
A Proofs400

Proof of Theorem 1. Let g : [1,mT]× ZT+ → [1, T] be a function that maps the batch index to its401

corresponding task index. We abbreviate g(i, (mt)
T
t=1) as g(i). Then we have402

Ê[SmT
] = (1− ηmT

)Ê[SmT−1] + ηmT
SmT

(17)

= (1− ηmT
)Ê[SmT−1] + ηmT

rmT
ST
mT

+
ηmT

(1− rmT
)

T − 1

T−1∑
t=1

St
mT

(18)

=

mT∑
i=1

ηiri

mT∏
j=i+1

(1− ηj)Sg(i)
i +

mT∑
j=mg(i)+1

ηj(1− rj)
T − 1

mT∏
k=j+1

(1− ηk)Sg(j)
j (19)

where the first part of Eq. (19) can be considered as the contribution of the “current” tasks of all403

batches to the running statistics, and the second part can be considered as the contribution of the404

“past” tasks. Now we can conclude the proof by noting that the contribution of task t as the “current”405

tasks to the running statistics starts from mt−1 +1 to mt and the contribution as the “past” task starts406

from mt + 1 to mT .407

Proof of Corollary 2. The first result can be obtained by noting that η is a constant and directly
applying the sum formula of geometric series. When mT −mT−1 = mT−1 −mT−2 = · · · = m1,
we have that

wt =
η̄mT−t − η̄mT−t+1

(1− η̄mT)Z
=
η̄(T−t)m1 − η̄(T−t+1)m1

(1− η̄Tm1)Z
=
η̄(T−t)m1(1− η̄m1)

(1− η̄Tm1)Z
≈ η̄(T−t)m1

Z

The approximation error is upper bounded by

|ϵ| = η̄(T−t)m1

Z
(
1− η̄m1

1− η̄m1T
− 1) <

η̄m1

(1− η̄m1T)Z
≤ O(η̄m1

1− η̄m1T
)

408

Proof of Corollary 3. Necessity:409

Let us start by assuming that wt = wt+1. By applying Eq. (6) we have the following

mt∑
i=mt−1+1

ηiri

mT∏
j=i+1

(1− ηj) =
mt+1∑

i=mt+1

ηi(riT − 1)

T − 1

mT∏
j=i+1

(1− ηj)

Simplifying the equation we obtain that410

mt∑
i=mt−1+1

r(1− η)mT−i =

mt+1∑
i=mt+1

rT − 1

T − 1
(1− η)mT−i

r

(1− η)mt−1+1

mt−mt−1∑
i=0

1

(1− η)i =
rT − 1

(T − 1)(1− η)mt+1

mt+1−mt∑
i=0

1

(1− η)i

r(η − 1)(1− η)mt−mt−1 + r

η(1− η)mt+1
=

(rT − 1)[(η − 1)(1− η)mt+1−mt + 1]

η(T − 1)(1− η)mt+1+1

r(1− η̄mt−mt−1+1) =
(rT − 1)(1− η̄mt+1−mt+1)

(T − 1)η̄mt+1−mt

r − r(T − T η̄mt+1−mt+1)

(T − 1)η̄mt+1−mt(1− η̄mt−mt−1+1)
=

η̄mt+1−mt+1 − 1

(T − 1)η̄mt+1−mt(1− η̄mt−mt−1+1)

12

411

r =
η̄mt+1−mt+1 − 1

η̄mt+1−mt(1− T)(η̄mt−mt−1+1 − 1) + T (η̄mt+1−mt+1 − 1)

=
η̄m1+1 − 1

η̄m1(1− T)(η̄m1+1 − 1) + T (η̄m1+1 − 1)

=
1

T − η̄m1(T − 1)

≈ 1

T
The approximation error is upper bounded by

|ϵ| = η̄m1(T − 1)

T (T − η̄m1(T − 1))
<

η̄m1

T − η̄m1(T − 1)
≤ O(η̄m1)

Sufficiency:412

wt+1 − wt =

mt+1∑
i=mt+1

ηi(riT − 1)

T − 1

mT∏
j=i+1

(1− ηj)−
mt∑

i=mt−1+1

ηiri

mT∏
j=i+1

(1− ηj) (20)

Substituting r = 1/T into Eq. (20) yields413

wt+1 − wt = −
mt∑

i=mt−1+1

ηi
T

mT∏
j=i+1

(1− ηj)

= − η
T

mt∑
i=mt−1+1

(1− η)mT−i

= − η̄
mT−mt−1(1− η̄mt−mt−1+1)

T
≈ 0

The approximation error is upper bounded by

|ϵ| = η̄mT−mt−1(1− η̄mt−mt−1+1)

T
<
η̄mT−mt−1

T
≤ O(η̄m1)

414

Proof of Corollary 4. Substituting η(i) = 1/(1 + i) into Eq. (6)415

wt =

 mt∑
i=mt−1+1

ηiri

mT∏
j=i+1

(1− ηj) +
mT∑

i=mt+1

ηi(1− ri)
T − 1

mT∏
j=i+1

(1− ηj)

 /Z
=

 mt∑
i=mt−1+1

ri
1 +mT

+

mT∑
i=mt+1

1

T − 1

1− ri
1 +mT

 /Z
=

[
r + 1−r

T−1

1 +mT

]
/Z

We can now conclude by noting that wt is independent of the choice of t.416

B Implementation Details417

The hyperparameter η̃ is fixed to 0.1, κ is selected from {0.1, 0.4, 0.7, 1.0}, and λ is selected from418

{0.01, 0.1, 1.0, 10.0} for Split CIFAR-10 and Split CIFAR-100 and {0.00001, 0.0001, 0.001, 0.01}419

for Split Mini-ImageNet. Code is available in the supplementary material and will be released upon420

acceptance. All experiments are performed on eight NVIDIA RTX A4000 GPUs. The amount of421

compute is easily affordable, which can be inferred from the running times given in Table 3.422

13

C Extended Results423

C.1 Time Complexity Analysis424

We provide in Table 3 the floating point operations per step (FLOPs/step) of different normaliza-425

tion methods and the total running times (in seconds) under different implementations (the exact426

calculation of FLOPs can be found in the attached code). It can be seen that compared to BN, our427

proposed method only slightly increases the computation, while CN almost doubles the computation428

because it combines both GN (without affine transformation) and BN. Note that the FLOPs only give429

the theoretical computation; the actual running time depends on the implementation. We measure430

the actual running time of two normalization implementations: 1) using the plain torch primitive431

and 2) using the torch.nn with cuDNN as the backend. Due to engineering difficulties, we do432

not currently implement a cuDNN-optimized version of our method. However, it can be seen from433

Table 3 that on the plain implementation our method only slightly increases the running time, which434

is consistent with the FLOPs analysis. This suggests that our method has the potential to achieve435

comparable time complexity as BN through a well-engineered cuDNN implementation.436

Table 3: Comparison of FLOPs per step of different normalization layers and total running times (in
seconds) under different implementations on Split CIFAR-100 using ER-ACE with |B| = 10 and
|M | = 2000 as the baseline approach. - to be exploited.

BN GN CN Ours

FLOPs/step 49.20M 49.18M 86.09M 49.32M
1× 0.99× 1.75× 1.01×

Time (Plain) 430 440 535 489
1× 1.02× 1.24× 1.14×

Time (cuDNN) 324 322 376 -
1× 0.99× 1.16× -

C.2 Impacts of Memory Buffer Selection Strategies437

Fig. 6 shows that our method obtains substantial improvements over both reservoir sampling and ring438

buffer, which demonstrates the robustness of AdaB2N to the memory buffer selection strategy.

ER-ACE
|M| = 2000

DER++
|M| = 2000

ER-ACE
|M| = 5000

DER++
|M| = 5000

0

2

4

∆
F

FA
on

B
N

(%
)

Split CIFAR-100, Task-IL

ER-ACE
|M| = 2000

DER++
|M| = 2000

ER-ACE
|M| = 5000

DER++
|M| = 5000

0

2

4

6

Split CIFAR-100, Class-IL

Ours reservoir

CN reservoir

Ours ring

CN ring

Figure 6: Performance improvements (i.e., ∆ FAA) for online continual learning over different
selection strategies of memory buffer and different memory sizes |M| (with batch size |B| = 10).439

C.3 Forgetting Measure440

Table 4 shows that our method is generally the lowest in terms of forgetting measure.441

C.4 Full Results for Dynamics of Normalization Statistics442

We provide the norm dynamics of the batch statistics and population statistics for all normalization443

layer in Figs. 7 and 8. For better illustration, each curve in the figures indicates the mean after444

Gaussian smoothing with a kernel size of 20 and the shaded area indicates the 0.05×variance. It can445

be seen that our method roughly tracks the joint training (JT) on many layers (e.g., 2, 3, 5, 7, 8, 12,446

15, 17, 18, 19).447

14

Table 4: Forgetting measure (↓) of online task-incremental learning with batch size |B| = 10. We
use bold, underline, and italic to indicate the first, second, and third best results respectively.

Method
Split CIFAR-10 Split CIFAR-100 Split Mini-ImageNet

|M|=500 |M|=2000 |M|=2000 |M|=5000 |M|=2000 |M|=5000
ER-ACE w/ BN 3.31±0.95 1.76±1.84 2.15±1.11 1.71±0.98 3.14±1.42 2.80±1.07
ER-ACE w/ LN 4.03±3.25 0.99±1.43 2.92±0.81 1.46±0.44 2.93±0.08 2.53±0.93
ER-ACE w/ IN 1.74±1.04 1.76±0.96 2.11±0.61 1.41±0.63 3.86±0.59 5.07±1.20
ER-ACE w/ GN 1.30±0.36 1.73±1.61 0.86±0.26 3.21±0.96 4.13±1.98 3.07±1.44
ER-ACE w/ CN 1.67±0.25 0.90±0.51 2.53±0.53 2.03±0.33 3.72±1.26 4.21±1.37
ER-ACE w/ Ours 1.22±0.60 0.84±0.78 1.81±0.66 1.58±1.35 2.21±2.38 1.94±0.87
DER++ w/ BN 2.35±0.73 0.22±0.03 1.26±0.42 1.31±1.07 1.97±0.94 2.60±0.32
DER++ w/ LN 1.61±1.05 0.65±0.22 2.02±1.28 1.88±1.41 3.16±0.70 2.95±0.61
DER++ w/ IN 1.90±0.47 0.68±0.62 2.91±1.89 1.78±1.03 3.46±0.56 3.64±0.40
DER++ w/ GN 1.42±1.03 0.89±1.05 2.32±1.45 1.41±0.63 3.88±1.52 3.70±1.29
DER++ w/ CN 3.89±0.52 2.05±0.40 1.63±0.77 1.07±0.28 4.04±1.17 3.85±1.08
DER++ w/ Ours 1.81±1.74 0.38±0.17 0.92±0.58 0.73±0.41 3.65±1.49 1.36±0.32

0 5000

0.5

1.0

1.5

Layer 1

0 5000

2

4

6

8
Layer 2

0 5000

2

4

6

Layer 3

0 5000

4

6

8

Layer 4

0 5000

2

4

Layer 5

0 5000

5.0

7.5

10.0

12.5
Layer 6

0 5000
2

4

6

8
Layer 7

0 5000

5

6

7

Layer 8

0 5000
2.5

5.0

7.5

10.0

Layer 9

0 5000
2

4

6

8

Layer 10

0 5000
5

10

15

Layer 11

0 5000

5.0

7.5

10.0

Layer 12

0 5000

7

8

9

10

Layer 13

0 5000

5

10

15
Layer 14

0 5000

5

10

15
Layer 15

0 5000

10

15

20

Layer 16

0 5000

10

20

Layer 17

0 5000

10

15

20

25
Layer 18

0 5000

5

10

Layer 19

0 5000

5

10

15

Layer 20

BN CN JT Ours

Figure 7: Norm dynamics of the batch statistics of all normalization layer.

15

0 5000

0.5

1.0

1.5

Layer 1

0 5000

2

4

6

8
Layer 2

0 5000

2

4

6

Layer 3

0 5000

2.5

5.0

7.5

Layer 4

0 5000

2

4

Layer 5

0 5000

5.0

7.5

10.0

12.5
Layer 6

0 5000

2

4

6

8
Layer 7

0 5000

4

6

Layer 8

0 5000

5

10

Layer 9

0 5000

2.5

5.0

7.5

Layer 10

0 5000

5

10

15

Layer 11

0 5000

5

10

Layer 12

0 5000

6

8

10

Layer 13

0 5000

5

10

15
Layer 14

0 5000

5

10

Layer 15

0 5000
5

10

15

20

Layer 16

0 5000

10

20

Layer 17

0 5000

10

20

Layer 18

0 5000

5

10

Layer 19

0 5000

5

10

15

20
Layer 20

BN CN JT Ours

Figure 8: Norm dynamics of the population statistics of all normalization layer.

16

	Proofs
	Implementation Details
	Extended Results
	Time Complexity Analysis
	Impacts of Memory Buffer Selection Strategies
	Forgetting Measure
	Full Results for Dynamics of Normalization Statistics

