
Under review as a conference paper at ICLR 2024

A AUTHOR CONTRIBUTION

Anonymized for the submission

B PROOFS

B.1 PROOF OF PROPOSITION 1

Proposition 1. Let p(x, y) be a joint probability distribution over X ×Y . Let yc ∈ Y be such that
p(yc) > 0. Then

p(x | yc) ∝ 1{y=yc}(y)p(y | x)p(x).

Proof. Assume that p(x, y) is a joint probability distribution over X ×Y . Choose ymax ∈ Y to be
such that p(y ≥ yc) > 0. Then a simple application of Bayes rule yields

p(x | {y ≥ yc}) =
p(x, {y ≥ yc})
p({y ≥ yc})

=
1{y≥yc}(y)p(y | x)p(x)

p({y ≥ yc})
. (7)

Since p({y ≥ yc}) > 0 and it does not depend on x, we have that

p(x | {y ≥ yc}) ∝ 1{y≥yc}(y)p(y | x)p(x).

B.2 PROOF OF PROPOSITION 2

Proposition 2. Let p(y) be a probability distribution over Y with a corresponding cumulative
distribution function F . Let target yc ∈ Y be such that p(yc) > 0 and let p be the probability of
sampling a target y ∼ p(y) such that y > yc. The expected number of trials N until obtaining a
sample y ∼ p(y) such that y > yc is equal to 1/p.

Proof. Let p(y) be a probability distribution over Y with a corresponding cumulative distribution
function F . Let yc ∈ Y be such that p(yc) > 0. Define r.v. N as the number of trials until obtaining
a sample y > yc, where y is distributed as p(y). For each n ∈ N, the distribution of N is given by

P (N = n) = (1− p)n−1p,

where p = 1− F (y ≤ yc). Hence, the number of trials N follows a geometric distribution with an
expected value equal to E[N] = 1/p.

C ADDITIONAL EXPERIMENTS

C.1 MOLECULE GENERATION

Task In the molecule generation task, the goal is to generate valid and novel molecules that follow
the chemical distribution of the training data. Following Brown et al. (2019), we evaluate all molecule
generation methods on five metrics: validity, a fraction of the generated molecules that are correspond
to a valid SMILES string; uniqueness, a fraction of the generated molecules that are unique; novelty,
a fraction of the generated molecules that are not present in the training data; KL Divergence, a
measure of similarity of the generated molecules to the training set with respect to selected chemical
properties (Brown et al., 2019), as well as Fréchet ChemNet Distance (FCD; (Preuer et al., 2018)), a
general measure of similarity of the generated molecules to the training set.

Baselines As baselines, we select well-established molecule generation models based on SMILES
representation (Weininger, 1988): LSTM (Ertl et al., 2018), VAE (Kingma & Welling, 2013; Rezende
et al., 2014) and AAE (Kadurin et al., 2016). Additionally, we consider graph-based models: Junction
Tree VAE (Jin et al., 2018), MoLeR (Maziarz et al., 2021) and MAGNet (Hetzel et al., 2023). Finally,
we include MolGPT (Bagal et al., 2022), which is a Transformer-based model and the backbone for
the JOINT TRANSFORMER, sharing the same architecture, but trained differently.

14

Under review as a conference paper at ICLR 2024

Results In the molecule generation task, JOINT TRANSFORMER successfully generates valid,
unique and novel molecules (Tab. 4). Moreover, JOINT TRANSFORMER generates molecules with
properties that closely follow the training set distribution, making the newly generated molecules
realistic and physio-chemically plausible, as measured by KL Divergence and FCD. Compared to
the backbone MolGPT model, JOINT TRANSFORMER achieves identical performance, showing that
the modified training procedure does not hurt the generative functionality of the model. From the
generative modeling perspective, this result is counterintuitive, as we can include the reconstruction
task to the training procedure of the JOINT TRANSFORMER, without sacrificing its generative
performance.

Overall, none of the molecule generation methods achieves best performance across all metrics.
Graph-based methods outperform others on validity, as they generate always valid molecules by
design. However, the improvement of 3% as compared to Transformer-based models (JOINT TRANS-
FORMER and MolGPT) is negligible. Additionally, it comes at the expense of generating molecules
with decreased (from 12% to 19%) values of the KL Divergence and FCD metrics. On the other
hand, LSTM achieves top performance on KL Divergence and FCD metrics, slightly (1% and 3%,
respectively) outperforming Transformer-based methods, but falls behind in the validity of the gen-
erated molecules. All methods successfully generate unique and novel molecules. Overall, JOINT
TRANSFORMER strikes a good balance between graph-based and SMILES-based LSTM, making it a
viable choice for a go-to molecule generation model.

Table 4: Molecule Generation Task. JOINT TRANSFORMER (JT) matches state-of-the-art performance
of different molecule generation methods. Training the JOINT TRANSFORMER model on generation
and reconstruction tasks simultaneously does not hurt the generation performance of the model.

MODEL SIZE VALIDITY (↑) UNIQUENESS (↑) NOVELTY (↑) FCD (↑) KL DIV (↑)
LSTM - 0.96 1.0 0.91 0.91 0.99
VAE - 0.87 1.0 0.97 0.86 0.98
AAE - 0.82 1.0 1.0 0.53 0.89
JT-VAE - 1.0 N/A N/A 0.76 0.94
MAGNET 6.9M N/A N/A N/A 0.73 0.92
MOLER - 1.0 0.99 0.97 0.78 0.98
MOLGPT 6M 0.98 1.0 1.0 0.91 0.99
MOLGPT (OURS) 6M 0.97 1.0 0.97 0.89 0.98

JT (OURS) 6M 0.97 1.0 0.98 0.89 0.99
JT (OURS) 50M 0.98 1.0 0.95 0.90 0.99

C.2 UNCONDITIONAL GENERATION

Moreover, the jointly trained predictor qθ,ϕ(y | x) of the JOINT TRANSFORMER generalizes well
to data generated with the model pθ(x). In particular, the prediction error, as measured by mean
absolute error, of the JOINT TRANSFORMER fine-tuned on three properties from the Guacamol task
(Brown et al., 2019) do not change between the test set and newly generated data (Table 5). This
shows good generalization performance of JOINT TRANSFORMER.

Table 5: Mean absolute prediction error (MAE) for the predictor on three property prediction tasks
on test and generated data. Mean and standard deviation across independent runs.

METHOD DATA PERINDOPRIL MPO SITAGLIPTIN MPO ZALEPLON MPO

JOINT TRANSFORMER
TEST 0.014± 0.004 0.009± 0.001 0.012± 0.001

GENERATED 0.015± 0.004 0.009± 0.002 0.012± 0.001

15

Under review as a conference paper at ICLR 2024

D IMPLEMENTATION DETAILS

D.1 DATA AND TOKENIZATION

We use SMILES (Weininger, 1988) based representations of molecules across all experiments. In all
experiments we pre-train the JOINT TRANSFORMER in an unsupervised manner using the ChEMBL
database, a manually curated database of molecules with drug-like properties (Mendez et al., 2019).
As opposed to other datasets like ZINC (Irwin et al., 2020), ChEMBL contains only molecules
which have been synthesized. To ensure reproducibility and comparability with molecule generation
baselines we use version 24 of the database that contains 1.8M compounds altogether and apply
standard data processing used in the Guacamol benchmark (Brown et al., 2019). For supervised
finetuning in Sections 4.1 and 4.2, we randomly select a subset (N = 1000) of the unsupervised
data and evaluate the objective functions on the selected subsets. As for tokenization of the data, we
use a tokenizer based on (Schwaller et al., 2020). We additionally use an augmentation method of
SMILES representations based on (Tetko et al., 2019) and similar to (Bagal et al., 2022) across all
experiments and methods. This ensures transferability of results obtained by Bagal et al. (2022) to
our experiments.

D.2 MOL2VEC PRE-TRAINING DATA

The corpus of compounds was composed using the ZINC v15 and ChEMBL v23 databases as source
of compounds. The two databases were merged, duplicates removed, only compounds kept that
could be processed by RDKit, and filtered using the following cutoffs and criteria: molecular weight
between 12 and 600, heavy atom count between 3 and 50, clogP between -5 and 7, and only H, B, C,
N, O, F, P, S, Cl, Br atoms allowed. Additionally, all counter ions and solvents were removed and
canonical SMILES generated by RDKit. This procedure yielded 19.9 million compounds.

Figure 2: JOINT TRANSFORMER architecture.

16

Under review as a conference paper at ICLR 2024

D.3 ARCHITECTURE

Our implementation of the JOINT TRANSFORMER follows the implementation provided by (Karpathy,
2023), which is a re-implementation of a GPT-2 (Radford et al., 2019) used by MolGPT (Bagal
et al., 2022). The only difference is that during each forward pass, we switch between a causal and a
bidirectional masking, depending on the task we are optimizing for. We additionally stack an MLP
network on the top of the first output token for prediction. The complete list of hyperparameters is
presented in Table 6. Our implementation results in a model with 6.5M parameters.

Table 6: Model hyperparameters for the JOINT TRANSFORMER used across all experiments.

HYPERPARAMETER VALUE

ACTIVATION FN GELU
EMBED DIM 256
NUM LAYERS 6
NUM HEADS 8
FEEDFORWARD DIMENSION 1024
FEEDFORWARD BIAS FALSE
LAYER NORM EPSILON 1e−5
PREDICTOR HEAD MLP
PREDICTOR NUM LAYERS 1
PREDICTOR HIDDEN DIM 100

D.4 TRAINING

The JOINT TRANSFORMER can be trained in an unsupervised, semi-supervised or supervised setting,
depending whether a target y ∈ Y is sampled from the dataset D or is not available. We show the
unsupervised training procedure for JOINT TRANSFORMER in Algorithm 3.

Algorithm 3 Unsupervised training of JOINT TRANSFORMER

Input: A dataset D = {xn}Nn=1. JOINT TRANSFORMER pθ,ϕ(x, y) with parameters θ, ϕ containing
a decoder pθ(x), encoder

∏D
d=1 pθ(xd |m⊙ x−d) and a predictor pθ,ϕ(y | x).

Task probability ptask ∈ [0, 1] and a masking distribution q(m).
1: while a stopping criterion is not met do
2: Uniformly sample x from the dataset D
3: Sample an indicator u ∼ BERNOULLI(ptask)
4: if u = 0 then
5: Sample mask m ∼ q(m)

6: Calculate loss ℓ(θ, ϕ) = −
∑D

d=1 ln pθ(xd |m⊙ x−d)
7: else
8: Set mask to the causal mask
9: Calculate loss ℓ(θ, ϕ) = − ln pθ(x)

10: end if
11: Update parameters θ, ϕ using an optimizer w.r.t. loss ℓ
12: end while

We provide the complete list of hyperparameters used for training JOINT TRANSFORMER in Table 7.
JOINT TRANSFORMER was trained on a single NVIDIA GeForce RTX 2080 TI GPU for 4.2M
iterations that took approximately seven days.

D.5 FINE-TUNING

As JOINT TRANSFORMER is a joint model, fine-tuning is achieved by standard training (Alg. 1) on
the supervised part of the dataset. Unless stated otherwise, we use the same set of hyperparameters
for fine-tuning across all tasks, summarized in Table 8. Fine-tuning on a single NVIDIA GeForce

17

Under review as a conference paper at ICLR 2024

Table 7: Training hyperparameters of the JOINT TRANSFORMER used across all experiments.

HYPERPARAMETER VALUE

BATCH SIZE 64
TOTAL NUMBER OF TRAINING ITERATIONS 4.2 M
OPTIMIZER ADAMW
WEIGHT DECAY 1e−1
BETA 1 0.9
BETA 2 0.95
MAXIMUM LEARNING RATE 6e−4
MINIMUM LEARNING RATE 6e−5
DECAY LEARNING RATE TRUE
WARMUP ITERATIONS 2000
NUMBER OF LEARNING RATE DECAY ITERATIONS 4.2 M
VALUE TO CLIP GRADIENTS AT 1.0
DROPOUT 0.1
TASK PROBABILITY ptask 0.95

RTX 2080 TI GPU for 50K iterations takes approximately an hour. Hyperparameters not listed in
Table 8 are shared with the pre-training task.

Table 8: Fine-tuning hyperparameters for the JOINT TRANSFORMER used across all experiments.

HYPERPARAMETER VALUE

DECAY LR FALSE
LEARNING RATE 3e−5
NUM OF ITERATION 50K
TASK PROBABILITY ptask 0.1

18

	Author contribution
	Proofs
	Proof of Proposition 1
	Proof of Proposition 2

	Additional Experiments
	Molecule Generation
	Unconditional Generation

	Implementation Details
	Data and Tokenization
	Mol2Vec pre-training data
	Architecture
	Training
	Fine-tuning

