
[0.58, 0.71]

0.79
[0.76, 0.83]

0.20 0.79
[0.76, 0.81]

6.25
[5.33, 7.14]

0.169
[0.163, 0.175]

0.62
[0.57, 0.68]

0.73
[0.69, 0.76]

0.22 0.77
[0.74, 0.79]

7.04
[6.17, 7.85]

0.163
[0.157, 0.170]

0.61
[0.56, 0.67]

0.67
[0.64, 0.71]

0.24 0.74
[0.72, 0.76]

8.14
[7.36, 8.87]

0.159
[0.153, 0.166]

0.59
[0.54, 0.64]

0.62
[0.59, 0.65]

0.26 0.74
[0.72, 0.76]

8.08
[7.33, 8.82]

0.159
[0.153, 0.165]

0.64
[0.59, 0.69]

0.60
[0.57, 0.63]

0.28 0.73
[0.71, 0.75]

8.58
[7.90, 9.24]

0.158
[0.152, 0.164]

0.63
[0.57, 0.68]

0.57
[0.54, 0.59]

0.30 0.71
[0.69, 0.73]

9.21
[8.58, 9.85]

0.154
[0.147, 0.160]

0.61
[0.56, 0.67]

0.53
[0.51, 0.56]

Table 9: Bigger dense layer. Results for the metrics for selected noise levels. Shown in square
brackets are bootstrapped 95%-confidence intervals. Here topo stands for topographic similarity, conf
for conflict count, cont for context independence, pos for positional disentanglement and acc for
accuracy.
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D.5 Sensitivity to noisy channel implementation

In this section, we provide details for experiments with alternative noisy channel implementation, see
Figure 22 and Table 10. Notice that the range of noise values is different from the main experiment
(smaller by the order of magnitude). The results suggest that the small values of noise can help, while
the larger noise levels lead to a decline in compositionality.

Figure 22: Alternative noise design. Top panel: average value of metrics for various noise levels. The
shaded area corresponds to bootstrapped 95%-confidence intervals for this estimator. Bottom panel:
kernel density estimators for metrics and noise levels across seeds. Here topo stands for topographic
similarity, conf for conflict count, cont for context independence, pos for positional disentanglement
and acc for accuracy.
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noise topo conf cont pos acc

0.000 0.79
[0.75, 0.82]

4.13
[3.31, 4.95]

0.167
[0.160, 0.173]

0.56
[0.50, 0.62]

0.97
[0.96, 0.98]

0.001 0.79
[0.76, 0.82]

3.77
[3.00, 4.57]

0.168
[0.162, 0.174]

0.59
[0.53, 0.64]

0.97
[0.96, 0.98]

0.002 0.80
[0.77, 0.83]

3.51
[2.77, 4.29]

0.170
[0.164, 0.176]

0.60
[0.55, 0.66]

0.96
[0.95, 0.97]

0.003 0.79
[0.76, 0.82]

3.52
[2.77, 4.31]

0.169
[0.163, 0.175]

0.61
[0.55, 0.66]

0.95
[0.94, 0.96]

0.004 0.77
[0.74, 0.81]

3.80
[2.97, 4.66]

0.166
[0.160, 0.172]

0.58
[0.53, 0.64]

0.94
[0.92, 0.95]

0.005 0.77
[0.73, 0.80]

3.81
[2.99, 4.65]

0.165
[0.158, 0.171]

0.58
[0.53, 0.63]

0.93
[0.91, 0.95]

0.006 0.75
[0.72, 0.79]

4.21
[3.38, 5.11]

0.163
[0.156, 0.170]

0.56
[0.50, 0.61]

0.91
[0.89, 0.93]

0.007 0.76
[0.72, 0.79]

4.05
[3.26, 4.89]

0.163
[0.156, 0.169]

0.56
[0.51, 0.62]

0.91
[0.89, 0.92]

0.008 0.74
[0.70, 0.77]

4.48
[3.65, 5.31]

0.158
[0.152, 0.164]

0.54
[0.48, 0.59]

0.89
[0.87, 0.91]

0.009 0.73
[0.70, 0.77]

4.68
[3.81, 5.55]

0.158
[0.151, 0.164]

0.52
[0.47, 0.58]

0.88
[0.85, 0.90]

0.010 0.72
[0.69, 0.76]

4.70
[3.87, 5.53]

0.156
[0.150, 0.162]

0.52
[0.47, 0.58]

0.87
[0.85, 0.89]

0.011 0.70
[0.67, 0.74]

5.43
[4.59, 6.30]

0.153
[0.147, 0.159]

0.48
[0.43, 0.54]

0.85
[0.83, 0.88]

0.012 0.69
[0.65, 0.72]

5.87
[5.00, 6.76]

0.150
[0.144, 0.157]

0.46
[0.40, 0.51]

0.84
[0.81, 0.86]

0.013 0.67
[0.63, 0.70]

6.29
[5.42, 7.19]

0.146
[0.140, 0.152]

0.43
[0.37, 0.48]

0.83
[0.80, 0.85]

0.014 0.65
[0.62, 0.68]

6.23
[5.47, 7.03]

0.144
[0.138, 0.151]

0.43
[0.38, 0.48]

0.81
[0.79, 0.83]

0.015 0.63
[0.61, 0.66]

6.91
[6.13, 7.72]

0.145
[0.139, 0.150]

0.39
[0.34, 0.44]

0.80
[0.78, 0.82]

Table 10: Alternative noise design. Results for the metrics for selected noise levels. Shown in square
brackets are bootstrapped 95%-confidence intervals. Here topo stands for topographic similarity, conf
for conflict count, cont for context independence, pos for positional disentanglement and acc for
accuracy.
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D.6 Longer message

Here we provide details for longer message experiments, see Figure 23, Table 11 and Figure 24, Ta-
ble 12 for message lengths three and four, respectively. The setup expands upon the main experiment
by including floor color 11 for the former and, additionally, wall color 12 for the latter. The overall
levels of compositionality metrics decline when compared with the main experiment, however, the
general picture that noise improves compositionality remains intact.

Figure 23: Message length equals 3. Top panel: average value of metrics for various noise levels. The
shaded area corresponds to bootstrapped 95%-confidence intervals for this estimator. Bottom panel:
kernel density estimators for metrics and noise levels across seeds. Here topo stands for topographic
similarity, pos for positional disentanglement and acc for accuracy.

Figure 24: Message length equals 4. Top panel: average value of metrics for various noise levels. The
shaded area corresponds to bootstrapped 95%-confidence intervals for this estimator. Bottom panel:
kernel density estimators for metrics and noise levels across seeds. Here topo stands for topographic
similarity, pos for positional disentanglement and acc for accuracy.

11We took the floor color feature to take values 0, 1, 2, 3 (out of 10 possible). The resulting dataset contains
76800 images.

12We took the wall color feature to take values 0, 1, 2, 3 (out of 10 possible). The resulting dataset contains
30720 images.
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noise topo cont pos acc

0.00 0.76
[0.73, 0.78]

0.069
[0.067, 0.072]

0.49
[0.44, 0.54]

0.89
[0.85, 0.92]

0.02 0.76
[0.74, 0.78]

0.069
[0.067, 0.071]

0.45
[0.41, 0.50]

0.93
[0.91, 0.95]

0.04 0.77
[0.75, 0.79]

0.069
[0.067, 0.071]

0.48
[0.43, 0.53]

0.91
[0.89, 0.93]

0.06 0.79
[0.77, 0.81]

0.072
[0.070, 0.074]

0.49
[0.44, 0.54]

0.84
[0.81, 0.87]

0.08 0.80
[0.78, 0.82]

0.073
[0.071, 0.074]

0.51
[0.46, 0.56]

0.81
[0.77, 0.84]

0.10 0.80
[0.78, 0.82]

0.073
[0.071, 0.075]

0.51
[0.46, 0.56]

0.76
[0.73, 0.79]

0.12 0.79
[0.77, 0.81]

0.073
[0.071, 0.075]

0.51
[0.46, 0.56]

0.74
[0.71, 0.78]

0.14 0.76
[0.74, 0.78]

0.070
[0.068, 0.072]

0.46
[0.41, 0.51]

0.65
[0.62, 0.68]

0.16 0.76
[0.74, 0.77]

0.069
[0.067, 0.071]

0.46
[0.42, 0.51]

0.59
[0.56, 0.63]

0.18 0.74
[0.73, 0.76]

0.069
[0.067, 0.071]

0.45
[0.41, 0.49]

0.52
[0.49, 0.56]

0.20 0.74
[0.73, 0.76]

0.069
[0.067, 0.070]

0.45
[0.40, 0.49]

0.49
[0.46, 0.53]

0.22 0.73
[0.72, 0.74]

0.066
[0.064, 0.068]

0.45
[0.40, 0.50]

0.44
[0.41, 0.47]

0.24 0.72
[0.71, 0.73]

0.065
[0.063, 0.067]

0.45
[0.40, 0.49]

0.41
[0.38, 0.43]

0.26 0.72
[0.71, 0.73]

0.065
[0.064, 0.067]

0.45
[0.41, 0.50]

0.37
[0.35, 0.40]

0.28 0.71
[0.70, 0.72]

0.065
[0.064, 0.067]

0.46
[0.42, 0.51]

0.35
[0.33, 0.37]

0.30 0.71
[0.70, 0.72]

0.064
[0.063, 0.066]

0.46
[0.42, 0.51]

0.33
[0.31, 0.36]

Table 11: Message length equals 3. Results for the metrics for selected noise levels. Shown in square
brackets are bootstrapped 95%-confidence intervals. Here topo stands for topographic similarity, conf
for conflict count, cont for context independence, pos for positional disentanglement and acc for
accuracy.

36



noise topo cont pos acc

0.00 0.68
[0.65, 0.71]

0.038
[0.036, 0.039]

0.33
[0.29, 0.38]

0.71
[0.66, 0.76]

0.02 0.74
[0.72, 0.76]

0.040
[0.039, 0.040]

0.34
[0.30, 0.39]

0.83
[0.79, 0.87]

0.04 0.73
[0.71, 0.75]

0.040
[0.039, 0.040]

0.34
[0.30, 0.39]

0.78
[0.74, 0.82]

0.06 0.74
[0.73, 0.76]

0.040
[0.039, 0.041]

0.34
[0.30, 0.39]

0.72
[0.69, 0.76]

0.08 0.73
[0.72, 0.75]

0.040
[0.039, 0.040]

0.34
[0.30, 0.39]

0.65
[0.61, 0.68]

0.10 0.72
[0.70, 0.73]

0.039
[0.039, 0.040]

0.34
[0.30, 0.38]

0.57
[0.54, 0.60]

0.12 0.71
[0.69, 0.72]

0.039
[0.038, 0.039]

0.33
[0.29, 0.37]

0.49
[0.47, 0.52]

0.14 0.70
[0.69, 0.72]

0.039
[0.038, 0.039]

0.32
[0.28, 0.36]

0.41
[0.38, 0.45]

0.16 0.69
[0.68, 0.71]

0.038
[0.038, 0.039]

0.31
[0.27, 0.35]

0.37
[0.34, 0.40]

0.18 0.70
[0.69, 0.71]

0.039
[0.038, 0.039]

0.30
[0.27, 0.34]

0.34
[0.31, 0.37]

0.20 0.69
[0.67, 0.70]

0.038
[0.037, 0.039]

0.30
[0.26, 0.34]

0.30
[0.27, 0.32]

0.22 0.68
[0.67, 0.69]

0.038
[0.037, 0.039]

0.31
[0.28, 0.35]

0.27
[0.25, 0.29]

0.24 0.68
[0.67, 0.69]

0.038
[0.037, 0.038]

0.32
[0.28, 0.36]

0.24
[0.22, 0.26]

0.26 0.67
[0.66, 0.68]

0.038
[0.037, 0.038]

0.32
[0.28, 0.36]

0.22
[0.21, 0.24]

0.28 0.66
[0.66, 0.67]

0.037
[0.037, 0.038]

0.32
[0.28, 0.35]

0.21
[0.20, 0.23]

0.30 0.67
[0.66, 0.68]

0.037
[0.036, 0.038]

0.33
[0.29, 0.37]

0.20
[0.18, 0.21]

Table 12: Message length equals 4. Results for the metrics for selected noise levels. Shown in square
brackets are bootstrapped 95%-confidence intervals. Here topo stands for topographic similarity, conf
for conflict count, cont for context independence, pos for positional disentanglement and acc for
accuracy.
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D.7 Visual priors

In this section we give details for visual priors experiments, see Figure 25, Table 13 (tile 32), Figure
26, Table 14 (tile 16), and Figure 27, Table 15 (tile 8). The transition from coarser to finer tiles has a
significant impact both on the metric’s profiles and on their overall levels. The characteristic peak for
some positive noise levels is still present.

We complement the picture with an analysis of the interplay between variable noise and accuracy,
see Figure 28 (tile 32) and Figure 29 (tile 16). It shows that the overall metrics level, conditioned on
seeds with high accuracy, increases significantly. Notice, however, that the number of experiments
with high accuracy decrease as the threshold increases. In particular, we did not include visualization
for a tile size 8, since there were too few experiments exceeding the accuracy threshold of 0.80.

Figure 25: Scramble with tile 32. Top panel: average value of metrics for various noise levels. The
shaded area corresponds to bootstrapped 95%-confidence intervals for this estimator. Bottom panel:
kernel density estimators for metrics and noise levels across seeds. Here topo stands for topographic
similarity, conf for conflict count, cont for context independence, pos for positional disentanglement
and acc for accuracy.

Figure 26: Scramble with tile 16. Top panel: average value of metrics for various noise levels. The
shaded area corresponds to bootstrapped 95%-confidence intervals for this estimator. Bottom panel:
kernel density estimators for metrics and noise levels across seeds. Here topo stands for topographic
similarity, conf for conflict count, cont for context independence, pos for positional disentanglement
and acc for accuracy.
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Figure 27: Scramble with tile 8. Top panel: average value of metrics for various noise levels. The
shaded area corresponds to bootstrapped 95%-confidence intervals for this estimator. Bottom panel:
kernel density estimators for metrics and noise levels across seeds. Here topo stands for topographic
similarity, conf for conflict count, cont for context independence, pos for positional disentanglement
and acc for accuracy.

Figure 28: Tile size 32. Top left: The values of topo computed for each noise level (hues) and on seeds
exceeding a certain accuracy threshold (x-axis). Vertical dashed lines represent three cross-sections, visualized
in the bottom panel. Top right: Similar to the left panel, but instead of topo we visualize the number of seeds with
accuracy at least as a given threshold (x-axis). Vertical dashed lines represent three cross-sections, visualized in
the bottom panel. Bottom: Each of the plots represents a cross-section of the plots in the top panel, taken at
points 0.80, 0.85, and 0.90, respectively. On the left axis of each figure is the range of topo, whereas on the right
axis is the number of seeds with accuracy exceed the corresponding level. On the x-axis are the noise levels.
The scatter plot with 95%-confidence intervals represents the values of topo. The gray dashed line represents the
number of seeds with accuracy exceeding a given threshold, for each of the noise levels.
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Figure 29: Tile size 16. Top left: The values of topo computed for each noise level (hues) and on seeds
exceeding a certain accuracy threshold (x-axis). Vertical dashed lines represent three cross-sections, visualized
in the bottom panel. Top right: Similar to the left panel, but instead of topo we visualize the number of seeds with
accuracy at least as a given threshold (x-axis). Vertical dashed lines represent three cross-sections, visualized in
the bottom panel. Bottom: Each of the plots represents a cross-section of the plots in the top panel, taken at
points 0.80, 0.85, and 0.90, respectively. On the left axis of each figure is the range of topo, whereas on the right
axis is the number of seeds with accuracy exceed the corresponding level. On the x-axis are the noise levels.
The scatter plot with 95%-confidence intervals represents the values of topo. The gray dashed line represents the
number of seeds with accuracy exceeding a given threshold, for each of the noise levels.

40



noise topo conf cont pos acc

0.00 0.75
[0.71, 0.78]

5.20
[4.21, 6.27]

0.160
[0.154, 0.168]

0.52
[0.45, 0.59]

0.95
[0.93, 0.96]

0.02 0.77
[0.74, 0.79]

5.47
[4.61, 6.35]

0.158
[0.152, 0.164]

0.45
[0.39, 0.51]

0.98
[0.97, 0.98]

0.04 0.76
[0.73, 0.79]

5.69
[4.87, 6.55]

0.158
[0.153, 0.164]

0.45
[0.40, 0.51]

0.92
[0.90, 0.94]

0.06 0.79
[0.77, 0.82]

4.81
[4.01, 5.66]

0.169
[0.164, 0.174]

0.52
[0.47, 0.58]

0.89
[0.87, 0.91]

0.08 0.80
[0.78, 0.83]

4.68
[3.84, 5.57]

0.170
[0.165, 0.176]

0.56
[0.50, 0.62]

0.86
[0.83, 0.88]

0.10 0.80
[0.77, 0.83]

4.82
[4.00, 5.68]

0.171
[0.166, 0.177]

0.59
[0.53, 0.65]

0.83
[0.81, 0.86]

0.12 0.76
[0.74, 0.79]

6.29
[5.44, 7.14]

0.165
[0.160, 0.170]

0.53
[0.48, 0.58]

0.76
[0.74, 0.79]

0.14 0.75
[0.73, 0.77]

6.68
[5.90, 7.44]

0.163
[0.157, 0.168]

0.53
[0.48, 0.58]

0.72
[0.70, 0.75]

0.16 0.73
[0.72, 0.75]

7.57
[6.82, 8.27]

0.161
[0.155, 0.167]

0.52
[0.47, 0.56]

0.67
[0.65, 0.70]

0.18 0.73
[0.71, 0.74]

7.86
[7.19, 8.51]

0.157
[0.152, 0.163]

0.54
[0.50, 0.59]

0.63
[0.60, 0.65]

0.20 0.72
[0.70, 0.73]

8.57
[7.87, 9.22]

0.157
[0.151, 0.164]

0.57
[0.52, 0.62]

0.58
[0.55, 0.61]

0.22 0.71
[0.70, 0.73]

8.98
[8.34, 9.59]

0.157
[0.150, 0.164]

0.62
[0.57, 0.67]

0.54
[0.51, 0.57]

0.24 0.70
[0.69, 0.71]

9.54
[8.98, 10.09]

0.153
[0.145, 0.160]

0.64
[0.59, 0.70]

0.50
[0.47, 0.52]

0.26 0.69
[0.68, 0.70]

10.04
[9.51, 10.54]

0.149
[0.142, 0.157]

0.66
[0.61, 0.72]

0.47
[0.44, 0.49]

0.28 0.68
[0.67, 0.70]

10.18
[9.69, 10.65]

0.148
[0.142, 0.155]

0.66
[0.60, 0.71]

0.45
[0.42, 0.47]

0.30 0.69
[0.67, 0.70]

10.23
[9.68, 10.75]

0.150
[0.143, 0.157]

0.72
[0.66, 0.77]

0.43
[0.40, 0.46]

Table 13: Scramble with tile 32. Results for the metrics for selected noise levels. Shown in square
brackets are bootstrapped 95%-confidence intervals. Here topo stands for topographic similarity, conf
for conflict count, cont for context independence, pos for positional disentanglement and acc for
accuracy.
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noise topo conf cont pos acc

0.00 0.67
[0.64, 0.71]

5.32
[4.36, 6.26]

0.146
[0.139, 0.153]

0.49
[0.43, 0.55]

0.79
[0.77, 0.82]

0.02 0.71
[0.67, 0.74]

5.97
[5.01, 6.89]

0.150
[0.144, 0.157]

0.44
[0.39, 0.50]

0.84
[0.81, 0.86]

0.04 0.69
[0.67, 0.71]

6.87
[6.07, 7.66]

0.147
[0.141, 0.152]

0.41
[0.37, 0.46]

0.77
[0.75, 0.79]

0.06 0.68
[0.67, 0.70]

7.79
[7.13, 8.43]

0.147
[0.141, 0.152]

0.39
[0.35, 0.43]

0.70
[0.69, 0.72]

0.08 0.67
[0.66, 0.69]

8.05
[7.50, 8.60]

0.144
[0.139, 0.149]

0.39
[0.36, 0.42]

0.64
[0.62, 0.66]

0.10 0.66
[0.65, 0.68]

8.81
[8.27, 9.35]

0.142
[0.137, 0.148]

0.40
[0.36, 0.44]

0.60
[0.58, 0.62]

0.12 0.65
[0.64, 0.67]

9.34
[8.75, 9.91]

0.138
[0.132, 0.144]

0.41
[0.37, 0.45]

0.57
[0.54, 0.59]

0.14 0.64
[0.62, 0.65]

10.30
[9.76, 10.82]

0.136
[0.130, 0.142]

0.43
[0.39, 0.49]

0.52
[0.50, 0.55]

0.16 0.63
[0.62, 0.64]

10.54
[10.03, 11.04]

0.137
[0.131, 0.142]

0.42
[0.38, 0.47]

0.50
[0.48, 0.53]

0.18 0.62
[0.61, 0.64]

10.95
[10.47, 11.43]

0.138
[0.132, 0.145]

0.44
[0.39, 0.49]

0.48
[0.45, 0.50]

0.20 0.62
[0.60, 0.63]

11.55
[11.10, 11.99]

0.136
[0.131, 0.142]

0.45
[0.40, 0.50]

0.44
[0.42, 0.47]

0.22 0.61
[0.59, 0.62]

11.95
[11.47, 12.43]

0.133
[0.126, 0.139]

0.47
[0.41, 0.53]

0.42
[0.40, 0.45]

0.24 0.59
[0.58, 0.61]

12.38
[11.94, 12.84]

0.131
[0.125, 0.138]

0.47
[0.41, 0.53]

0.40
[0.38, 0.42]

0.26 0.58
[0.57, 0.60]

12.67
[12.26, 13.09]

0.130
[0.124, 0.136]

0.48
[0.42, 0.54]

0.38
[0.36, 0.40]

0.28 0.58
[0.57, 0.59]

12.97
[12.55, 13.41]

0.132
[0.126, 0.139]

0.49
[0.43, 0.55]

0.36
[0.34, 0.39]

0.30 0.58
[0.56, 0.59]

13.25
[12.79, 13.73]

0.129
[0.123, 0.136]

0.49
[0.43, 0.55]

0.35
[0.33, 0.37]

Table 14: Scramble with tile 16. Results for the metrics for selected noise levels. Shown in square
brackets are bootstrapped 95%-confidence intervals. Here topo stands for topographic similarity, conf
for conflict count, cont for context independence, pos for positional disentanglement and acc for
accuracy.
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noise topo conf cont pos acc

0.00 0.59
[0.57, 0.60]

8.51
[7.86, 9.13]

0.134
[0.130, 0.139]

0.44
[0.40, 0.47]

0.53
[0.52, 0.54]

0.02 0.64
[0.63, 0.64]

8.48
[8.07, 8.92]

0.144
[0.140, 0.149]

0.54
[0.52, 0.56]

0.49
[0.48, 0.50]

0.04 0.65
[0.65, 0.66]

9.82
[9.46, 10.18]

0.138
[0.132, 0.144]

0.70
[0.66, 0.73]

0.38
[0.37, 0.40]

0.06 0.68
[0.67, 0.68]

11.33
[11.04, 11.58]

0.130
[0.123, 0.138]

0.90
[0.87, 0.92]

0.29
[0.27, 0.30]

0.08 0.68
[0.68, 0.69]

11.86
[11.73, 11.96]

0.127
[0.119, 0.135]

0.96
[0.94, 0.97]

0.26
[0.25, 0.27]

0.10 0.68
[0.68, 0.69]

11.95
[11.87, 12.00]

0.126
[0.118, 0.135]

0.97
[0.96, 0.98]

0.25
[0.24, 0.25]

0.12 0.68
[0.67, 0.68]

12.04
[12.00, 12.12]

0.124
[0.116, 0.132]

0.97
[0.96, 0.98]

0.25
[0.24, 0.25]

0.14 0.67
[0.67, 0.68]

12.00
[12.00, 12.00]

0.128
[0.121, 0.136]

0.97
[0.96, 0.98]

0.25
[0.24, 0.25]

0.16 0.66
[0.65, 0.67]

12.03
[11.98, 12.12]

0.123
[0.115, 0.132]

0.98
[0.97, 0.98]

0.25
[0.24, 0.25]

0.18 0.63
[0.62, 0.65]

12.36
[12.16, 12.60]

0.125
[0.118, 0.133]

0.98
[0.97, 0.98]

0.24
[0.24, 0.25]

0.20 0.61
[0.60, 0.62]

12.88
[12.56, 13.24]

0.121
[0.114, 0.129]

0.98
[0.97, 0.98]

0.24
[0.23, 0.24]

0.22 0.59
[0.58, 0.61]

13.24
[12.88, 13.64]

0.119
[0.112, 0.127]

0.98
[0.98, 0.98]

0.23
[0.22, 0.24]

0.24 0.57
[0.56, 0.59]

13.93
[13.52, 14.34]

0.120
[0.113, 0.127]

0.98
[0.97, 0.98]

0.22
[0.21, 0.23]

0.26 0.55
[0.53, 0.56]

14.65
[14.16, 15.13]

0.114
[0.107, 0.121]

0.98
[0.97, 0.98]

0.21
[0.20, 0.22]

0.28 0.54
[0.52, 0.55]

14.92
[14.44, 15.44]

0.111
[0.104, 0.117]

0.98
[0.98, 0.98]

0.20
[0.20, 0.21]

0.30 0.53
[0.52, 0.55]

15.08
[14.60, 15.56]

0.111
[0.105, 0.118]

0.98
[0.98, 0.98]

0.20
[0.19, 0.21]

Table 15: Scramble with tile 8. Results for the metrics for selected noise levels. Shown in square
brackets are bootstrapped 95%-confidence intervals. Here topo stands for topographic similarity, conf
for conflict count, cont for context independence, pos for positional disentanglement and acc for
accuracy.
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D.8 Scrambled features

In these experiments, we aimed to understand if the architecture of the output is important. Our
architecture has a separate output for ’color’ (F1) and for ’shape’ (F2) (for the architecture details, see
Figure 8). We permute these features as follows. Let k : F1 ×F2 7→ {0, . . . , |F1 ×F2| − 1} =: F̃
be any bijection from the color features and the shape features. Let π : F̃ 7→ F̃ be a random
permutation, sampled at the beginning of the experiment. We assign new features via mapping:
k−1(π(k((fc, fs)))). Clearly, these are no longer colors and shapes (unless π is an identity). However,
they are still factorized along two dimensions and we still use the factorized output. We can see that
behavior is similar to the ’standard’ features (high levels of compositionality with the characteristic
extremum point). This poses strong evidence that output architecture is a strong inductive bias for
compositionality.

Figure 30: Scrambled features. Top panel: average value of metrics for various noise levels. The
shaded area corresponds to bootstrapped 95%-confidence intervals for this estimator. Bottom panel:
kernel density estimators for metrics and noise levels across seeds. Here topo stands for topographic
similarity, conf for conflict count, cont for context independence, pos for positional disentanglement
and acc for accuracy.
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noise topo conf cont pos acc

0.00 0.59
[0.57, 0.61]

8.72
[8.17, 9.26]

0.129
[0.125, 0.133]

0.24
[0.20, 0.27]

0.97
[0.96, 0.98]

0.02 0.64
[0.63, 0.66]

8.21
[7.65, 8.73]

0.138
[0.133, 0.142]

0.25
[0.21, 0.28]

0.98
[0.98, 0.98]

0.04 0.68
[0.66, 0.70]

7.07
[6.39, 7.75]

0.145
[0.140, 0.151]

0.32
[0.28, 0.37]

0.97
[0.97, 0.98]

0.06 0.72
[0.70, 0.75]

5.88
[5.18, 6.58]

0.153
[0.147, 0.158]

0.42
[0.37, 0.47]

0.91
[0.89, 0.93]

0.08 0.79
[0.76, 0.82]

4.48
[3.69, 5.24]

0.166
[0.161, 0.172]

0.53
[0.47, 0.59]

0.90
[0.88, 0.92]

0.10 0.85
[0.82, 0.88]

3.40
[2.58, 4.21]

0.179
[0.173, 0.185]

0.65
[0.59, 0.72]

0.88
[0.85, 0.91]

0.12 0.87
[0.84, 0.89]

2.93
[2.21, 3.69]

0.182
[0.176, 0.187]

0.69
[0.63, 0.75]

0.89
[0.87, 0.91]

0.14 0.87
[0.84, 0.89]

3.57
[2.77, 4.42]

0.182
[0.176, 0.188]

0.68
[0.61, 0.74]

0.88
[0.85, 0.90]

0.16 0.86
[0.83, 0.89]

3.81
[3.02, 4.65]

0.178
[0.171, 0.184]

0.66
[0.59, 0.73]

0.87
[0.85, 0.90]

0.18 0.86
[0.84, 0.89]

3.95
[3.13, 4.82]

0.178
[0.172, 0.184]

0.66
[0.59, 0.73]

0.87
[0.85, 0.89]

0.20 0.85
[0.82, 0.87]

4.75
[3.84, 5.71]

0.176
[0.170, 0.182]

0.62
[0.55, 0.69]

0.85
[0.83, 0.88]

0.22 0.83
[0.81, 0.86]

4.99
[4.12, 5.88]

0.175
[0.168, 0.181]

0.62
[0.56, 0.69]

0.83
[0.81, 0.86]

0.24 0.83
[0.81, 0.86]

4.92
[4.06, 5.81]

0.176
[0.169, 0.182]

0.64
[0.58, 0.71]

0.82
[0.80, 0.85]

0.26 0.83
[0.80, 0.85]

5.41
[4.53, 6.30]

0.174
[0.167, 0.180]

0.64
[0.58, 0.70]

0.80
[0.77, 0.83]

0.28 0.81
[0.78, 0.83]

5.73
[4.93, 6.58]

0.168
[0.161, 0.174]

0.63
[0.57, 0.70]

0.77
[0.74, 0.80]

0.30 0.81
[0.79, 0.83]

5.98
[5.15, 6.83]

0.170
[0.164, 0.176]

0.64
[0.58, 0.71]

0.75
[0.72, 0.78]

Table 16: Scramble with tile 32. Results for the metrics for selected noise levels. Shown in square
brackets are bootstrapped 95%-confidence intervals. Here topo stands for topographic similarity, conf
for conflict count, cont for context independence, pos for positional disentanglement and acc for
accuracy.
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E Average topographical similarity for random languages

In this section, we compute the average performance of the topographic similarity metric for a random
language when a message is of length K = 2. For simplicity, we assume that the feature space and
the alphabet space are the same, and equal F = {1, . . . , n}2. Then the topographic similarity for
language ` : F → F is defined as

topo(`) = corr(R(ρ(F0, F1)), R(ρ(`(F0), `(F1))),

where F0, F1 are uniform random variables on F and R is the rank function. The random variable
ρ(F0, F1) takes values {0, 1, 2} with probabilities p0, p1, p2. Since ρ(F0, F1) is discrete, there
are different conventions for defining function R. Typical choices for ranks are: (i) ”min-ranks”
R(0) = 0, R(1) = p0, R(2) = p0 + p1; (ii) ”max-ranks” R(0) = p0, R(1) = p0 + p1, R(2) = 1;
(iii) ”average-ranks” R(0) = p0/2, R(1) = (p0 + p1)/2, R(2) = (p0 + p1 + 1)/2. Lemma 1 gives
the formula for E`∼U [topo(`)].
Lemma 1. Let R be a rank function. Then

E`∼U [topo(`)] =
p0R(0)2 + 2p1

n+1R(1)2 + p2(n−1)
n+1 R(2)2 + 4p2

n+1R(1)R(2)− (
∑2
i=0 piR(i))2∑2

i=0 piR(i)2 − (
∑2
i=0 piR(i))2

,

where U is a uniform distribution among all bijective ` : F → F , n0 = n2, n1 = 2n2(n − 1),
n2 = n2(n− 1)2, and pi = ni/n

4.

Proof. Notice that ρ(F0, F1) and ρ(`(F0), `(F1)) have the same distribution described by pi. Define
α = R(ρ(F0, F1)) and α` = R(ρ(`(F0), `(F1))). Consequently,

E`∼U [topo(`)] =
E`∼UE[αα`]− (E[α])2

V ar(α)
.

Since, E[α] =
∑2
i=0 piR(i) and V ar(α) =

∑2
i=0 piR(i)2 − (E[α])2, it remains to compute

E`∼UE[αα`]:

E`∼UE[αα`] = EE`∼U [αα`] =
1

n4

∑
f0,f1∈F

R(ρ(f0, f1))E`∼U [R(ρ(`(f0), `(f1)))]

=
1

n4

2∑
i=0

∑
f0,f1,ρ(f0,f1)=i

R(i)E`∼U [R(ρ(`(f0), `(f1)))]

= p0R(0)2 +
1

n4

2∑
i=1

∑
f0,f1,ρ(f0,f1)=i

R(i)E`∼U [R(ρ(`(f0), `(f1)))]

= p0R(0)2 +
1

n4

2∑
i=1

∑
f0,f1,ρ(f0,f1)=i

R(i)

(
R(1)

2

n+ 1
+R(2)

n− 1

n+ 1

)

= p0R(0)2 + (R(1)p1 +R(2)p2)

(
R(1)

2

n+ 1
+R(2)

n− 1

n+ 1

)
.

The second to last equality follows from the fact that there ni(n2 − 2)! bijections ` that map f0 6= f1
to `(f0), `(f1) such that ρ(`(f0), `(f1)) = i, for i = 1, 2.

F Optimality of compositional communication

When features are explicitly stated, we can write F =
∏K
i=1 Fi, where Fi is the space of values of

i-th feature and K is the number of features and a message length. We assume that |Fi| = |As| and
that |As| ≥ 2. We will assume that a language is a mapping ` : F → AKs . We said that the language
is compositional if a change in one feature only impacts a corresponding index of the message.
Formally, we say that ` is compositional if and only if for every k = 0, . . . ,K, and f0, f1 ∈ F ,
ρ(f0, f1) = k ⇐⇒ ρ(`(f0), `(f1)) = k. Here ρ stands for the Hamming distance.
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f0

f1

f2 s0

s2

s1

{f ∈ F : ρ(f, f0) = k∗} {s ∈ AKs : ρ(s, s0) = k∗}

`

` `−1

˜̀

˜̀

k∗k∗

Figure 31: Illustration of the construction given in the proof of Theorem 3. Two circles represent the
ball of radius k∗ given by ρ (in F and AKs , respectively). The solid arrow represents the language
`, and the dashed arrows show the swap that is performed when defining ˜̀. ˜̀ improves upon ` by
reducing the number of compositionality violations.

Recall that the corrupted message corresponding to f ∈ F is denoted by f ′ := `−1(`(f)′), and the
two loss function are defined as:

J1(`, f) = F (e1, . . . , eK), ej := P(f ′j 6= fj),

J2(`, f) = E[H(ρ(f ′, f))],

where F is a non-negative function such that F (ε, . . . , ε) = 0, and H is a non-negative, increasing
function.

The noisy channel transforms a message s ∈ AKs , into a corrupted message s′ ∈ AKs , by replacing
each symbol with a different symbol, independently and with probability ε ∈ (0, 1). More formally,
the conditional distribution of s′, given s, is expressed by the following formula:

P(s′ = ŝ|s) = (1− ε)K−ρ(ŝ,s)ερ(̂s,s)
(

1

|As| − 1

)ρ(̂s,s)
, for any ŝ ∈ AKs . (5)

Indeed, there has to be ρ(ŝ, s) noise flips (hence the first two terms on the right-hand side equation 5),
and each flip changes one coordinate of s to the corresponding coordinate of ŝ with probability
1/(|As| − 1).

The following result is a more detailed version of Theorem 2.
Theorem 3. Assume F = X , and ε < (|As| − 1)/|As|. A compositional language minimizes J1
and J2 over all one-to-one languages. Furthermore, for arbitrary f ∈ F , min J2(f, `) = E[H(Bε)],
where Bε is a Binomial distribution with success probability ε. Moreover, ` is optimal for J2 if and
only if ` is compositional.

Notice that, since the assertion holds for arbitrary f ∈ F , the language ` is compositional if and only
if it is optimal for Ef∼ν [J2(f, `)], where ν ∈ P(F) is any distribution such that supp(ν) = F .

Proof. We start by proving the claim for J2. Fix f0 ∈ F and denote s0 = `(f0). Suppose that ` is not
compositional. Then, there exists k > 0, f1 ∈ F , s2 ∈ AKs such that ρ(f0, f1) = k, ρ(s0, s2) = k,
ρ(f0, `

−1(s2)) 6= k, and ρ(s0, `(f1)) 6= k. Let k∗ be the biggest among mentioned k’s and denote
s1 = `(f1), f2 = `−1(s2). By the definition of k∗, we have

ρ(s0, s1) < k∗, ρ(f0, f2) < k∗.

Since ε < (|As| − 1)/|As|, the probability P(s′ = ŝ|s) is a decreasing function of ρ(ŝ, s) (see
equation equation 5). It follows that

P(s′ = s1|s0) > P(s′ = s2|s0).
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We construct a new language ˜̀(see Figure 31)

˜̀(f) =


s1 f = f2,

s2 f = f1,

`(f) otherwise.

As a result,

ρ
(
f0, ˜̀−1(s1)

)
− ρ

(
f0, `

−1(s1)
)

= ρ (f0, f2)− ρ (f0, f1) < 0,

ρ
(
f0, ˜̀−1(s2)

)
− ρ

(
f0, `

−1(s2)
)

= ρ (f0, f1)− ρ (f0, f2) > 0.

Putting things together and using the fact that H is increasing, we get

J2(f0, ˜̀)− J2(f0, `) = E
[
H
(
ρ(˜̀−1(˜̀(f0)′), f0)

)]
− E

[
H
(
ρ(`−1(`(f0)′), f0)

)]
= P(s′ = s1|s0))

{
H
(
ρ
(
f0, ˜̀−1(s1)

))
−H

(
ρ
(
f0, `

−1(s1)
))}

+ P(s′ = s2|s0)
{
H
(
ρ
(
f0, ˜̀−1(s2)

))
−H

(
ρ
(
f0, `

−1(s2)
))}

= {H (ρ(f0, f1))−H (ρ(f0, f2))} (P(s′ = s2|s0)− P(s′ = s1|s0)) < 0.

Consequently, for any non-compositional ` we can strictly decrease its loss value J2(f0, `). Since the
loss is nonnegative and there is a finite number of languages, optimal ` has to be compositional. For
compositional language `,

J2(f0, `) = E [H(ρ(s′0, s0))] =
∑

ŝ∈AK
s

H(ρ(ŝ, s0))P(s′0 = ŝ|s0)

=

K∑
k=0

∑
ŝ∈AK

s
ρ(ŝ,s0)=k

H(k)P (s′ = ŝ|s0) =

K∑
k=0

H(k)

(
K

k

)
εk(1− ε)K−k = E[H(Bε)],

(6)

where Bε is a binomial random variable with success probability ε. This ends the proof for J2.

To prove the assertion for J1 it is enough to notice that a compositional language satisfies P(f ′j 6=
fj) = ε. This follows by equation 6 and the fact that, by symmetry, P(f ′j 6= fj) does not depend on j
(for compositional `).

As a corollary, we see that if H(x) = x/K, J2(f0, `) = ε for any compositional language `.

Notice that Theorem 1 follows from the fact that any permutation π : F → F is a bijection.
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