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1 Data and code1

The data and code are available at https://zenodo.org/record/4894498#.YLjk5Rh9iV5.2

2 Compute, schedule, and lowered pseudo code for matrix multiplication3

2.1 Compute specifications for matrix multiplication4

Algorithm 1: ComputeTMM(D,W )

Input:
• D is a matrix of size M ×K,
• W is a matrix of size N ×K.

Output: An operator C = D ∗WT .
1 begin
2 let C[y, x] :=

∑K−1
k=0 D[y, k] ∗W [x, k], for x ∈ [0, N − 1], y ∈ [0,M − 1];

3 return C;

Algorithm 2: ComputeTTMM(D,W )

Input:
• D is a matrix of size M ×K,
• W is a matrix of size N ×K.

Output: An operator C = D ∗WT .
1 begin
2 let W ′[k, x] = W [x, k], for x ∈ [0, N − 1], y ∈ [0,M − 1];
3 let C[y, x] :=

∑K−1
k=0 D[y, k] ∗W ′[k, x], for x ∈ [0, N − 1], y ∈ [0,M − 1];

4 return C;
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Algorithm 3: ComputeDNMM(D,W )

Input:
• D is a matrix of size M ×K,
• W is a matrix of size N ×K,
• tiling size Kt.

Output: An operator C = D ∗WT .
1 begin
2 let CC[y, x, ki] :=

∑v−1
ko=0 D[y, ko ∗Kt + ki] ∗W [x, ko ∗Kt + ki] for

ki ∈ [0,Kt − 1], x ∈ [0, N − 1], y ∈ [0,M − 1], ko ∗Kt + ki < K;
// The order y, x, ki defines the layout

3 let C[y, x] :=
∑Kt−1

ki=0 CC[y, x, ki], for x ∈ [0, N − 1], y ∈ [0,M − 1];
4 return C;

Algorithm 4: ComputeLPMM(D,W )

Input:
• D is a matrix of size M ×K,
• W is a matrix of size N ×K,
• packing size Mt.

Output: An operator C = D ∗WT .
1 begin
2 let PD[yo, k, yi] := D[yo ∗Mt + yi, k];
3 let C[y, x] :=

∑K−1
k=0 PD[y/Mt, k, y mod Mt] ∗W [x, k] for y ∈ [0,M − 1], x ∈ [0, N − 1];

4 return C;

Algorithm 5: ComputeRPMM(D,W )

Input:
• D is a matrix of size M ×K,
• W is a matrix of size N ×K,
• packing size Nt.

Output: An operator C = D ∗WT .
1 begin
2 let PW [xo, k, xi] := W [xo ∗Nt + xi, k];
3 let C[y, x] :=

∑K−1
k=0 D[y, k] ∗ PW [x/Nt, k, x mod Nt] for y ∈ [0,M − 1], x ∈ [0, N − 1];

4 return C;

2



Algorithm 6: ComputeDPMM(D,W )

Input:
• D is a matrix of size M ×K,
• W is a matrix of size N ×K,
• packing size Mt, Nt.

Output: An operator C = D ∗WT .
1 begin
2 let PD[yo, k, yi] := D[yo ∗Mt + yi, k];
3 let PW [xo, k, xi] := W [xo ∗Nt + xi, k];
4 let C[y, x] :=

∑K−1
k=0 PD[y/Mt, k, y mod Mt] ∗ PW [x/Nt, k, x mod Nt] for

y ∈ [0,M − 1], x ∈ [0, N − 1];
5 return C;

Algorithm 7: ScheduleTMM(C)

Input: The tiled matrix multiplication operator C described by the compute ComputeTMM.
Output: A schedule S for C.

1 begin
2 create a schedule S for C;
3 let y, x be two normal axes of C;
4 let k be the reduced axis of C;
5 split y into yt, yo, yi;
6 split x into xt, xo, xi;
7 split k into ko, ki;
8 reset the loops order (yt, xt, yo, xo, ko, yi, ki, xi);
9 fuse yt, xt into yxt;

10 fuse yo, xo into yxo;
11 parallelize yxt;
12 vectorize xi;

2.2 Schedule templates for matrix multiplication5

2.3 Lowered pseudo code from the schedule templates for matrix multiplication6

For the simplicity of presentation, we assume that the tiling sizes divide corresponding matrix7

dimensions.8

3 Compute, schedule, and lowered pseudo code for 2D-convolution9

3.1 Compute specifications for 2D-convolution10

3.2 Schedule templates for 2D-convolution11

3.3 Lowered pseudo code from the schedule templates for 2D-convolution12

For the simplicity of presentation, we assume that the tiling sizes divide corresponding matrix13

dimensions. Moreover, some conditional branches are omitted for simplicity.14

4 Cache complexity analysis for matrix multiplication15

In this section, we analyze the worst case cache complexity for different implementations of matrix16

multiplication mentioned before, based on the ideal cache model. To make the analysis simpler,17

we always assume that the tiling sizes divide their corresponding matrix dimensions. In this way,18

although we use two-level tiled schedules, it is equivalent to analyze its one-level counterpart.19

Recall that20
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Algorithm 8: ScheduleTTMM(C)

Input: The transposed and tiled matrix multiplication operator C described by the compute
ComputeTTMM.

Output: A schedule S for C.
1 begin
2 create a schedule S for C;
3 let D,W be two input tensors of C;
4 let x, k be the axes of W ′;
5 split k into ko, ki;
6 split x into xo, xi;
7 reset the loop orders (ko, xo, ki, xi);
8 fuse ko, xo into kxo;
9 parallelize kxo;

10 vectorize xi;
11 let y, x be two normal axes of C;
12 let k be the reduced axis of C;
13 split y into yt, yo, yi;
14 split x into xt, xo, xi;
15 split k into ko, ki;
16 reset the loops order (yt, xt, yo, xo, ko, yi, ki, xi);
17 fuse yt, xt into yxt;
18 fuse yo, xo into yxo;
19 parallelize yxt;
20 vectorize xi;
21 unroll ki;

Algorithm 9: ScheduleDNMM(C)

Input: The non-packed matrix multiplication operator C specified by the compute
ComputeDNMM.

Output: A (one-level tiling) schedule S for C.
1 begin
2 create a schedule S for C;
3 let y, x be two normal axes of C;
4 let ki be the reduced axis of C;
5 split y into yo and yi;
6 split x into xo and xi;
7 recorder yo, yi, xo, xi into (yo, xo, yi, xi);
8 fuse yo, xo into yxo;
9 set yxo as a parallel axis;

10 set ki as the unroll axis with factor |ki|;
11 let CC be the input operator of C;
12 split CC’s y, x as C;
13 fuse CC’s loop and C’s loop after yo, xo;
14 let ko be the reduced axis of CC;
15 fuse yi, xi of CC into yxi;
16 reset the loops order (ko, yxi, ki) of CC;
17 unroll yxi of CC;
18 vectorize ki of CC;
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Algorithm 10: ScheduleDNMM332(C)

Input: The non-packed matrix multiplication operator C specified by the compute
ComputeDNMM.

Output: A (two-level tiling) schedule S for C.
1 begin
2 create a schedule S for C;
3 let y, x be two normal axes of C;
4 let ki be the reduced axis of C;
5 split y into yt, yo, yi;
6 split x into xt, xo, xi;
7 recorder yt, yo, yi, xt, xo, xi into (yt, xt, yo, xo, yi, xi);
8 fuse yt, xt into yxt;
9 set yxt as a parallel axis;

10 fuse yo, xo into yxo;
11 set ki as the unroll axis with factor |ki|;
12 let CC be the input operator of C;
13 split CC’s y, x as C;
14 fuse CC’s loop and C’s loop after yxo;
15 let ko be the reduced axis of CC;
16 fuse yi, xi of CC into yxi;
17 reset the loops order (ko, yxi, ki) of CC;
18 unroll yxi of CC;
19 vectorize ki of CC;

Algorithm 11: ScheduleLPMM(C)

Input: The left packed matrix multiplication operator C specified by the compute ComputeLPMM.
Output: A schedule S for C.

1 begin
2 create a schedule S for C;
3 let PD,W be two input tensors of C;
4 let yo, k, yi be the axes of PD;
5 reset the loops order (yo, yi, k);
6 parallelize yo;
7 vectorize yi;
8 let CC be a write cache of C in cache;
9 let y, x be two normal axes of C;

10 let k be the reduced axis of CC;
11 split y into yt, yo, yi;
12 split x into xt, xo, xi;
13 reset the loops order (yt, xt, yo, xo, yi, xi);
14 fuse yt, xt into yxt;
15 set yxt as a parallel axis;
16 fuse yo, xo into yxo;
17 unroll yi;
18 vectorize xi;
19 compute CC inside the loop yxo;
20 split k as ko, ki;
21 reset the loops order (ko, ki, yi, xi);
22 unroll ki;
23 unroll yi;
24 vectorize xi;
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Algorithm 12: ScheduleRPMM(C)

Input: The right packed matrix multiplication operator C specified by the compute
ComputeRPMM.

Output: The default schedule S in TVM for C.
1 begin
2 create a schedule S for C;
3 let D,PW be two input tensors of C;
4 let xo, k, xi be the axes of PW ;
5 reset the loops order (xo, xi, k);
6 parallelize xo;
7 let CC be a writing of C in cache;
8 let y, x be two normal axes of C;
9 let k be the reduced axis of CC;

10 split y into yt, yo, yi;
11 split x into xt, xo, xi;
12 reset the loops order (yt, xt, yo, xo, yi, xi);
13 fuse yt, xt into yxt;
14 set yxt as a parallel axis;
15 fuse yo, xo into yxo;
16 unroll yi;
17 vectorize xi;
18 compute CC inside the loop yxo;
19 split k as ko, ki;
20 reset the loops order (ko, ki, yi, xi);
21 unroll ki;
22 unroll yi;
23 vectorize xi;

Algorithm 13: ScheduleRPMMV(C)

Input: The right packed matrix multiplication operator C specified by the compute
ComputeRPMM.

Output: A schedule S for C with vectorization for the loop computing PW .
1 begin
2 create a schedule S for C;
3 let D,PW be two input tensors of C;
4 let xo, k, xi be the axes of PW ;
5 reset the loops order (xo, xi, k);
6 parallelize xo;
7 vectorize xi;
8 let CC be a writing of C in cache;
9 let y, x be two normal axes of C;

10 let k be the reduced axis of CC;
11 split y into yt, yo, yi;
12 split x into xt, xo, xi;
13 reset the loops order (yt, xt, yo, xo, yi, xi);
14 fuse yt, xt into yxt;
15 set yxt as a parallel axis;
16 fuse yo, xo into yxo;
17 unroll yi;
18 vectorize xi;
19 compute CC inside the loop yxo;
20 split k as ko, ki;
21 reset the loops order (ko, ki, yi, xi);
22 unroll ki;
23 unroll yi;
24 vectorize xi;
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Algorithm 14: ScheduleDPMM(C)

Input: The double packed matrix multiplication operator C specified by the compute
ComputeDPMM.

Output: A schedule S for C.
1 begin
2 create a schedule S for C;
3 let PD,PW be two input tensors of C;
4 let yo, k, yi be the axes of PD;
5 reset the loops order (yo, yi, k);
6 parallelize yo;
7 vectorize yi;
8 let xo, k, xi be the axes of PW ;
9 reset the loops order (xo, xi, k);

10 parallelize xo;
11 vectorize xi;
12 let CC be a writing C in cache;
13 let y, x be two normal axes of C;
14 let k be the reduced axis of CC;
15 split y into yt, yo, yi;
16 split x into xt, xo, xi;
17 reset the loops order (yt, xt, yo, xo, yi, xi);
18 fuse yt, xt into yxt;
19 set yxt as a parallel axis;
20 fuse yo, xo into yxo;
21 unroll yi;
22 vectorize xi;
23 compute CC inside the loop yxo;
24 split k as ko, ki;
25 reset the loops order (ko, ki, yi, xi);
26 unroll ki;
27 unroll yi;
28 vectorize xi;

Algorithm 15: CodeTMM(D,W )

Input: D, W .
Output: C = D ∗WT .
// fuse loop variables yt and xt

1 Parallel for yt = 0 to M/(Mo ∗Mt)− 1 do
2 Parallel for xt = 0 to N/(No ∗Nt)− 1 do

// fuse loop variables yo and xo

3 for yo = 0 to Mo − 1 do
4 for xo = 0 to No − 1 do
5 for yi = 0 to Mt − 1 do
6 for xi = 0 to Nt − 1 do
7 C[yt ∗Mo ∗Mt + yo ∗Mt + yi, xt ∗No ∗Nt + xo ∗Nt + ~xi] = 0;

8 for ko = 0 to (K/Kt)− 1 do
9 for yi = 0 to Mt − 1 do

10 for ki = 0 to Kt − 1 do
11 for xi = 0 to Nt − 1 do
12 C[yo ∗Mt + yi, xo ∗Nt + ~xi] += D[yt ∗Mo ∗Mt + yo ∗Mt +

yi, ko ∗Kt + ki] ∗W [xt ∗No ∗Nt + xo ∗Nt + ~xi, ko ∗Kt + ki]

13 return C;
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Algorithm 16: CodeTTMM(D,W )

Input: D, W .
Output: C = D ∗WT .
// fuse loop variables ko and xo

1 Parallel for ko = 0 to (K/Kt)− 1 do
2 Parallel for xo = 0 to (N/Nt)− 1 do
3 for ki = 0 to Kt − 1 do
4 for xi = 0 to Nt − 1 do
5 W ′[ko ∗Kt + ki, xo ∗Nt + ~xi] = W [xo ∗Nt + ~xi, ko ∗Kt + ki]

// fuse loop variables yt and xt

6 Parallel for yt = 0 to M/(Mo ∗Mt)− 1 do
7 Parallel for xt = 0 to N/(No ∗Nt)− 1 do

// fuse loop variables yo and xo

8 for yo = 0 to Mo − 1 do
9 for xo = 0 to No − 1 do

10 for yi = 0 to Mt − 1 do
11 for xi = 0 to Nt − 1 do
12 C[yt ∗Mo ∗Mt + yo ∗Mt + yi, xt ∗No ∗Nt + xo ∗Nt + ~xi] = 0;

13 for ko = 0 to (K/Kt)− 1 do
14 for yi = 0 to Mt − 1 do
15 for ki = 0 to Kt − 1 do
16 for xi = 0 to Nt − 1 do
17 C[yo ∗Mt + yi, xo ∗Nt + ~xi] += D[yt ∗Mo ∗Mt + yo ∗Mt +

yi, ko ∗Kt + ki] ∗W ′[ko ∗Kt + ki, xt ∗No ∗Nt + xo ∗Nt + ~xi]

18 return C

• Cw is the cache line size,21

• Zw is the cache size,22

• The cache is tall, that is Zw >> Cw.23

Theorem 1. Assume that Tm(Mt,Kt, Nt) <
Zw

Cw
and Mt|M,Kt|K,Nt|N , the cache complexity24

Cm(M,K,N,Mt,Kt, Nt) for each schedule is listed as below:25
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Proof. Analysis of TMM. There are dM/MtedN/Nte tiles in C to compute. We choose Mt,Kt, Nt26

such that a tile of size Mt ×Nt in C, a tile of size Mt ×Kt in D, and a tile of size Nt ×Kt in W27
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Algorithm 17: CodeDNMM(D,W )

Input: D, W .
Output: C = D ∗WT .
// fuse loop variables yo and xo

1 Parallel for yo = 0 to M/Mt − 1 do
2 Parallel for xo = 0 to N/Nt − 1 do

// fuse loop variables yo and xo

3 for yi = 0 to Mt − 1 do
4 for xi = 0 to Nt − 1 do

// vectorize ki
5 for ki = 0 to Kt − 1 do
6 CC[yo ∗Mt + yi, xo ∗Nt + xi, ~ki] = 0

7 for ko = 0 to (K/Kt)− 1 do
// fuse yi and xi into yxi and unroll it

8 for yi = 0 to Mt − 1 do
9 for xi = 0 to Nt − 1 do

10 for ki = 0 to Kt − 1 do
11 CC[yo ∗Mt + yi, xo ∗Nt + xi, ~ki] +=

D[yo ∗Mt + yi, ko ∗Kt + ~ki] ∗W [xo ∗Nt + xi, ko ∗Kt + ~ki]

12 for yi = 0 to Mt − 1 do
13 for xi = 0 to Nt − 1 do
14 C[yo ∗Mt + yi, xo ∗Nt + xi] = 0;
15 for ki = 0 to Kt − 1 do
16 C[yo ∗Mt + yi, xo ∗Nt + xi] += CC[yo ∗Mt + yi, xo ∗Nt + xi, ki]

17 return C

can simultaneously fit in cache, which requires that Mt (dKt/Cwe+ 1) + Nt (dKt/Cwe+ 1) +28

Mt (dNt/Cwe+ 1) < Zw/Cw holds. To compute a tile of C, we need to load at most29

Mt (dKt/Cwe+ 1) dK/Kte cache lines from D, Nt (dKt/Cwe+ 1) dK/Kte cache lines from W ,30

and Mt (dNt/Cwe+ 1) cache lines from C.31

So in total, we need to load32

dM/MtedN/Nte(Mt (dKt/Cwe+ 1) dK/Kte
+ Nt (dKt/Cwe+ 1) dK/Kte
+ Mt (dNt/Cwe+ 1))

(1)

cache lines.33

Analysis of TTMM. There are two parts in the computation. The first part is computing W ′ = WT
NK .34

There are dK/KtedN/Nte tiles in W ′ to compute. Assume that one tile of W ′ and one tile of W can35

fit in cache. For each tile of W ′, we need to load Kt(dNt/Cwe+1) from W ′ and Nt(dKt/Cwe+1)36

from W . That is we need to assume that Kt(dNt/Cwe+ 1) +Nt(dKt/Cwe+ 1) < Zw/Cw holds.37

So total number of lines to load is dK/KtedN/Nte(Kt(dNt/Cwe+ 1) +Nt(dKt/Cwe+ 1)).38

The second part is the computation of C. There are dM/MtedN/Nte tiles in C to compute. We39

choose Mt,Kt, Nt such that a tile of size Mt × Nt in C, a tile of size Mt × Kt in D, and a tile40

of size Kt × Nt in W can simultaneously fit in cache, which requires that Mt (dKt/Cwe+ 1) +41

Kt (dNt/Cwe+ 1)+Mt (dNt/Cwe+ 1) < Zw/Cw holds. To compute a tile of C, we need to load42

at most Mt (dKt/Cwe+ 1) dK/Kte cache lines from D, Kt (dNt/Cwe+ 1) dK/Kte cache lines43

from W , and Mt (dNt/Cwe+ 1) cache lines from C. So in total, we need to load44

dM/MtedN/Nte(Mt (dKt/Cwe+ 1) dK/Kte
+ Kt (dNt/Cwe+ 1) dK/Kte
+ Mt (dNt/Cwe+ 1))

(2)
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Algorithm 18: CodeDNMM332(D,W )

Input: D, W .
Output: C = D ∗WT .
// fuse loop variables yt and xt

1 Parallel for yt = 0 to M/(Mo ∗Mt)− 1 do
2 Parallel for xt = 0 to N/(No ∗Nt)− 1 do

// fuse loop variables yo and xo

3 for yo = 0 to Mo − 1 do
4 for xo = 0 to No − 1 do

// fuse yi and xi into yxi and unroll it
5 for yi = 0 to Mt − 1 do
6 for xi = 0 to Nt − 1 do

// vectorize ki
7 for ki = 0 to Kt − 1 do
8 CC[yt ∗Mo ∗Mt + yo ∗Mt + yi, xt ∗No ∗Nt + xo ∗Nt + xi, ~ki] = 0

9 for ko = 0 to (K/Kt)− 1 do
// fuse yi and xi into yxi and unroll it

10 for yi = 0 to Mt − 1 do
11 for xi = 0 to Nt − 1 do
12 for ki = 0 to Kt − 1 do
13 CC[yt ∗Mo ∗Mt+yo ∗Mt+yi, xt ∗No ∗Nt+xo ∗Nt+xi, ~ki] +=

D[yt ∗Mo ∗Mt + yo ∗Mt + yi, ko ∗Kt + ~ki] ∗W [xt ∗No ∗Nt +

xo ∗Nt + xi, ko ∗Kt + ~ki]

14 for yi = 0 to Mt − 1 do
15 for xi = 0 to Nt − 1 do
16 C[yt ∗Mo ∗Mt + yo ∗Mt + yi, xt ∗No ∗Nt + xo ∗Nt + xi] = 0;
17 for ki = 0 to Kt − 1 do
18 C[yt ∗Mo ∗Mt + yo ∗Mt + yi, xt ∗No ∗Nt + xo ∗Nt + xi] +=

CC[yt ∗Mo ∗Mt + yo ∗Mt + yi, xt ∗No ∗Nt + xo ∗Nt + xi, ki]

19 return C

cache lines.45

To summarize, assume that

Kt(dNt/Cwe+1)+max(Nt(dKt/Cwe+1),Mt (dKt/Cwe+ 1)+Mt (dNt/Cwe+ 1)) < Zw/Cw

holds, the total number of cache misses is: dK/KtedN/Nte(Kt(dNt/Cwe+ 1) +Nt(dKt/Cwe+46

1)) + dM/MtedN/Nte(Mt (dKt/Cwe+ 1) dK/Kte + Kt (dNt/Cwe+ 1) dK/Kte +47

Mt (dNt/Cwe+ 1)).48

Analysis for DNMM. There are three parts in the computation. The first part is to initialize CC. The49

second part is to compute CC. The third part is to compute C. There are dM/MtedN/Nte tiles in CC50

and C to compute. To initialize each tile of CC, we need to load at most Mt(dKtNt/Cwe+1) cache51

lines. To compute each tile of C, we need to load at most Mt(dNt/Cwe+1)+Mt(dKtNt/Cwe+1)52

cache lines. To compute each tile of CC, we choose Mt,Kt, Nt such that a tile of size Mt×Nt×Kt53

in CC, a tile of size Mt ×Kt in D, and a tile of size Nt ×Kt in W can simultaneously fit in cache,54

which requires that Mt(dNtKt/Cwe+ 1) + (Mt +Nt)(dKt/Cwe+ 1) < Zw/Cw holds.55

So in the following analysis, we assume that Mt(dNtKt/Cwe+1)+max(Mt(dNt/Cwe+1), (Mt+56

Nt)(dKt/Cwe + 1)) < Zw/Cw holds. Under such assumption, once a tile of CC is initialized,57

it will be kept in cache until a tile of C is computed. To compute a tile of CC, we need to load58

Mt(dNtKt/Cwe+ 1) elements from CC. To compute such a tile, we need to load dK/Kte times59
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Algorithm 19: CodeLPMM(D,W )

Input: D, W .
Output: C = D ∗WT .

1 Parallel for yo = 0 to M/Mt − 1 do
2 for yi = 0 to Mt − 1 do
3 for k = 0 to K − 1 do
4 PD[yo, k, ~yi] = D[yo ∗Mt + ~yi, k]

// fuse loop variables yt and xt

5 Parallel for yt = 0 to M/(Mo ∗Mt)− 1 do
6 Parallel for xt = 0 to N/(No ∗Nt)− 1 do

// fuse loop variables yo and xo

7 for yo = 0 to Mo − 1 do
8 for xo = 0 to No − 1 do
9 for yi = 0 to Mt − 1 do

10 for xi = 0 to Nt − 1 do
11 CC[yi, ~xi] = 0

12 for ko to Ko − 1 do
13 for ki to Ki − 1 do
14 for yi = 0 to Mt − 1 do

// vectorize xi

15 for xi = 0 to Nt − 1 do
16 CC[yi, ~xi] += PD[yt ∗Mo + yo, ko ∗Kt + ki, yi] ∗W [xt ∗No ∗

Nt + xo ∗Nt + ~xi, ko ∗Kt + ki];

17 for yi = 0 to Mt − 1 do
18 for xi = 0 to Nt − 1 do
19 C[yt ∗Mo ∗Mt + yo ∗Mt + yi, xt ∗No ∗Nt + xo ∗Nt + ~xi] = CC[yi, ~xi]

20 return C;

tiles of D with size Mt ×Kt and tiles of W with size Nt ×Kt from main memory. Each tile of D60

and W respectively induces Mt(dKt/Cwe+ 1) and Nt(dKt/Cwe+ 1) cache misses.61

So for each tile of CC, the total cache misses is dK/Kte(Mt + Nt)(dKt/Cwe +62

1) + Mt(dNtKt/Cwe + 1). So the cache complexity for the whole algorithm is:63

dM/MtedN/Nte(dK/Kte(Mt+Nt)(dKt/Cwe+1)+Mt(dNtKt/Cwe+1)+Mt(dNt/Cwe+1)).64

Analysis of LPMM. There are three parts in the computation. The first part is the creation of PD.65

If we choose Mt well such that dMt/Cwe + 1 lines from PD and Mt lines from D fit into the66

cache, that is dMt/Cwe + 1 + Mt < Zw/Cw. Then the total caches misses for the first part is67

dM/Mte(dKMt/Cwe+1)+dM/Mte(Mt(dK/Cwe+1)). Note that, in the above analysis, the first68

half is dKMt/Cwe+ 1 rather than K(dMt/Cwe+ 1) because the layout of PD is po, k, pi and the69

extra lines loaded due to dMt/Cwe+ 1 lines will be amortized. The second part is the computation70

of CC. To compute each CC, we need dMtNt/Cwe+ 1 lines from CC, Nt(dKt/Cwe+ 1) lines71

from W , and dKtMt/Cwe + 1 lines from PD to fit in cache. So the cache complexity for the72

second part is dMtNt/Cwe+1+dM/(MoMt)edN/(NoNt)eMoNo(dK/Kte(Nt(dKt/Cwe+1)+73

dKtMt/Cwe+ 1)). Note that the term dMtNt/Cwe+ 1 only needs to be counted once since once74

CC is loaded into the cache, it can be kept there without being replaced. The last part is to copy75

CC to C. For this part, we need Mt(dNt/Cwe+ 1) from C and dMtNt/Cwe+ 1 from CC to fit in76

cache. So for the second and third part, if we assume that dMtNt/Cwe+ 1 + max(Mt(dNt/Cwe+77

1), Nt(dKt/Cwe+1)+dKtMt/Cwe+1) < Zw/Cw, then the cache complexity for the two parts are:78

dMtNt/Cwe+1+dM/(MoMt)edN/(NoNt)eMoNo(Mt(dNt/Cwe+1)+dK/Kte(Nt(dKt/Cwe+79

1) + dKtMt/Cwe+ 1)). Note that in the above analysis, CC only needs to be counted once, since80

in the ideal cache model, it will remain in cache.81
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Algorithm 20: CodeRPMM(D,W )

Input: D, W .
Output: C = D ∗WT .

1 Parallel for xo = 0 to N/Nt − 1 do
2 for xi to Nt − 1 do
3 for k = 0 to K − 1 do
4 PW [xo, k, ~xi] = W [xo ∗Nt + ~xi, k]

// fuse loop variables yt and xt

5 Parallel for yt = 0 to M/(Mo ∗Mt)− 1 do
6 Parallel for xt = 0 to N/(No ∗Nt)− 1 do

// fuse loop variables yo and xo

7 for yo = 0 to Mo − 1 do
8 for xo = 0 to No − 1 do
9 for yi = 0 to Mt − 1 do

10 for xi = 0 to Nt − 1 do
11 CC[yi, ~xi] = 0

12 for ko to Ko − 1 do
13 for ki to Ki − 1 do
14 for yi = 0 to Mt − 1 do

// vectorize xi

15 for xi = 0 to Nt − 1 do
16 CC[yi, ~xi] += D[yt ∗Mo ∗Mt + yo ∗Mt + yi, ko ∗Kt + ki] ∗

PW [xt ∗No + xo, ko ∗Kt + ki, ~xi];

17 for yi = 0 to Mt − 1 do
18 for xi = 0 to Nt − 1 do
19 C[yt ∗Mo ∗Mt + yo ∗Mt + yi, xt ∗No ∗Nt + xo ∗Nt + ~xi] = CC[yi, ~xi]

20 return C;

So for the whole computation, if we assume that max(dMt/Cwe + 1 + Mt, dMtNt/Cwe +82

1 + max(Mt(dNt/Cwe + 1), Nt(dKt/Cwe + 1) + dKtMt/Cwe + 1)) < Zw/Cw, then the83

cache complexity is dM/Mte(dKMt/Cwe+ 1) + dM/Mte(Mt(dK/Cwe+ 1)) + dMtNt/Cwe+84

1 + dM/(MoMt)edN/(NoNt)eMoNo(Mt(dNt/Cwe + 1) + dK/Kte(Nt(dKt/Cwe + 1) +85

dKtMt/Cwe+ 1)).86

Analysis of RPMM. There are three parts in the computation. The first part is the creation of PW .87

If we choose Nt well such that dNt/Cwe + 1 lines from PW and Nt lines from W fit into the88

cache, that is dNt/Cwe + 1 + Nt < Zw/Cw. Then the total caches misses for the first part is89

dN/Nte(dKNt/Cwe+ 1) + dN/Nte(Nt(dK/Cwe+ 1)). Note that, in the above analysis, the first90

half is dKNt/Cwe+ 1 rather than K(dNt/Cwe+ 1) because the layout of PW is po, k, pi and the91

extra lines loaded due to dNt/Cwe+ 1 lines will be amortized. The second part is the computation92

of CC. To compute each CC, we need dMtNt/Cwe+ 1 from CC, Mt(dKt/Cwe+ 1) of D, and93

dKtNt/Cwe+1 of PW to fit in cache. So the cache complexity for the second part is dMtNt/Cwe+94

1+ dM/(MoMt)edN/(NoNt)eMoNo(dK/Kte(Mt(dKt/Cwe+1)+ dKtNt/Cwe+1)). The last95

part is to copy CC to C. For this part, we need Mt(dNt/Cwe + 1) from C and dMtNt/Cwe + 196

from CC to fit in cache. So for the second and third part, if we assume that dMtNt/Cwe + 1 +97

max(Mt(dNt/Cwe+1),Mt(dKt/Cwe+1)+dKtNt/Cwe+1) < Zw/Cw, then the cache complexity98

for the two parts are: dMtNt/Cwe+ 1 + dM/(MoMt)edN/(NoNt)eMoNo(Mt(dNt/Cwe+ 1) +99

dK/Kte(Mt(dKt/Cwe+1)+dKtNt/Cwe+1)). Note that in the above analysis, CC only needs to100

be counted once, since in the ideal cache model, it will remain in cache. So for the whole computation,101

we assume that max(dNt/Cwe+1+Nt, dMtNt/Cwe+1+max(Mt(dNt/Cwe+1),Mt(dKt/Cwe+102

1) + dKtNt/Cwe + 1)) < Zw/Cw, and the cache complexity is dN/Nte(dKNt/Cwe + 1) +103
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Algorithm 21: CodeDPMM(D,W )

Input: DMK , WNK

Output: C = D ∗WT

1 Parallel for yo = 0 to M/Mt − 1 do
2 for yi = 0 to Mt − 1 do
3 for k = 0 to K − 1 do
4 PD[yo, k, ~yi] = D[yo ∗Nt + ~yi, k]

5 Parallel for xo = 0 to N/Nt − 1 do
6 for xi to Nt − 1 do
7 for k = 0 to K − 1 do
8 PW [xo, k, ~xi] = W [xo ∗Nt + ~xi, k]

// fuse loop variables yt and xt

9 Parallel for yt = 0 to M/(Mo ∗Mt)− 1 do
10 Parallel for xt = 0 to N/(No ∗Nt)− 1 do

// fuse loop variables yo and xo

11 for yo = 0 to Mo − 1 do
12 for xo = 0 to No − 1 do
13 for yi = 0 to Mt − 1 do
14 for xi = 0 to Nt − 1 do
15 CC[yi, ~xi] = 0

16 for ko to Ko − 1 do
17 for ki to Ki − 1 do
18 for yi = 0 to Mt − 1 do

// vectorize xi

19 for xi = 0 to Nt − 1 do
20 CC[yi, ~xi] +=

PD[yt∗Mo+yo, ko∗Kt+ki, yi]∗PW [xt∗No+xo, ko∗Kt+ki, ~xi];

21 for yi = 0 to Mt − 1 do
22 for xi = 0 to Nt − 1 do
23 C[yt ∗Mo ∗Mt + yo ∗Mt + yi, xt ∗No ∗Nt + xo ∗Nt + ~xi] = CC[yi, ~xi]

24 return C;

dN/Nte(Nt(dK/Cwe+1))+dMtNt/Cwe+1+dM/(MoMt)edN/(NoNt)eMoNo(Mt(dNt/Cwe+104

1) + dK/Kte(Mt(dKt/Cwe+ 1) + dKtNt/Cwe+ 1)).105

Analysis of DPMM. There are four parts in the computation. The first part is the creation of PD.106

The first part is the creation of PD. If we choose Mt well such that dMt/Cwe+ 1 lines from PD107

and Mt lines from D fit into the cache, that is dMt/Cwe+ 1+Mt < Zw/Cw. Then the total caches108

misses for the first part is dM/Mte(dKMt/Cwe+ 1) + dM/Mte(Mt(dK/Cwe+ 1)). Note that, in109

the above analysis, the first half is dKMt/Cwe+1 rather than K(dMt/Cwe+1) because the layout110

of PD is po, k, pi and the extra lines loaded due to dMt/Cwe+ 1 lines will be amortized.111

The second part is the creation of PW . If we choose Nt well such that dNt/Cwe+1 lines from PW112

and Nt lines from W fit into the cache, that is dNt/Cwe+ 1 +Nt < Zw/Cw. Then the total caches113

misses for the second part is dN/Nte(dKNt/Cwe + 1) + dN/Nte(Nt(dK/Cwe + 1)). Note that,114

in the above analysis, the second half is dKNt/Cwe+ 1 rather than K(dNt/Cwe+ 1) because the115

layout of PW is po, k, pi and the extra lines loaded due to dNt/Cwe+ 1 lines will be amortized.116

The third part is the computation of CC. To compute each CC, we need dMtNt/Cwe+ 1 from CC,117

dKtMt/Cwe+ 1) of D, and dKtNt/Cwe+ 1 of PW to fit in cache. So the cache complexity for118
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Algorithm 22: ComputeCONV(D,W )

Input:
• A tensor D size B × IC ×DH ×DW ,
• a tensor W of size OC × IC ×KH ×KW ,
• padding size PH,PW ,
• dilation size d1, d2,
• stride size s1, s2,
• packing size ICt, OCt.

Output: An operator Out = conv2d(D,W ), where Out is a tensor of size
B ×OC ×OH ×OW , OH = (DH − (KH − 1) ∗ d1 − 1)/s1 + 1 and
OW = (DW − (KW − 1) ∗ d2 − 1)/s2 + 1.

1 begin
2 let Dpad[b, ic, dh, dw] := D[b, ic, dh− PH, dw − PW ] for

b ∈ [0, B − 1], ic ∈ [0, IC − 1], dh ∈ [PH,PH +DH − 1], dw ∈ [PW,PW +DW − 1];
3 let Dvec[b, ico, dh, ici, dw] := Dpad[b, ico ∗ ICt + ici, dh, dw] for

b ∈ [0, B − 1], ici ∈ [0, ICt − 1], dh ∈ [0, 2 ∗ PH +DH − 1], dw ∈ [0, 2 ∗ PW +DW − 1],
ico ∗ ICt + ici ∈ [0, IC − 1];

4 let Wvec[oco, ico, kh, kw, ici, oci] := W [oco ∗OCt + oci, ico ∗ ICt + ici, kh, kw] for
ici ∈ [0, ICt − 1], oci ∈ [0, OCt − 1], kh ∈ [0,KH − 1], kw ∈ [0,KW − 1],
ico ∗ ICt + ici ∈ [0, IC − 1], oco ∗OCt + oci ∈ [0, OC − 1];

5 let Outvec[b, oco, oh, ow, oci] :=
∑IC−1

ic=0

∑KH−1
kh=0

∑KW−1
kw=0 (Dvec[b, ic/ICt, oh ∗ s1 + kh ∗ d1, ic mod ICt, ow ∗

s2 + kw ∗ d2] ∗Wvec[oco, ic/ICt, kh, kw, ic mod ICt, oci]) for

b ∈ [0, B − 1], oh ∈ [0, (DH − (KH − 1) ∗ d1 − 1)/s1], ow ∈ [0, (DW − (KW − 1) ∗ d2 − 1)/s2],

oci ∈ [0, OCt − 1];
6 let Out[b, oc, oh, ow] := Outvec[b, oc/OCt, oh, ow, oc mod OCt];
7 return Out;

Algorithm 23: ComputeIm2col(D,W )

Input:
• D is a tensor of size B × IC ×DH ×DW ,
• W is a tensor of size OC × IC ×KH ×KW ,
• padding size PH,PW ,
• dilation size d1, d2,
• stride size s1, s2,
• packing size ICt, OCt.

Output: An operator Out = conv2d(D,W ), where Out is a tensor of size
B ×OC ×OH ×OW , OH = (DH − (KH − 1) ∗ d1 − 1)/s1 + 1 and
OW = (DW − (KW − 1) ∗ d2 − 1)/s2 + 1.

1 begin
2 write OS = OH ∗OW and KT = KH ∗KW ;
3 let Dpad[b, ic, dh, dw] := D[b, ic, dh− PH, dw − PW ] for

b ∈ [0, B − 1], ic ∈ [0, IC − 1], dh ∈ [PH,PH +DH − 1], dw ∈ [PW,PW +DW − 1];
4 let Dim2col[x, z] := Dpad[x/OS, z/KT, (x mod OS/OW ) ∗ s1 + (z mod KT/KW ) ∗

d1, (x mod OS mod OW ) ∗ s2 + (z mod KT mod KW ) ∗ d2] for
x ∈ [0, B ∗OS − 1], z ∈ [0,KT ∗ IC − 1];

5 let Wim2col[y, z] := W [y, z/KT, z mod KT/KW, (z mod KT ) mod KW ] for
y ∈ [0, OC − 1], z ∈ [0,KT ∗ IC − 1];

6 let C[x, y] = matmul(Dim2col[x, z],Wim2col[y, z]) for x ∈ [0, B ∗OS − 1], y ∈ [0, OC − 1];
7 let Out[b, oc, oh, ow] := C[b ∗OW ∗OH + oh ∗OW + ow, oc];
8 return Out;
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Algorithm 24: ScheduleCONV(Out)

Input: The conv2d operator Out.
Output: A schedule S for Out.

1 begin
// Dvec

/* padding D inline when copying data from D to Dvec */
2 let b, ico, dh, ici, dw be axes of Dvec;
3 fuse b, ico, dh into b_ico_dh;
4 parallelize b_ico_dh;

// Wvec

5 let oco, ico, kh, kw, ici, oci be axis of Wvec;
6 reset the loops order (oco, kh, ico, kw, ici, oci);
7 if oci > 1, then vectorize oci;
8 fuse oco, kh into oco_kh;
9 parallelize oco_kh;

10 let Conv be a write cache of Outvec;
// Outvec

11 let b, oco, oh, ow, oci be axis of Outvec;
12 split ow into owo, owi;
13 reset the loops order (oco, oh, owo, owi, oci);
14 fuse oco, oh;
15 vectorize oci;

// Conv
16 compute Conv inside the loop owo;
17 let b, oco, oh, ow, oci be axis of Conv;
18 let ic, kh, kw be the reduced axis of Conv;
19 split ow as owo, owi;
20 split ic as ico, ici;
21 if unrollkw is True then
22 reset the loops order (oco, oh, owo, ico, kh, ici, kw, owi, oci) of Conv and unroll kw;
23 else
24 reset the loops order (oco, oh, owo, ico, kh, kw, ici, owi, oci) of Conv;
25 fuse oco, oh of Conv;
26 vectorize oci of Conv;
27 unroll owi;

// Out
28 let b, oc, oh, ow be axis of Out;
29 split ow into owo, owi;
30 split oc into oco, oci;
31 reset the loops order (oco, oh, owo, owi, oci);
32 fuse b, oco, oh into b_oco_oh;
33 compute Outvec inside the loop b_oco_oh;
34 parallelize b_oco_oh;
35 vectorize oci;
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Algorithm 25: ScheduleCONVOpt(Out)

Input: The conv2d operator Out.
Output: A schedule S for Out.

1 begin
// Dvec

/* padding D inline when copying data from D to Dvec */
2 let b, ico, dh, ici, dw be axes of Dvec;
3 fuse b, ico, dh into b_ico_dh;
4 parallelize b_ico_dh;

// Wvec

// In TVM original code, kh is before ico
5 let oco, ico, kh, kw, ici, oci be axis of Wvec;
6 reset the loops order (oco, ico, kh, kw, ici, oci);
7 if oci > 1, then vectorize oci;
8 fuse oco, ico into oco_ico;
9 parallelize oco_ico;

10 let Conv be a write cache of Outvec;
// Outvec

11 let b, oco, oh, ow, oci be axis of Outvec;
12 split ow into owo, owi;
13 reset the loops order (oco, oh, owo, owi, oci);
14 fuse oco, oh;
15 vectorize oci;

// Conv
16 compute Conv inside the loop owo;
17 let b, oco, oh, ow, oci be axis of Conv;
18 let ic, kh, kw be the reduced axis of Conv;
19 split ow as owo, owi;
20 split ic as ico, ici;
21 if unrollkw is True then
22 reset the loops order (oco, oh, owo, ico, kh, ici, kw, owi, oci) of Conv and unroll kw;
23 else
24 reset the loops order (oco, oh, owo, ico, kh, kw, ici, owi, oci) of Conv;
25 fuse oco, oh of Conv;
26 vectorize oci of Conv;
27 unroll owi;

// Out
28 let b, oc, oh, ow be axis of Out;
29 split ow into owo, owi;
30 split oc into oco, oci;
31 reset the loops order (oco, oh, owo, owi, oci);
32 fuse b, oco, oh into b_oco_oh;
33 compute Outvec inside the loop b_oco_oh;
34 parallelize b_oco_oh;
35 vectorize oci;
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Algorithm 26: ScheduleIm2col(Out)

Input: The conv2d operator Out.
Output: A schedule S for Out based on im2col representation.

1 begin
// Dpad

2 let b, ic, dh, dw be the axes of Dpad;
3 fuse b, ic into bic;
4 parallelize bic;

// Dim2col

5 let x, z be axes of Dim2col;
6 split x into xo, xi// xi = OWt

7 split z into zo, zi// zi = Pt

8 reset the loops order (xo, zo, xi, zi);
9 fuse xo, zo into xo_zo;

10 parallelize xo_zo;
11 vectorize zi;

// kernelim2col

12 let y, z be axis of kernelim2col;
13 split y into yo, yi// yi = OCt

14 split z into zo, zi// zi = Pt

15 reset the loops order (yo, zo, yi, zi);
16 fuse yo, zo into yo_zo parallelize yo_zo;
17 vectorize zi;

// C
18 using matmul schedule for C;

// Out
19 let b, oc, oh, ow be axis of Out;
20 split oc into oco and oci;
21 split ow into owo and owi;
22 reset the loop orders (b, oco, oh, owo, oci, owi);
23 fuse b, oco, oh into b_oco_oh;
24 parallelize b_oco_oh;
25 vectorize owi

the second part is dMtNt/Cwe+ 1 + dM/(MoMt)edN/(NoNt)eMoNo(dK/Kte(dKtMt/Cwe+119

1 + dKtNt/Cwe+ 1)).120

The last part is to copy CC to C. For this part, we need Mt(dNt/Cwe+1) from C and dMtNt/Cwe+121

1 from CC to fit in cache. So for the third and fourth part, if we assume that dMtNt/Cwe + 1 +122

max(Mt(dNt/Cwe+1), dKtMt/Cwe+1+dKtNt/Cwe+1) < Zw/Cw, then the cache complexity123

for the two parts are: dMtNt/Cwe+ 1 + dM/(MoMt)edN/(NoNt)eMoNo(Mt(dNt/Cwe+ 1) +124

dK/Kte(dKtMt/Cwe+ 1 + dKtNt/Cwe+ 1)). Note that in the above analysis, CC only need to125

be counted once, since in the ideal cache model, it will remain in cache.126

So for the whole computation, if we assume that max(dMt/Cwe + 1 + Mt, dNt/Cwe + 1 +127

Nt, dMtNt/Cwe + 1 + max(Mt(dNt/Cwe + 1), dKtMt/Cwe + 1 + dKtNt/Cwe + 1)) <128

Zw/Cw, then the cache complexity is dM/Mte(dKMt/Cwe + 1) + dM/Mte(Mt(dK/Cwe +129

1)) + dN/Nte(dKNt/Cwe + 1) + dN/Nte(Nt(dK/Cwe + 1)) + dMtNt/Cwe + 1 +130

dM/(MoMt)edN/(NoNt)eMoNo(Mt(dNt/Cwe+1)+dK/Kte(dKtMt/Cwe+1+dKtNt/Cwe+131

1)).132

133
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Algorithm 27: CodeCONV(D,W )

Input: D, W .
Output: Out = conv2d(D,W ).
// fuse loop variables b, ico and dh

1 Parallel for b = 0 to B − 1 do
2 Parallel for ico = 0 to (IC/ICt)− 1 do
3 Parallel for dh = 0 to DH + 2 ∗ PH − 1 do
4 for ici = 0 to ICt − 1 do
5 for dw = 0 to DW + 2 ∗ PW − 1 do
6 if dh ∈ [PH,PH +DH − 1] and dw ∈ [PW,PW +DW − 1] then
7 Dvec[b, ico, dh, ici, dw] = D[b, ico ∗ ICt + ici, dh− PH, dw − PW ]

8 else
9 Dvec[b, ico, dh, ici, dw] = 0

// fuse loop variables oco and kh
10 Parallel for oco = 0 to (OC/OCt)− 1 do
11 Parallel for kh = 0 to KH − 1 do
12 for ico = 0 to (IC/ICt)− 1 do
13 for kw = 0 to KW − 1 do
14 for ici = 0 to ICt − 1 do
15 for oci = 0 to OCt − 1 do
16 Wvec[oco, ico, kh, kw, ici, oci] = W [oco∗OCt+oci, ico∗ICt+ici, kh, kw]

// fuse loop variables b, oco and oh
17 Parallel for b = 0 to B − 1 do
18 Parallel for oco = 0 to (OC/OCt)− 1 do
19 Parallel for oh = 0 to OH − 1 do
20 for owo = 0 to (OW/OWt)− 1 do
21 conv = 0f
22 for ico = 0 to (IC/ICt)− 1 do
23 for kh = 0 to KH − 1 do
24 for kw = 0 to KW − 1 do
25 for ici = 0 to ICt − 1 do
26 for owi = 0 to OWt − 1 do
27 for oci = 0 to OCt − 1 do
28 conv[owi, ~oci] +=

Dvec[b, ico, s1 ∗ oh+ kh ∗ d1, ici, s2 ∗ (owo ∗OWt +

owi) + kw ∗ d2] ∗Wvec[oco, ico, kh, kw, ici, ~oci]

29 for owi = 0 to OWt − 1 do
30 for oci = 0 to OCt − 1 do
31 Outvec[b, oco, oh, owo ∗OWt + owi, ~oci] = conv[owi, ~oci]

32 for owo = 0 to (OW/OWt)− 1 do
33 for owi = 0 to OWt − 1 do
34 for oci = 0 to OCt − 1 do
35 Out[b, oco ∗OCt + ~oci, oh, owo ∗OWt + owi] =

Outvec[b, oco, oh, owo ∗OWt + owi, ~oci]

36 return Out;
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Algorithm 28: CodeCONVOpt(D,K)

Input: D, W .
Output: Out = conv2d(D,W ).
// fuse loop variables b, ico and dh

1 Parallel for b = 0 to B − 1 do
2 Parallel for ico = 0 to (IC/ICt)− 1 do
3 Parallel for dh = 0 to DH + 2 ∗ PH − 1 do
4 for ici = 0 to ICt − 1 do
5 for dw = 0 to DW + 2 ∗ PW − 1 do
6 if dh ∈ [PH,PH +DH − 1] and dw ∈ [PW,PW +DW − 1] then
7 Dvec[b, ico, dh, ici, dw] = D[b, ico ∗ ICt + ici, dh− PH, dw − PW ]

8 else
9 Dvec[b, ico, dh, ici, dw] = 0

// fuse loop variables oco and ico
10 Parallel for oco = 0 to (OC/OCt)− 1 do
11 Parallel for ico = 0 to (IC/ICt)− 1 do
12 for kh = 0 to KH − 1 do
13 for kw = 0 to KW − 1 do
14 for ici = 0 to ICt − 1 do
15 for oci = 0 to OCt − 1 do
16 Wvec[oco, ico, kh, kw, ici, oci] = W [oco∗OCt+oci, ico∗ICt+ici, kh, kw]

// fuse loop variables b, oco and oh
17 Parallel for b = 0 to B − 1 do
18 Parallel for oco = 0 to (OC/OCt)− 1 do
19 Parallel for oh = 0 to OH − 1 do
20 for owo = 0 to (OW/OWt)− 1 do
21 conv = 0f
22 for ico = 0 to (IC/ICt)− 1 do
23 for kh = 0 to KH − 1 do
24 for kw = 0 to KW − 1 do
25 for ici = 0 to ICt − 1 do
26 for owi = 0 to OWt − 1 do
27 for oci = 0 to OCt − 1 do
28 conv[owi, ~oci] +=

Dvec[b, ico, s1 ∗ oh+ kh ∗ d1, ici, s2 ∗ (owo ∗OWt +

owi) + kw ∗ d2] ∗Wvec[oco, ico, kh, kw, ici, ~oci]

29 for owi = 0 to OWt − 1 do
30 for oci = 0 to OCt − 1 do
31 Outvec[b, oco, oh, owo ∗OWt + owi, ~oci] = conv[owi, ~oci]

32 for owo = 0 to (OW/OWt)− 1 do
33 for owi = 0 to OWt − 1 do
34 for oci = 0 to OCt − 1 do
35 Out[b, oco ∗OCt + ~oci, oh, owo ∗OWt + owi] =

Outvec[b, oco, oh, owo ∗OWt + owi, ~oci]

36 return Out;
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Algorithm 29: CodeIm2col(D,K)

Input: D, K
Output: Out = conv2d(D,K)
// datapad

1 Parallel for b = 0 to B − 1 do
2 Parallel for ic = 0 to IC − 1 do
3 for dh = 0 to DH + 2PH − 1 do
4 for dw = 0 to DW + 2PW − 1 do
5 if dh ∈ [PH,PH +DH − 1] and dw ∈ [PW,PW +DW − 1] then
6 Dpad[b, ic, dh, dw] := D[b, ic, dh− PH, dw − PW ]

7 else
8 Dpad[b, ic, dh, dw] := 0

// Dim2col

// OS = OH ∗OW, KT = KH ∗KW, M = B ∗OS,P = KT ∗ IC
// to do: compute modulo and division in one go?

9 Parallel for xo = 0 to M/Mt do
10 Parallel for zo = 0 to P/Pt do
11 for xi = 0 to Mt − 1 do
12 for zi = 0 to Pt − 1 do
13 let x = xo ∗Mt + xi; ~z = zo ∗ Pt + ~zi;
14 Dim2col[x, ~z] := Dpad[x/OS, ~z/KT, (x mod OS/OW ) ∗ s1 +

(~z mod KT/KW )∗d1, (x mod OS mod OW )∗s2+(~z mod KT mod KW )∗d2]

// Kim2col

// to do: compute modulo and division in one go?
15 Parallel for yo = 0 to OC/OCt do
16 Parallel for zo = 0 to P/Pt do
17 for yi = 0 to OCt − 1 do
18 for zi = 0 to Pt − 1 do
19 let y = yo ∗OCt + yi; z = zo ∗ Pt + ~zi;
20 Kim2col[y, ~z] := K[y, ~z/KT, ~z mod KT/KW, (~z mod KT ) mod KW ]

// matrix multiplication
21 C = matmul(Dim2col,Kim2col);

// Out
22 Parallel for b = 0 to B − 1 do
23 Parallel for oco = 0 to OC/OCt do
24 Parallel for oh = 0 to OH − 1 do
25 for owo = 0 to OW/OWt do
26 for oci = 0 to OCt − 1 do
27 for owi = 0 to OWt − 1 do
28 let oc = oco ∗OCt + oci; ~ow = owo ∗OWt + ~owi;
29 Out[b, oc, oh, ~ow] = C[b ∗OW ∗OH + oh ∗OW + ~ow, oc];

30 return Out;
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Table 1: Values of Tm for different schedules for matrix multiplication (from top to bottom: TMM,
TTMM, DNMM, LPMM, RPMM, DPMM)
Tm(Mt,Kt, Nt)
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Table 2: Values of Tc for convolution schedules (top: CONVOpt, bottom: Im2col-CONV)
Tc(OWt, ICt, OCt)

max
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5 Cache complexity analysis for 2D-convolution134

Theorem 2. Let Tc(Mt,Kt, Nt) be given in Table 2. Assume that Tc(Mt,Kt, Nt) < Zw

Cw
and135

OWt|OW, ICt|IC,OCt|OC, then the cache complexity for CONVOpt is:136
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and the cache complexity of Im2col-CONV is:137
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Remark 1. For the cache complexity of CONV in TVM, we only need to replace the bold part in138

Table 2 with OCt ∗ ICt ∗ (dKW
Cw
e+ 1) +KW ∗ ICt ∗ (dOCt/Cwe+ 1) and (3) in Theorem 2 by139

OC ∗ IC ∗KH ∗ (dKW
Cw
e+ 1). It is usually larger than that of CONVOpt for the same tiling size.140

Proof. Analysis of ConvOpt and Conv. There are in total five steps. The first step is to copy data
from D to Dvec. Assume that the cache can hold at least two cache lines. Since the loop order defines
the order of accessing the data, which is the same as the order of data storing in Dvec, the loading
data of Dvec to cache causes

dB ∗ (DH + 2PH) ∗ IC ∗ (DW + 2PW )

Cw
e+ 1

cache misses. This is not the case for D, which causes

B ∗DH ∗ IC ∗ (dDW/Cwe+ 1).

cache misses to load.141

The second step is to copy data from W to Wvec. The original version of TVM put kh outside ico.142

Here we first analyze ConvOpt, where kh is inside ico. The reason for ConvOpt to adopt this loop143

ordering is because that usually kh and kw are small, it is reasonable to assume that a block of Wvec144

and a block of W of the same size KH ∗KW ∗ ICt ∗OCt fit in cache simultaneously1. Assume that145

OCt ∗ (d
KH ∗KW ∗ ICt

Cw
e+ 1) +KH ∗KW ∗ ICt ∗ (dOCt/Cwe+ 1) < Zw/Cw,

then loading W causes

OC ∗ IC/ICt ∗ (d
KH ∗KW ∗ ICt

Cw
e+ 1)

cache misses and loading Wvec causes

IC ∗KH ∗KW ∗OC/OCt ∗ (dOCt/Cwe+ 1)

cache misses.146

Now we analyze the original version CONV of TVM. Since kh is outside ico and ico can be arbitrarily147

large, we may not be able to reuse the kh dimension, that is now it is not reasonable to assume that148

we can use a block W of size KH ∗KW ∗ ICt ∗OCt. But we can assume to reuse a block W of149

size KW ∗ ICt ∗OCt.150

So assume that

OCt ∗ ICt ∗ (d
KW

Cw
e+ 1) +KW ∗ ICt ∗ (dOCt/Cwe+ 1) < Zw/Cw,

then loading W causes

OC ∗ IC ∗KH ∗ (dKW

Cw
e+ 1)

1Indeed, the experimentation shows that the modified version performs better
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cache misses and loading Wvec causes

IC ∗KH ∗KW ∗OC/OCt ∗ (dOCt/Cwe+ 1).

cache misses.151

The third step is to compute conv with Dvec and Wvec. We need to choose proper tiling size such152

that the data needed for computing a block of conv of size OWt ∗ OCt to be kept in the cache as153

much as possible. That is, for fixed b, oco, oh, owo, the data needed for computing conv should be154

kept in cache as much as possible. On the other hand, since the cache cannot be too large, it is better155

to only keep necessary data in cache.156

Based on this, one reasonable assumption is that for fixed ico, kh, kw, the cache holds a block of157

conv of size OWt ∗OCt, and a block of Dvec of size ICt ∗ s2 ∗ (OWt − 1) and a block of Wvec of158

size ICt ∗OCt required by conv. That is we assume that159

(dOWt ∗OCt/Cwe+ 1) + ICt ∗ (d(s2 ∗ (OWt − 1) + 1)/Cwe+ 1)

+ICt ∗ (dOCt/Cwe+ 1) < Zw/Cw.

Under this assumption, the cache complexity for loading data of conv is

B ∗OC/OCt ∗OH ∗OW/OWt ∗ (dOWt ∗OCt/Cwe+ 1),

the cache complexity for loading data of Dvec is

B ∗OC/OCt ∗ IC ∗OH ∗KH ∗KW ∗OW/OWt ∗ (d(s2 ∗ (OWt − 1) + 1)/Cwe+ 1),

and the cache complexity for loading data of Wvec is

B ∗OC/OCt ∗OH ∗OW/OWt ∗ IC ∗KH ∗KW ∗ (dOCt/Cwe+ 1).

If d1 and d2 are small, which are usually set to 1, then another reasonable assumption is that160

(dOWt ∗OCt/Cwe+ 1) +KH ∗ ICt ∗ (d(s2 ∗ (OWt − 1) + (KW − 1) ∗ d2 + 1)/Cwe+ 1)

+KH ∗KW ∗ ICt ∗ (dOCt/Cwe+ 1) < Zw/Cw.

Under this assumption, the the cache complexity for loading data of conv and Wvec are the same as
before, that is respectively

B ∗OC/OCt ∗OH ∗OW/OWt ∗ (dOWt ∗OCt/Cwe+ 1),

and
B ∗OC/OCt ∗OH ∗OW/OWt ∗ IC ∗KH ∗KW ∗ (dOCt/Cwe+ 1).

While the cache complexity for loading data of Dvec is

B ∗OC/OCt ∗ IC ∗OH ∗OW/OWt ∗KH ∗ (d(s2 ∗ (OWt−1)+(KW −1)∗d2+1)/Cwe+1).

Note that if d2 = 1, the latter is smaller than the former.161

The fourth step is to copy conv to Outvec. For this step, we can safely assume that conv is already in
cache if the following assumption holds

(dOWt ∗OCt/Cwe+ 1) +OWt ∗ (dOCt/Cwe+ 1) < Zw/Cw.

Then the cache complexity for this step is

B ∗ dOC/OCte ∗OH ∗OW ∗ (dOCt/Cwe+ 1).

The fifth step is to copy data from outvec to out. Assume that

OWt ∗ (dOCt/Cwe+ 1) +OCt ∗ (dOWt/Cwe+ 1) < Zw/Cw,

then the cache complexity for loading Outvec and Out are respectively

B ∗OH ∗OW ∗ dOC/OCte ∗ (dOCt/Cwe+ 1)
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and
B ∗OC ∗OH ∗ dOW/OWte ∗ (dOWt/Cwe+ 1).

Analysis of Im2col-CONV. There are in total five steps. The first step is to copy data from D to
Dpad. Note that the loop order respects the data storing order for both D and Dpad. Assume that the
cache can hold at least two cache lines. Then loading data of Dpad to cache causes

dB ∗ IC ∗ (DH + 2PH) ∗ (DW + 2PW )

Cw
e+ 1

cache misses. The loading data of D induces

dB ∗ IC ∗DH ∗DW/Cwe+ 1.

cache misses.162

The second step is to copy data from Dpad to Dim2col. To make the analysis easier, we always163

assume that OWt = Mt divides OW . The advantage of this assumption is that when xi takes values164

in the range [0,Mt − 1], x/OS and x mod OS/OW remain unchanged. Note that when zi takes165

values in the range [0, Pt − 1], if we assume that KT divides Pt, z/KT has Pt/KT different values.166

If we do not assume that KT divides Pt, then z/KT has at most dPt/KT e+ 1 different values.167

So if KT does not divide Pt, in general, we assume that

Mt∗(dPt/Cwe+1)+(dPt/KT e+1)∗KH∗(d (OWt − 1) ∗ s2 + (KW − 1) ∗ d2 + 1

Cw
e+1) < Zw/Cw.

Then loading Dim2col costs

B ∗OH ∗OW ∗ IC ∗KH ∗KW/Pt ∗ (dPt/Cwe+ 1),

and loading Dpad costs

B∗OH∗OW∗IC∗KH∗KW/Pt∗(dPt/KT e+1)∗KH∗(d (OWt − 1) ∗ s2 + (KW − 1) ∗ d2 + 1

Cw
e+1).

If KT divides Pt, let Pt = ICt ∗KT , we assume that

Mt ∗ (dPt/Cwe+1)+Pt/KT ∗KH ∗ (d (OWt − 1) ∗ s2 + (KW − 1) ∗ d2 + 1

Cw
e+1) < Zw/Cw.

Then loading Dim2col costs the same as before, that is

B ∗OH ∗OW ∗ IC ∗KH ∗KW/Pt ∗ (dPt/Cwe+ 1),

which is equivalent to

B ∗OH ∗OW ∗ IC/ICt ∗ (dICt ∗KH ∗KW/Cwe+ 1).

Loading Dpad costs

B∗OH∗OW ∗IC∗KH∗KW/Pt∗Pt/KT ∗KH∗(d (OWt − 1) ∗ s2 + (KW − 1) ∗ d2 + 1

Cw
e+1),

which is equivalent to

B ∗OH ∗OW ∗ IC ∗KH ∗ (d (OWt − 1) ∗ s2 + (KW − 1) ∗ d2 + 1

Cw
e+ 1).

The third step is to copy data from W to Wim2col. Note the data in W in stored continuously in the168

order of KW,KH, IC,OC, which is essentially in the same order as W .169

So assume that

OCt ∗ (dPt/Cwe+ 1) +OCt ∗ (dPt/Cwe+ 1) < Zw/Cw,

then loading data of Wim2col costs

OC ∗ dP/Pte ∗ (dPt/Cwe+ 1),
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and loading data of W costs
OC ∗ dP/Pte ∗ (dPt/Cwe+ 1).

The fourth step is matrix multiplication, its complexity depends on three parameters, namely Mt =170

OWt, OCt, Pt, which corresponds to Mt, Nt and Kt.171

The fifth step is to copy data from C to Out. Assume that

OCt ∗ (dOWt/Cwe+ 1) +OWt ∗ (dOCt/Cwe+ 1) < Zw/Cw,

then the cache complexity for loading Out is

B ∗OC ∗OH ∗ dOW/OWte ∗ (dOWt/Cwe+ 1),

and the cache complexity for loading C is

B ∗OH ∗OW ∗ dOC/OCte ∗ (dOCt/Cwe+ 1).

172

173

6 Additional information on experiments174

Table 3: Experimental platform

Device Name Operating Compiler Processor CPU Clock Memory Cache L2 Vectorization
System Speed Size -Cache Line Size Size

Intel1 64 Linux4.4 GCC5.4,llvm 1:6 Intel(R) i7-G9700F 3.00GHz 8GB 256KB-64B 128bit
Intel0 64 Linux4.4 GCC7.5,llvm 1:6 Intel(R) i7-9750H 2.60GHz 32GB 256KB-64B 128bit
Intel2 64 Linux4.4 GCC5.4,llvm 1:6 Intel(R) i9-9900 3.10GHz 16GB 256KB-64B 128bit
AMD 64 Linux4.4 GCC7.5,llvm 1:6 AMD Ryzen9-3900X 3.79GHz 16GB 512KB-64B 128bit

Table 4: Summary of dense (matmul) and conv2d tasks in FCNNs and CNNs

Model Name Task Name Task Count
FC5 dense 5
FC7 dense 7
vgg11, vgg16 dense 3
resnet18, 50 dense 1
inception_v3 dense 1
mobilenet dense 1
resnet18 conv2d 12
vgg16 conv2d 9
resnet50 conv2d 20
inception_v3 conv2d 43
mobilenet conv2d 19

Table 5: Evaluation of optimized schedules and automatically chosen schedules or matmul on Intel1.

(M,K,N)-ms base OptSchedule OptSchedule AutoSchedule AutoSchedule
ms impl impl speedup impl speedup

(4096,8,256) RPMM RPMMV 1.25 RPMMV 1.25
(793,44,498) RPMM RPMMV 1.04 RPMMV 1.04

(64,16,64) RPMM RPMMV 1.026 DNMM332 1.326
(16,64,1) DNMM DNMM332 1.56 DNMM332 1.56

(1754,1256,406) RPMM RPMMV 1.29 RPMMV 1.29
(1449,1582,1487) RPMM RPMMV 1.005 DNMM332 1.33

(64,256,1024) RPMM RPMMV 1.062 DNMM332 1.153
( 87,1002,142 ) RPMM RPMMV 1.21 DNMM332 1.21

( 1,8,4096) DNMM DNMM332 0.995 DNMM332 0.995
(392,1078,740) RPMM RPMMV 1.019 DNMM332 1.015

(280,357,382) RPMM RPMMV 1.025 LPMM 2.038
(254,775,462) RPMM RPMMV 1.035 LPMM 0.763
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(4096,64,8) RPMM RPMMV 0.942 RPMMV 0.942
(1763,2706,3743) RPMM RPMMV 1.602 RPMMV 1.602

(8,64,8) DNMM DNMM332 1.886 DNMM332 1.886
(1024,1024,16) RPMM RPMMV 1.001 RPMMV 1.001

(256,4096,8) RPMM RPMMV 1.003 DNMM332 1.009
(256,8,1024) RPMM RPMMV 1.00 RPMMV 1.00

(256,1,64) RPMM RPMMV 1.009 DNMM332 1.527
(64,1024,1024) RPMM RPMMV 0.9587 DNMM332 1.112

(16,256,1024) DNMM DNMM332 1.44 DNMM332 1.44
(16,8,256) DNMM DNMM332 1.0789 DNMM332 1.0789
(1,256,16 ) DNMM DNMM332 1.0937 DNMM332 1.0937

(4096,256,16) RPMM RPMMV 0.992 RPMMV 0.992
(984,754,1002) RPMM RPMMV 1.023 RPMMV 1.023

(4020,21,171) RPMM RPMMV 1.014 LPMM 0.953
(627,694,610) RPMM RPMMV 0.9907 RPMMV 0.9907

(8,8,8) DNMM DNMM332 0.7290 DNMM332 0.7290
(1,16,64) DNMM DNMM332 2.00 DNMM332 2.00

(16,4096,1024) DNMM DNMM332 1.1049 DNMM332 1.1049
(3573,146,2255) RPMM RPMMV 1.678 RPMMV 1.678

(514,317,897) RPMM RPMMV 1.004 RPMMV 1.004
(4096,64,16) RPMM RPMMV 1.004 RPMMV 1.004

(16,1,1) DNMM DNMM332 2.857 DNMM332 2.857
(4096,1,64) RPMM RPMMV 1.678 TMM 1.678

(16,8,8) DNMM DNMM332 4.75 DNMM332 4.75
(8,256,256) DNMM DNMM332 1.010 DNMM332 1.010

(256,4096,1) RPMM RPMMV 0.892 DNMM332 1.188
(256,256,1024) RPMM RPMMV 0.998 DNMM332 0.9926

(4096,1024,8) RPMM RPMMV 1.0118 RPMMV 1.0118

Table 6: Evaluation of matmul in CNNs (Intel1)

(M,K,N) autotvm-ms AutoSchedule-ms speedup reference model
(1,512,1000) 0.0129 0.0126 1.0237 resnet50

(16,512,1000) 0.1216 0.1224 0.9940 resnet50
(64,512,1000) 0.5305 0.476 1.11449 resnet50

(256,512,1000) 1.9416 1.9516 0.9948 resnet50
(1,1024,1000) 0.0249 0.02347 1.064 mobilenet

(16,1024,1000) 0.2594 0.2456 1.056 mobilenet
(64,1024,1000) 1.1652 0.968 1.2037 mobilenet

(256,1024,1000) 4.0617 3.8838 1.0458 mobilenet
(1,2048,1000) 0.1475 0.0678 2.176 inception_v3

(16,2048,1000) 0.5667 0.5346 1.060 inception_v3
(64,2048,1000) 2.5273 2.0035 1.2617 inception_v3

(256,2048,1000) 8.2755 8.0181 1.0321 inception_v3
(1,4096,1000) 0.4488 0.4178 1.074 vgg11

(16,4096,1000) 1.1784 1.2028 0.9796 vgg11
(64,4096,1000) 6.0539 4.381 1.3818 vgg11

(256,4096,1000) 17.9101 17.0951 1.0476 vgg11
(1,4096,4096) 2.6481 2.5425 1.0415 vgg11

(16,4096,4096) 4.9111 5.1885 0.9465 vgg11
(64,4096,4096) 25.7945 18.3929 1.4024 vgg11

Table 7: GBDT training parameters

Parameter Value
learning_rate 0.1
n_estimators 10
subsample 1.0
min_samples_split 3
min_samples_leaf 1
max_depth 3
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Table 8: GBDT training and testing results

Train Data Valiation Data Test Data
precision [0.772, 0.740, 1.000, 0.615] [0.766, 0.650 , 1.000 , 0.0] [0.681, 0.643, 0.333, 1.0]
recall [0.898, 0.762, 0.317, 0.533] [0.9 , 0.591, 0.333, 0.0 ] [0.882, 0.643, 0.2 , 0.25 ]
f1-score [0.830, 0.751, 0.481, 0.571] [0.828, 0.619, 0.5 , 0.0 ] [0.769, 0.643, 0.25 , 0.4 ]
support [177, 101, 41, 30] [40, 22, 3, 4] [17, 14, 5, 4]
accuracy 78% 70% 65%

Table 9: Evaluation of conv2d in CNNs (Intel1)

Task CONV CONVOpt Im2colRPMMV Im2colDNMM332 Reference model
Data-Kernel-Stride-Padding ms ms ms ms
(1,3,224,224)-(64,3,3,3)-(1,1)-(1,1) 3.0453 2.0408 4.38798 5.9486 vgg16(Intel0)
(1,64,224,224)-(64,64,3,3)-(1,1)-(1,1) 49.1955 43.3253 60.88648 52.9349 vgg16(Intel0)
(1, 64, 112, 112)-(128, 64, 3, 3)-(1, 1)-(1, 1) 24.0070 20.6443 19.7167 26.6170 vgg16(Intel0)
(1, 128, 112, 112)-(128, 128, 3, 3)-(1, 1)-(1, 1) 49.6743 41.5489 53.2381 46.0727 vgg16(Intel0)
(1, 128, 56, 56)-(256, 128, 3, 3)-(1, 1)-(1, 1) 24.7700 20.6811 25.8697 21.5718 vgg16(Intel0)
(1, 256, 56, 56)-(256, 256, 3, 3)-(1, 1)-(1, 1) 50.1485 43.7916 47.0148 51.0089 vgg16(Intel0)
(1, 256, 28, 28)-(512, 256, 3, 3)-(1, 1)-(1, 1) 23.7771 22.6206 26.3219 26.2176 vgg16(Intel0)
(1, 512, 28, 28)-(512, 512, 3, 3)-(1, 1)-(1, 1) 48.0118 47.2079 46.9666 43.9910 vgg16(Intel0)
(1, 512, 14, 14)-(512, 512, 3, 3)-(1, 1)-(1, 1) 12.2897 12.2693 13.5861 13.0306 vgg16(Intel0)
(1, 1024, 14, 14,), (2048, 1024, 1, 1), (2, 2), (0, 0) 2.5136 2.3487 4.0735 2.443 resnet50(Intel1)
(1, 512, 28, 28), (1024, 512, 1, 1, ), (2, 2), (0, 0) 1.8191 1.7720 1.7159 1.6300 resnet50(Intel1)
(1, 256, 56, 56), (512, 256, 1, 1, ), (2, 2), (0, 0) 1.8420 1.8261 1.5997 1.6714 resnet50(Intel1)
(1, 3, 224, 224), (64, 3, 7, 7, ), (2, 2), (3, 3) 1.8193 1.8136 2.5310 3.8209 resnet50(Intel1)
(1, 64, 56, 56), (64, 64, 1, 1, ), (1, 1), (0, 0) 0.2258 0.2229 0.2298 0.2580 resnet50(Intel1)
(1, 256, 56, 56), (64, 256, 1, 1, ), (1, 1), (0, 0) 0.8768 0.8915 0.8442 0.8859 resnet50(Intel1)
(1, 64, 56, 56, ), (64, 64, 3, 3, ), (1, 1), (1, 1) 1.7534 1.7301 2.0127 2.1233 resnet50(Intel1)
(1, 64, 56, 56, ), (256, 64, 1, 1, ), (1, 1), (0, 0) 0.8532 0.8524 0.9061 1.0162 resnet50(Intel1)
(1, 256, 56, 56, ), (128, 256, 1, 1, ), (2, 2), (0, 0) 0.5164 0.5009 0.40424 0.4245 resnet50(Intel1)
(1, 512, 28, 28, ), (128, 512, 1, 1, ), (1, 1), (0, 0) 0.8790 0.8751 0.7889 0.8090 resnet50(Intel1)
(1, 128, 28, 28, ), (128, 128, 3, 3, ), (1, 1), (1, 1) 1.7304 1.7157 1.8800 1.9121 resnet50(Intel1)
(1, 128, 28, 28, ), (512, 128, 1, 1, ), (1, 1), (0, 0) 0.8161 0.8158 0.7925 0.8452 resnet50(Intel1)
(1, 512, 28, 28, ), (256, 512, 1, 1, ), (2, 2), (0, 0) 0.4738 0.4530 0.4158 0.4115 resnet50(Intel1)
(1, 1024, 14, 14), (256, 1024, 1, 1, ), (1, 1), (0, 0) 0.8398 0.8204 0.8331 0.8175 resnet50(Intel1)
(1, 256, 14, 14), (256, 256, 3, 3, ), (1, 1), (1, 1) 1.7248 1.7252 1.9683 1.8830 resnet50(Intel1)
(1, 256, 14, 14), (1024, 256, 1, 1, ), (1, 1), (0, 0) 0.7729 0.7781 0.8269 0.8248 resnet50(Intel1)
(1, 1024, 14, 14), (512, 1024, 1, 1, ), (2, 2), (0, 0) 0.4716 0.4591 0.4845 0.4426 resnet50(Intel1)
(1, 2048, 7, 7), (512, 2048, 1, 1, ), (1, 1), (0, 0) 0.9810 0.8577 1.3074 0.8825 resnet50(Intel1)
(1, 512, 7, 7), (512, 512, 3, 3, ), (1, 1), (1, 1) 2.6550 2.3211 4.5692 2.8211 resnet50(Intel1)
(1, 512, 7, 7, ), (2048, 512, 1, 1, ), (1, 1), (0, 0) 0.8689 0.8486 1.2108 0.8952 resnet50(Intel1)

(1, 3, 224, 224), (64, 3, 7, 7),(2, 2), (3, 3) 0.9178 0.8711 1.1423 2.0263 resnet18(Intel2)
(1, 64, 56, 56), (64, 64, 1, 1), (1, 1),(0, 0) 0.1194 0.1203 0.12776 0.14348 resnet18(Intel2)
(1, 64, 56, 56), (64, 64, 3, 3), (1, 1), (1, 1) 0.8800 0.8677 0.9862 1.0350 resnet18(Intel2)
(1, 64, 56, 56), (128, 64, 1, 1),(2, 2), (0, 0) 0.0655 0.0688 0.0627 0.0706 resnet18(Intel2)
(1, 64, 56, 56), (128, 64, 3, 3), (2, 2),(1, 1) 0.4895 0.4653 0.4679 0.4861 resnet18(Intel2)
(1, 128, 14, 14), (512, 128, 3, 3), (2, 2).(1, 1) 0.2457 0.2307 0.2723 0.2547 resnet18(Intel2)
(1, 128, 28, 28), (128, 128, 3, 3), (1, 1),(1, 1) 0.8993 0.8515 0.9539 0.9327 resnet18(Intel2)
(1, 128, 28, 28), (256, 128, 1, 1), (2, 2),(0, 0) 0.0589 0.0588 0.06045 0.0607 resnet18(Intel2)
(1, 128, 28, 28), (256, 128, 3, 3), (2, 2),(1, 1) 0.4662 0.4397 0.4805 0.4642 resnet18(Intel2)
(1, 256, 14, 14), (256, 256, 3, 3), (1, 1),(1, 1) 0.9878 0.8440 0.9566 0.9092 resnet18(Intel2)
(1, 256, 14, 14),(512, 256, 1, 1), (2, 2),(0,0) 0.0607 0.0565 0.0699 0.0627 resnet18(Intel2)
(1, 512, 7, 7), (512, 512, 3, 3), (1, 1),(1, 1) 1.4577 1.2921 2.4436 1.2440 resnet18(Intel2)

(1, 2048, 8, 8), (320, 2048, 1, 1),(1, 1),(0, 0) 0.4323 0.4312 0.8062 0.6808 inception_v3(AMD)
(1, 288, 35, 35), (384, 288, 3, 3), (2, 2), (0, 0) 2.6223 2.6091 2.8291 2.5492 inception_v3(AMD)
(1, 192, 17, 17), (320, 192, 3, 3), (2, 2), (0, 0) 0.2667 0.2649 0.6554 0.5817 inception_v3(AMD)
(1, 256, 35, 35), (64, 256, 1, 1), (1, 1), (0, 0) 0.1940 0.2055 0.1638 0.1512 inception_v3(AMD)
(1, 192, 35, 35),(64, 192, 1, 1), (1, 1), (0, 0) 0.1562 0.1542 0.1307 0.1074 inception_v3(AMD)
(1, 80, 73, 73), (192, 80, 3, 3), (1, 1), (0, 0) 5.9893 5.9494 5.9892 5.8895 inception_v3(AMD)
(1, 64, 73, 73),(80, 64, 1, 1), (1, 1), (0, 0) 0.3998 0.4627 0.2764 0.2553 inception_v3(AMD)
(1, 32, 147, 147), (64, 32, 3, 3), (1, 1), (1, 1) 3.6136 3.7934 4.5594 4.3194 inception_v3(AMD)
(1, 32, 149, 149), (32, 32, 3, 3), (1, 1), (0, 0) 1.9029 1.9969 2.2215 2.2165 inception_v3(AMD)
(1, 3, 299, 299), (32, 3, 3, 3), (2, 2), (0, 0) 0.2530 0.2287 0.2290 0.5147 inception_v3(AMD)
(1, 48, 35, 35), (64, 48, 5, 5), (1, 1), (2, 2) 0.4988 0.5379 0.7154 0.6418 inception_v3(AMD)
(1, 96, 35, 35),(96, 96, 3, 3),(1, 1), (1, 1) 0.5417 0.5318 0.6816 0.6510 inception_v3(AMD)
(1, 192, 35, 35), (32, 192, 1, 1), (1, 1), (0, 0) 0.0783 0.0737 0.0793 0.0780 inception_v3(AMD)
(1, 256, 35, 35), (48, 256, 1, 1), (1, 1), (0, 0) 0.2424 0.2339 0.1256 0.1216 inception_v3(AMD)
(1, 288, 35, 35), (48, 288, 1, 1), (1, 1), (0, 0) 0.2797 0.2656 0.1437 0.1392 inception_v3(AMD)
(1, 96, 35, 35), (96, 96, 3, 3), (2, 2), (0, 0) 0.1857 0.1694 0.2626 0.2149 inception_v3(AMD)
count/sum 7/57(12.2%) 29/57(50.8%) 8/57(14%) 13/57(22.8%)
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Table 10: End-to-end evaluation of FCNNs FC5 and FC7 (Intel 2)

Index Model Tensorflow AutoTVM AutoMCL
inference (ms) inference (optimization) inference (optimization)

1 FC5 (1) 13.172 0.070 (0.63h) 0.049 (1.069h)
2 FC5 (16) 18.789 0.843 (0.68h) 0.369 (0.758)
3 FC5 (32) 20.436 1.109 (1.50h) 0.846 (0.796)
4 FC5 (64) 26.024 3.532 (3.36h) 1.699 (0.99h)
5 FC5 (128) 28.750 6.373 (6.56h) 3.442 (1.94h)
6 FC5 (256) 37.600 13.210 (10.80h) 6.320 (2.32h)
7 FC5 (512) 44.541 27.749 (9.62h) 13.696 (2.75h)
8 L7 (1) 20.485 2.172 (1.50h) 1.690 (0.84h)
9 L7 (16) 37.832 5.174 (6.92h) 4.063 (2.28h)
10 L7 (32) 34.532 12.208 (8.39h) 8.636 (3.38h)
11 L7 (64) 48.032 19.671 (12.31h) 14.364 (3.03h)
12 L7 (128) 56.369 35.186 (18.44h) 28.897 (3.58h)
13 L7 (256) 69.324 69.498 (18.36h) 58.843 (5.80h)
14 L7 (512) 96.852 117.280 (18.36h) 115.178 (4.77h)

Table 11: End-to-end evaluation of FCNNs FC5 and FC7 (AMD)

Index Model Tensorflow AutoTVM AutoMCL
inference (ms) inference (optimization) inference (optimization)

1 FC5 (1) 16.508102416992188 0.05358 (0.523222h) 0.04041 (0.7333027h)
2 FC5 (16) 21.947622299194336 0.34199 (3.4978388h) 0.41146 (1.0981111)
3 FC5 (32) 21.75116539001465 1.08332 (2.227369h) 0.62066 (1.100725)
4 FC5 (64) 29.282569885253906 1.87294 (2.34769h) 1.22019 (1.233886h)
5 FC5 (128) 34.0723991394043 3.07956 (3.75015h) 2.38817 (1.381336h)
6 FC5 (256) 37.49489784240723 5.65670 (4.23694h) 4.58164 (2.098669h)
7 FC5 (512) 50.29582977294922 10.18563 (4.2811166h) 9.72738 (2.095927h)
8 L7 (1) 27.08721160888 1.46771 (1.517033h) 2.03389 (1.685036h)
9 L7 (16) 49.90839958190918 5.38228 (6.241230h) 5.80174 (2.80175h)
10 L7 (32) 48.49696159362793 12.39936 (5.186375h) 6.06318 (2.21526h)
11 L7 (64) 57.62529373168945 18.37264 (6.162647h) 12.71739 (3.308186h)
12 L7 (128) 67.54088401794434 27.44240 (10.04111h) 19.04271 (3.754138h)
13 L7 (256) 81.13551139831543 45.34034 (9.710105h) 38.06408 (4.815519h)
14 L7 (512) 104.54940795898438 78.93410 (7.377530h) 68.38214 (9.445719h)

Table 12: End to end evaluation of CNNs (AMD and Intels)

Index Model Tensorflow TVM AutoTVM AutoMCL Platform
inference (ms) inference inference (optimization) inference (optimization)

1 vgg16 480.128 568.003 430.468 (1.72h) 409.971 (1.98h) Intel0
2 vgg16 316.067 227.156 171.265 (2.015147h) 168.106 (2.12359h) AMD
3 resnet50 72.901 82.987 67.268 (19.82h) 63.885 (19.98h) Intel1
4 resnet50 101.413 58.057 47.310 (24.694h) 48.218 (23.877h) AMD
5 inception_v3 102.935 106.934 95.755 (41.37776h) 93.977 (39.76408h) Intel2
6 inception_v3 157.646 77.798 71.763 (61.02h) 69.496 (60.17h) AMD
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