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ABSTRACT

Estimating a distribution given access to its unnormalized density is pivotal in
Bayesian inference, where the posterior is generally known only up to an unknown
normalizing constant. Variational inference and Markov chain Monte Carlo meth-
ods are the predominant tools for this task; however, both are often challenging to
apply reliably, particularly when the posterior has complex geometry. Here, we
introduce Soft Contrastive Variational Inference (SoftCVI), which allows a family
of variational objectives to be derived through a contrastive estimation framework.
The approach parameterizes a classifier in terms of a variational distribution, re-
framing the inference task as a contrastive estimation problem aiming to identify
a single true posterior sample among a set of samples. Despite this framing, we
do not require positive or negative samples, but rather learn by sampling the vari-
ational distribution and computing ground truth soft classification labels from the
unnormalized posterior itself. The objectives have zero variance gradient when
the variational approximation is exact, without the need for specialized gradient
estimators. We empirically investigate the performance on a variety of Bayesian
inference tasks, using both simple (e.g. normal) and expressive (normalizing flow)
variational distributions. We find that SoftCVI can be used to form objectives
which are stable to train and mass-covering, frequently outperforming inference
with other variational approaches.

1 INTRODUCTION

Consider a probabilistic model with a set of parameters θ, for which given a set of observations
xobs we wish to infer a posterior p(θ|xobs). Unless the model takes a particularly convenient form,
the posterior cannot be directly computed. However, typically p(θ,xobs) is available, related to the
posterior by p(θ|xobs) = p(θ,xobs)/p(xobs), where p(xobs) is an intractable normalizing constant
p(xobs) =

∫
p(θ,xobs)dθ. In these cases, computational methods such as Markov chain Monte

Carlo (MCMC) (Hastings, 1970; Metropolis et al., 1953) or variational inference (Jordan et al.,
1999; Kingma & Welling, 2014) are required to perform inference.

Variational inference approaches the inference task as an optimization problem by defining a vari-
ational distribution qϕ(θ) and minimizing its divergence to the true posterior p(θ|xobs). The per-
formance and reliability of variational inference is dependent on numerous factors, including the
choice of divergence, variational distribution and parameter initialization. Whilst choosing a diver-
gence that favors mass-covering posterior estimates may facilitate reliable inference, in many cases
these divergences introduce bias or are less stable to train, leading to worse performance (Dhaka
et al., 2021; Naesseth et al., 2020). Alongside difficulties in assessing performance (Yao et al.,
2018), these issues hinder practical applications of variational inference, particularly in applications
such as scientific research, where accurate uncertainty quantification is crucial.

In contrast to variational inference, contrastive learning is generally used to perform inference when
the likelihood function is only available through an intractable integral, such as for fitting energy-
based models or for performing simulation-based inference (Gutmann et al., 2022). Learning is
achieved by contrasting positive samples with negative samples, with the latter often generated by
augmenting positive samples or by drawing samples from a carefully chosen noise distribution. A
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common theme is to leverage the invariance of classification-based objectives to unknown normal-
izing constants to enable learning where likelihood-based methods are infeasible.

Contribution
We show that contrastive estimation can be used to derive a family of variational objectives, terming
the approach Soft Contrastive Variational Inference (SoftCVI). The task of fitting the posterior ap-
proximation is reframed as a classification task aiming to identify a single true posterior sample
among a set of samples. Instead of using explicitly positive and negative samples, we show that for
arbitrary samples from a proposal distribution, we can generate ground truth soft classification labels
using the unnormalized posterior density itself. The samples and corresponding labels are used for
fitting a classifier parameterized in terms of the variational distribution, such that the optimal classi-
fier recovers the true posterior. SoftCVI enables derivation of stable, mass-covering objectives, and
performance is demonstrated across a series of experiments using both simple and flexible (normal-
izing flow) variational distributions. Compared to alternative variational objectives, we find SoftCVI
generally yields better calibrated posteriors with a lower forward Kullback-Leibler (KL) divergence
to the true posterior. We provide a pair of Python packages, pyrox and softcvi validation, which
provide the implementation, and the code for reproducing the results of this paper, respectively.

2 SOFTCVI

In order to fit a variational distribution with SoftCVI, we must define a proposal distribution π(θ), a
negative distribution p−(θ), and the variational distribution itself, qϕ(θ). At each optimization step,
three steps are performed which allow fitting the variational distribution:

1. Sample parameters {θk}Kk=1 ∼ π(θ) from the proposal distribution π(θ).

2. Generate corresponding ground truth soft labels y ∈ (0, 1)K for the task of classifying
between positive and negative samples, presumed to be from p(θ|xobs) and p−(θ), respec-
tively.

3. Use {θk}Kk=1 along with the soft labels y to optimize a classifier parameterized in terms of
the variational distribution qϕ(θ), such that the optimal classifier recovers the true posterior.

The choice of proposal distribution in step one will influence the region in which learning is fo-
cused. Throughout the experiments here, we take the intuitive and convenient choice of using the
variational distribution itself as the proposal distribution π(θ) = qϕ(θ), which over the course of
training directs learning towards regions with reasonable posterior mass. The remainder of this
section is structured as follows: section 2.1 details the assignment of ground truth labels to arbi-
trary proposal samples; section 2.2 discusses the parameterization and optimization of the classifier;
finally, section 2.3 considers the choice of negative distribution.

2.1 GENERATING GROUND TRUTH SOFT LABELS

Classification can be used to estimate the density ratio between positive and negative distributions
(Gutmann & Hyvärinen, 2012; Hastie, 2009; Oord et al., 2018; Thomas et al., 2022). Conversely, if
the positive and negative densities are known, the density ratio and ground truth classification labels
can be directly computed. Consider we have a set of {θk}Kk=1 samples from the proposal distribution
π(θ). SoftCVI reframes inference as a classification task, where the problem is chosen such that
analytical ground truth labels can be assigned to the K samples. Specifically, if we consider the true
posterior p(θ|xobs) to be the positive distribution, and p−(θ) to be a chosen negative distribution, the
ratio p(θk|xobs)/p

−(θk) represents the relative likelihood of a sample being a true posterior sample
under the classification problem. By contrasting the K samples, assuming a setting where {θk}Kk=1
consists of exactly one positive sample from the true posterior p(θ|xobs), and K−1 negative samples
from p−(θ), the optimal classifier is then given by

yk =
p(θk|xobs)/p

−(θk)∑K
k′=1 p(θk′ |xobs)/p−(θk′)

, (1)

where yk is the probability on the interval (0, 1) that θk is the positive sample among all the consid-
ered samples, and

∑K
k=1 yk = 1. This approach of contrasting samples is invariant to multiplicative
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scaling of the density ratio p(θ|xobs)/p
−(θ), meaning that access only to unnormalized forms of

p(θ|xobs) and p−(θ) is sufficient for computing the labels. Since typically p(θ,xobs) is known and
proportional to p(θ|xobs), we can analytically compute the labels as

yk =
p(θk,xobs)/p

−(θk)∑K
k′=1 p(θk′ ,xobs)/p−(θk′)

,

y = softmax(z), where zk = log
p(θk,xobs)

p−(θk)
,

(2)

where p−(θ) may be unnormalized. While contrastive estimation methods generally use explicitly
positive and negative examples with hard labels y ∈ {0, 1}K , here, in our framework, we lack
access to positive samples from p(θ|xobs), and we may not have access to samples from p−(θ).
Nonetheless, by instead generating samples from a proposal distribution, {θk}Kk=1 ∼ π(θ), and by
assigning soft labels to these samples using eq. (2), it is still possible to train a classifier which at
optimality recovers the true posterior, as we will discuss in the subsequent section.

2.2 PARAMETERIZATION AND OPTIMIZATION OF THE CLASSIFIER

Analogously to the computation of the labels in eq. (2), we can parameterize the classifier in terms
of the ratio between the variational and negative distribution

ŷk =
qϕ(θk)/p

−(θk)∑K
k′=1 qϕ(θk′)/p−(θk′)

,

ŷ = softmax(ẑ), where ẑk = log
qϕ(θk)

p−(θk)
.

(3)

Given a set of samples {θk}Kk=1 ∼ π(θ) and corresponding labels y computed using eq. (2), an
optimization step with respect toϕ can be taken to minimize the softmax cross-entropy loss function

LSoftCVI(ϕ; {θk}Kk=1,y) = −
K∑

k=1

yk log (ŷk) = −
K∑

k=1

yk log

(
qϕ(θk)/p

−(θk)∑K
k′=1 qϕ(θk′)/p−(θk′)

)
. (4)

This is equivalent to maximizing the categorical log-likelihood, or equivalently, minimizing the
forward KL divergence between the true categorical label distribution and the predicted distribution
(appendix A.4). While a wide variety of divergence measures, such as f -divergences, could also be
employed, which we briefly discuss in appendix A.4, we leave a detailed exploration of these for
future work.

Let Θ represent the support of the proposal distribution, with p(θ|xobs) and qϕ(θ) supported on
the same set, and p−(θ) supported on a superset of Θ. Assume that there exists a ϕ such that
p(θ|xobs) = qϕ(θ). The optimal classifier, i.e. which minimizes eq. (4) for all {θk}Kk=1 ∈ ΘK ,
recovers the true posterior, for any valid choice of K.1 This result follows from the fact the optimal
classifier must learn the density ratio between the positive and negative distributions up to a constant
across Θ

p(θ|xobs)/p
−(θ) = c · qϕ(θ)/p−(θ),

p(θ|xobs) = c · qϕ(θ).

Due to the shared support, integrating both sides over the proposal support Θ gives∫
Θ

p(θ|xobs) = c ·
∫
Θ

qϕ(θ), (5)

c = 1.

Thus the optimal classifier recovers the true posterior

p(θ|xobs) = qϕ(θ). (6)

1Or equivalently, the optimal classifier minimizes E{θk}Kk=1
∼π(θ)[LSoftCVI

(
ϕ; {θk}Kk=1,y

)
], for which we

can view eq. (4) as a single sample Monte Carlo approximation.
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Importantly, this suggests if qϕ(θ) or p(θ|xobs) have non-zero regions outside the support of π(θ),
then p(θ|xobs) = c · qϕ(θ) can be satisfied within Θ without recovering the true posterior, as the
integrals in eq. (5) will not both evaluate to one. This is a consequence of the incentive to learn the
density ratio (up to a constant) being localized to the sampled region. Ensuring π(θ), qϕ(θ) and
p(θ|xobs) are supported on the same set Θ can be achieved by defining a variational distribution
supported on the same set as the posterior p(θ|xobs), alongside using the variational distribution as
the proposal distribution π(θ) = qϕ(θ).

When the optimal classifier is achieved, we show in appendix A.1 that the gradient is zero for any
set {θk}Kk=1 ∈ ΘK , and consequently has zero variance. This is a generally desirable property that
is not present in many variational objectives, although specialized gradient estimators have been
developed which in some cases can address this issue (Roeder et al., 2017; Tucker et al., 2018). An
algorithm outlining the overall approach of SoftCVI is shown in algorithm 1.

Algorithm 1: SoftCVI
Inputs: p(θ,xobs), π(θ), p−(θ), qϕ1(θ), number of samples K ≥ 2, optimization steps
N , learning rate η

for i in 1 : N do
1 Sample {θk}Kk=1 ∼ π(θ)

2 Compute soft labels y = softmax(z), where zk = log p(θk,xobs)
p−(θk)

3 Update ϕi+1 = ϕi − η∇ϕL(ϕi; {θk}Kk=1,y) using the cross-entropy loss, eq. (4)
end

2.3 CHOICE OF THE NEGATIVE DISTRIBUTION

The choice of negative distribution is a well-known challenge in contrastive learning, with the op-
timal negative distribution often differing significantly from the positive distribution (Chehab et al.,
2022). In contrast to standard applications of contrastive estimation, in SoftCVI, the negative distri-
bution is never sampled, meaning the impact of the choice is limited to its influence on the objective’s
properties. To better understand this, we can rewrite the softmax cross-entropy objective from eq. (4)
by separating out the log term

LSoftCVI(ϕ; {θk}Kk=1,y) = −
K∑

k=1

yk log
qϕ(θk)

p−(θk)
+

K∑
k=1

yk log

K∑
k′=1

qϕ(θk′)

p−(θk′)
,

= −
K∑

k=1

yk log qϕ(θk) + log

K∑
k=1

qϕ(θk)

p−(θk)
+ const, (7)

where in the last line we remove the denominator from the first term into a constant as it is indepen-
dent of ϕ, and use

∑K
k=1 yk = 1. The first term encourages placing posterior mass on the samples

likely to be from the true posterior, and the second term penalizes the sum of the ratios. In addition
to appearing in the second term, the negative distribution choice also influences yk through eq. (2).

We focus on setting p−(θ) = π(θ)α, where α ∈ [0, 1] is a tempering hyperparameter which in-
terpolates between directly using the proposal distribution as the negative distribution when α = 1
and using an improper flat negative distribution when α = 0. Lower values of α tend to favor more
mass-covering solutions by increasing the relative penalization of samples in higher density regions
in qϕ(θ) through the second term of eq. (7). However, a too small choice for α can lead to problemat-
ically high variances of the log ratios zk = log[p(θk,xobs)/p

−(θk)] and ẑk = log[qϕ(θk)/p
−(θk)].

Particularly in high-dimensional problems, this can result in labels and predictions with very few
non-zero values, meaning few samples contribute significantly to the loss. In terms of eq. (7), the
high variance of ẑk leads to a failure to sufficiently penalize the ratios in lower density regions of
qϕ(θ), as log

∑K
k=1 exp(ẑk) is dominated by the few largest ratios. In practice, we empirically

show this leads to “leakage” of mass into regions of negligible posterior density (fig. 2), and a weak
signal-to-noise ratio (SNR) (see appendix A.3).

As described in the introduction to section 2, we choose the proposal distribution to equal the vari-
ational distribution, meaning the choice above is equivalent to using p−(θ) = qϕ(θ)

α. However,
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when computing the objective gradient, we treat p−(θ) as independent of ϕ, which practically
can be achieved by applying the stop-gradient operator present in automatic differentiation pack-
ages.2 In appendix A.7, we also consider parameterizing the negative distribution using p(θ,xobs)

α;
however, this choice introduces the problematic ratio qϕ(θ)/p(θ,xobs), which leads to favoring of
mode-seeking solutions and poorly calibrated posteriors.

3 RELATED WORK

3.1 VARIATIONAL INFERENCE

Given access to an unnormalized posterior density, p(θ,xobs), variational inference allows optimiz-
ing a variational distribution qϕ(θ) to approximate the posterior. For certain model classes there exist
closed form solutions which can be exploited during optimization (e.g. Blei et al., 2017; Ghahramani
& Beal, 2000; Parisi, 1988). However, the lack of broad applicability of these methods hinders the
ability of practitioners to freely alter the model and variational family. As such, we instead focus on
methods which place minimal restrictions on the model form and variational family.

3.1.1 EVIDENCE LOWER BOUND

The most commonly used variational objective is to minimize the negative Evidence Lower Bound
(ELBO) or equivalently, minimizing the reverse KL divergence between the posterior approximation
and the true posterior

DKL[qϕ(θ) ∥ p(θ|xobs)] = Eqϕ(θ) [log qϕ(θ)− log p(θ|xobs)] ,

= Eqϕ(θ)[log qϕ(θ)− log p(θ,xobs)] + const.
(8)

As there is no general closed-form solution for the divergence, a Monte Carlo approximation is often
used (Kingma & Welling, 2014)

LELBO(ϕ) =
1

K

K∑
k=1

[log qϕ(θk)− log p(θk,xobs)] , where {θk}Kk=1 ∼ qϕ(θ). (9)

Although straightforward to apply, the reverse KL divergence heavily punishes placing mass in re-
gions with little mass in the true posterior leading to mode-seeking behavior and lighter tails than
p(θ|xobs). In addition to underestimating uncertainty, the light tails may also lead to the approx-
imation performing poorly in downstream tasks, such as when acting as a proposal distribution in
importance sampling (Chatterjee & Diaconis, 2018; Gelman & Meng, 1998; Müller et al., 2019b;
Yao et al., 2018) or for reparameterizing MCMC (Hoffman et al., 2019).

3.1.2 SELF-NORMALIZED IMPORTANCE SAMPLING FORWARD KL DIVERGENCE

In order to address the limitations of the ELBO, numerous alternative objectives have been proposed
that encourage more mass-covering behavior, such as the importance weighted ELBO (Burda et al.,
2015), the Rényi divergence, (Li & Turner, 2016), χ-divergence (Dieng et al., 2017), and methods
targeting the forward KL divergence (Jerfel et al., 2021; Naesseth et al., 2020). In this section,
we will focus on the Self-Normalized Importance Sampling Forward Kullback-Leibler (SNIS-fKL)
divergence estimator introduced by Jerfel et al. (2021). Specifically, a standard importance weighted
estimate of the forward KL divergence is given by

DKL[p(θ|xobs) ∥ qϕ(θ)] = Eπ(θ)

[
w(θ) log

p(θ,xobs)

qϕ(θ)

]
+ const, (10)

where w(θ) = p(θ|xobs)/π(θ) are the importance weights. Computing a set of self-normalized
weights with elements w̃(θ)k = p(θk,xobs)/π(θk)∑K

k′=1
p(θk′ ,xobs)/π(θk′ )

and using these alongside a Monte Carlo
approximation of eq. (10), yields the objective

LSNIS-fKL(ϕ; {θk}Kk=1) =

K∑
k=1

w̃(θ)k log
p(θk,xobs)

qϕ(θk)
. (11)

2Without preventing gradient flow through p−(θ), the choice p−(θ) = π(θ) = qϕ(θ) leads to zero gradi-
ents as the parameterization of the classifier becomes qϕ(θ)/qϕ(θ).
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This approach introduces bias in the approximation of the forward KL vanishing with order O(1/K)
(Agapiou et al., 2017). Generally, the proposal is chosen to equal the variational distribution π(θ) =
qϕ(θ), and the proposal parameters are held constant under differentiation.

3.2 COMPARISON OF SOFTCVI AND SNIS-FKL

In this section, we demonstrate that in the special case of choosing p−(θ) = π(θ) = qϕ(θ), both
SoftCVI and SNIS-fKL produce gradients that are equal in expectation, but the SoftCVI objective
naturally includes a control variate which ensures the variance of the gradient decreases to zero as
the variational distribution approaches the true posterior. We use this result to suggest an alternative,
lower-variance gradient estimator for the SNIS-fKL objective, exactly equivalent to optimizing the
SoftCVI objective with p−(θ) = π(θ) = qϕ(θ).

Noticing that from eq. (11), the numerator term does not depend on ϕ, we can equivalently write the
SNIS-fKL objective as

LSNIS-fKL(ϕ; {θk}Kk=1) = −
K∑

k=1

w̃(θ)k log qϕ(θk) + const. (12)

In the special case under consideration, the self-normalized weights w̃(θ) from the SNIS-fKL ob-
jective, and the ground truth labels y from SoftCVI are computed identically. This allows rewriting
the SoftCVI objective from eq. (7) as the sum of the SNIS-fKL objective and the normalization term

LSoftCVI(ϕ; {θk}Kk=1) = LSNIS-fKL(ϕ; {θk}Kk=1) + log

K∑
k=1

qϕ(θk)

p−(θk)
+ const, (13)

where we show in appendix A.2 that when p−(θ) = qϕ(θ), the normalization term gradient is

∇ϕ log
K∑

k=1

qϕ(θk)

p−(θk)
=

1

K

K∑
k=1

∇ϕ log qϕ(θk). (14)

Since Eπ(θ)[∇ϕ log qϕ(θ)] = Eqϕ(θ)[∇ϕ log qϕ(θ)] = 0, the inclusion or omission of the normal-
ization term does not change the gradient in expectation over sets of {θk}Kk=1, but it significantly
influences the variance. As shown in appendix A.1, the gradient variance for SoftCVI decreases to
zero as the variational distribution approaches the posterior. In contrast, this implies the variance
of the SNIS-fKL objective approaches the variance of 1

K

∑K
k=1 ∇ϕ log qϕ(θk), which is positive,

scaling inversely with K.

In addition to providing a novel perspective of the SNIS-fKL objective as training an (unnormalized)
classifier, this result also implies a straightforward modification to form a lower-variance SNIS-fKL
gradient estimator

∇ϕLLV(ϕ; {θk}Kk=1) = ∇ϕLSNIS-fKL(ϕ; {θk}Kk=1) +
1

K

K∑
k=1

∇ϕ log qϕ(θk), (15)

which is exactly equivalent to optimizing the SoftCVI objective with p−(θ) = π(θ) = qϕ(θ). This
approach of lowering the variance of a gradient estimator by utilizing ∇ϕ log qϕ(θ) as a control vari-
ate has also been applied to other variational objectives, such as the sticking the landing estimator of
the ELBO (Roeder et al., 2017; Tucker et al., 2018). There is no guarantee that the gradient variance
will be lower in all instances. However, the variance provably reduces to zero as the variational dis-
tribution approaches the true posterior, which allows a reasonable SNR to be maintained even when
near convergence, which is likely beneficial for performance and stable convergence. We support
this claim with the empirical results in section 5, in addition to investigating the signal-to-noise ratio
of the objectives in appendix A.3.

3.3 CONTRASTIVE LEARNING

Contrastive learning most commonly allows learning of distributions through the comparison of true
samples to a set of negative (noise or augmented) samples (Gutmann & Hyvärinen, 2010). Generally,
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and notably in contrast to the current work, applications of contrastive learning focus on problems
where the likelihood is unavailable, such as for fitting energy-based models (Gao et al., 2020; Gut-
mann & Hyvärinen, 2010; Gutmann et al., 2022; Rhodes & Gutmann, 2019; Rhodes et al., 2020) or
performing simulation-based inference (Durkan et al., 2020; Greenberg et al., 2019; Gutmann et al.,
2022; Hermans et al., 2020; Miller et al., 2022; Thomas et al., 2022). Probably the most widely
used objective function in contrastive learning is the InfoNCE loss, proposed by Oord et al. (2018).
Given a set of samples {θk}Kk=1, containing a single true sample with index k∗, and K − 1 negative
samples, the loss can be computed as

LInfoNCE(ϕ; {θk}Kk=1) = − log
fϕ(θk∗)∑K
k=1 fϕ(θk)

, (16)

where fϕ(θ) approximates the ratio between the positive and negative distributions (up to a con-
stant). This is commonly also presented with an additional sum (or expectation) over different sets
of {θk}Kk=1. The InfoNCE loss can be derived from the softmax cross-entropy loss, eq. (4), by in-
putting a one-hot encoded vector of labels y with yk∗ = 1 and all other elements 0. This results in
only the k∗-th summation term being non-zero, recovering the InfoNCE loss.

In contrastive methods for simulation-based inference, parameters are sampled from a proposal dis-
tribution π(θ), and used to perform simulations. Learning is achieved through comparing positive
parameter-output pairs from p(x|θ)π(θ), to negative (mismatched) pairs drawn marginally from
π(x)π(θ), where π(x) =

∫
p(x|θ)π(θ)dθ. Similar to the current work, a normalized approxima-

tion to the posterior is often included in the classifier parameterization. Specifically, the classifier is
parameterized using the ratio between the approximate posterior and the prior qϕ(θ|x)/p(θ) and is
optimized using the InfoNCE objective (Durkan et al., 2019; Greenberg et al., 2019).

Adversarial methods which are closely related to contrastive learning are often used in conjunction
with variational inference (Huszár, 2017; Makhzani et al., 2015; Mescheder et al., 2017). A key idea
is to rewrite the reverse KL divergence from eq. (8) to include a density ratio, for example

DKL[qϕ(θ) ∥ p(θ|xobs)] = Eqϕ(θ)

[
log

qϕ(θ)

p(θ)
− log p(xobs|θ)

]
+ const. (17)

The ratio is then substituted with an approximation, fψ(θ) ≈ qϕ(θ)/p(θ), trained using a separate
classification objective. This allows the ELBO to be optimized without computing the log density
log qϕ(θ), enabling the use of expressive implicit models for qϕ(θ). In contrast, SoftCVI directly
optimizes the variational distribution with a contrastive objective without a separate classification
model, though it does require the variational distribution to be explicitly defined.

Recently, there has been investigation of the use of soft (or ranked) labels in contrastive learning,
frequently using cross-entropy-like loss functions. In contrast to the current work, these methods
focus on improving performance in the standard context of contrastive learning, where evaluation
of the likelihood is infeasible. As such, the soft labels cannot be computed exactly, and instead are
generated using other methods, such as label smoothing (Hugger & Uhlmann, 2024) or by utilizing
a similarity metric such as cosine similarity between embeddings of positive and negative samples
(Feng & Patras, 2022; Hoffmann et al., 2022; Park et al., 2024).

4 EXPERIMENTS

We focus on Bayesian inference tasks for which reference posterior samples {θ∗i }Nref
i=1 are available

to enable reliable assessment of performance. However, in appendices A.5 and A.6, we also consider
application of SoftCVI for training variational autoencoders and Bayesian neural networks, respec-
tively. We use p−(θ) = π(θ)α and focus results on two choices, α = 0.75 and α = 1. Performance
is compared to using the ELBO or the SNIS-fKL divergence (Jerfel et al., 2021). For each task
and objective, 50 independent runs were performed. Where possible (i.e. an analytical posterior is
available), different observations xobs were generated from the model for each run. For tasks where
the reference posterior is created through sampling methods we relied on reference posteriors pro-
vided by PosteriorDB (Magnusson et al., 2024) or SBI-Benchmark (Lueckmann et al., 2021) and for
each run sampled from the available observations if multiple are present. For all methods, K = 8
samples from qϕ(θ) were used during computation of the objectives, and 50,000 optimization steps
were performed with the Adam optimizer (Kingma & Ba, 2014).
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Software. Our implementation and experiments made wide use of the python packages JAX (Brad-
bury et al., 2018), equinox (Kidger & Garcia, 2021), NumPyro (Phan et al., 2019), FlowJAX (Ward,
2024) and optax (DeepMind et al., 2020).

4.1 METRICS

Coverage probabilities. Posterior coverage probabilities have been widely used to assess the re-
liability of posteriors (e.g. Cannon et al., 2022; Cook et al., 2006; Hermans et al., 2021; Prangle
et al., 2014; Talts et al., 2018; Ward et al., 2022). Given a nominal frequency γ ∈ [0, 1], the met-
ric assesses the frequency at which true posterior samples fall within the 100γ% highest posterior
density region (credible region) of the approximate posterior. For a given γ, if the actual frequency
exceeds γ, the posterior is conservative for that coverage probability; if it is lower, then the posterior
is overconfident. A posterior is said to be well-calibrated if the actual frequency matches γ for any
choice of γ. A well-calibrated or somewhat conservative posterior is needed for drawing reliable
scientific conclusions, and as such is an important property to investigate. We estimate the actual
coverage frequency for a posterior estimate as

1

Nref

Nref∑
i=1

1
{
θ∗i ∈ HDRqϕ(θ|xobs)(γ)

}
(18)

where 1 is the indicator function, and HDR represents the highest posterior density region, inferred
using the density quantile approach of Hyndman (1996).

Log probability of θ∗. Looking at the probability of either reference posterior samples or the
ground truth parameters in a posterior approximation is a common metric for assessing performance
(e.g. Greenberg et al., 2019; Lueckmann et al., 2021; Papamakarios & Murray, 2016). We compute
this independently for each posterior approximation as follows

1

Nref

Nref∑
i=1

log qϕ(θ
∗
i ). (19)

This metric also approximates the negative forward KL divergence between the true and approxi-
mate posterior up to a constant, which is a quantity known to control error in importance sampling
(Chatterjee & Diaconis, 2018)

−DKL[p(θ|xobs) ∥ qϕ(θ)] = −Ep(θ|xobs)[log p(θ|xobs)− log qϕ(θ)],

≈ 1

Nref

Nref∑
i=1

log qϕ(θ
∗
i ) + const, (20)

Posterior mean accuracy. A posterior that is overconfident but with the correct posterior mean
would perform poorly based on the aforementioned metrics, but can form good point estimates for
the parameters θ. To assess this, we choose to measure the accuracy using the negative L2-norm of
the standardized difference in posterior means

−
∥∥∥∥mean(θ∗)− mean(θ)

std(θ∗)

∥∥∥∥
2

, (21)

where mean(θ∗) and mean(θ) are the mean vectors of the reference and posterior approximation
samples respectively, and std(θ∗) is the vector of standard deviations of the reference samples.

4.2 TASKS

A brief description of each model is given below. For a complete description, see appendix A.8.

Eight schools. A classic hierarchical Bayesian inference problem, where the aim is to infer the
treatment effects of a coaching program applied to eight schools (Gelman et al., 1995; Rubin, 1981).
The parameter set is θ = {µ, τ,m}, where µ is the average treatment effect across the schools, τ
is the standard deviation of the treatment effects across the schools and m is the eight-dimensional
vector of treatment effects for each school. For the posterior approximation qϕ(θ), we use a normal
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Figure 1: The posterior performance metrics (see section 4.1). a) The nominal coverage frequency
against the average difference between the nominal and actual coverage frequency. Well-calibrated
methods follow the black dotted line (y = 0), whereas conservative methods fall above, and over-
confident methods below. b) The average probability of the reference posterior samples in the ap-
proximate posterior. c) The accuracy of the approximate posterior mean, calculated as the negative
L2-norm between the mean of the standardized reference and approximate posterior samples.

distribution for µ, a folded Student’s t distribution for τ (where folding is equivalent to taking an
absolute value transform), and a Student’s t distribution form.

Linear regression. A Bayesian linear regression model with parameters θ = {β, µ}, where β ∈
R50 is the regression coefficients, and µ ∈ R is the bias parameter. The covariates X ∈ R(200×50)

are sampled from a standard normal distribution, with targets sampled from y ∼ N (Xβ + µ, 1).
The posterior approximation qϕ(θ) is implemented as a fully factorized normal distribution.

SLCP. The Simple Likelihood Complex Posterior (SLCP) task introduced in (Papamakarios et al.,
2019). This task parameterizes a multivariate normal distribution using a 5-dimensional vector θ.
Due to squaring in the parameterization, the posterior contains four symmetric modes. For the poste-
rior approximation qϕ(θ), we use a four layer masked autoregressive flow, with a rational quadratic
spline transformer (Durkan et al., 2019; Germain et al., 2015; Kingma et al., 2016; Papamakarios
et al., 2017).

GARCH(1,1). A Generalized Autoregressive Conditional heteroscedasticity (GARCH) model
(Bollerslev, 1986). GARCH models are used for modeling the changing volatility of time series
data by accounting for time-varying and autocorrelated variance in the error terms. The observa-
tion consists of a 200-dimensional time series x, where each element xt is drawn from a normal
distribution with mean µ and time-varying variance σ2

t . The variance σ2
t is defined recursively by

the update σ2
t = α0 + α1(xt−1 − µ)2 + β1σ

2
t−1, where α1 and β1 control the contribution from

the previous observation and previous variance term, respectively. To parameterize qϕ(θ), we use
a normal distribution for µ and a log normal distribution for α0. For α1 and β1 we use uniform
distributions constrained to the prior support, transformed with a rational quadratic spline (Durkan
et al., 2019). To allow modeling of posterior dependencies, the distribution over β1 is parameterized
as a function of α0 and α1 using a neural network.

9
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Figure 2: A 2-dimensional posterior marginal for a single run of the SLCP task, with the reference
posterior samples shown in green.

5 RESULTS

Across all tasks and metrics considered, the SoftCVI derived objectives performed competitively
with the ELBO and SNIS-fKL objectives (fig. 1). Overall, SoftCVI using a negative distribution
π(θ)α with α = 0.75 outperformed the other methods, giving rise to better calibrated posteriors
and tending to place more mass on average on the reference posterior samples, indicating a lower
forward KL divergence to the true posterior.

A key comparison, is between SoftCVI with α = 1 and the SNIS-fKL objective, which give gradient
estimators that are equal in expectation (see section 3.2). With the exception of the eight schools
task, where both methods performed similarly, SoftCVI with α = 1 tended to place more mass on
the reference samples and yielded better calibrated posteriors. These results highlight the benefit of
the reduced gradient variance provided by SoftCVI when the variational distribution is sufficiently
close to the true posterior. Further, the performance discrepancy becomes more pronounced for a
smaller choice of K (see figs. 7 and 8 and in the appendix). This can be explained due to the variance
of the SNIS-fKL objective gradient scaling inversely with K, meaning the control variate naturally
included by the SoftCVI objective becomes more crucial. Both SoftCVI and SNIS-fKL tended to
place more mass on the reference samples when trained with a larger K, but this comes with an
increase in computational cost (fig. 7).

On the SLCP task, which yields complex posterior geometry with four symmetric modes, only the
SoftCVI objectives performed well. The ELBO objective often resulted in poor distribution of the
mass across the modes, sometimes missing modes entirely (fig. 2; see also fig. 9 in the appendix).
In contrast, SNIS-fKL, though less mode-seeking, frequently approximated the individual modes
poorly. This observation aligns with previous work suggesting the unreliability of existing mass-
covering objectives (Dhaka et al., 2021). To illustrate the impact of the choice of negative distribu-
tion, fig. 2 also shows a posterior trained with a flat negative distribution by setting α = 0. The flat
negative distribution does not sufficiently penalize placing mass in qϕ(θ) in regions of negligible
posterior density, leading to “leakage” of mass (see section 2.3).

6 CONCLUSION

In this work, we introduced SoftCVI, a novel framework for deriving variational objectives moti-
vated through contrastive learning. Our experiments across various Bayesian inference tasks indi-
cate that SoftCVI often outperforms other variational objectives, producing posterior approxima-
tions with better coverage properties and a lower forward KL divergence to the true posterior. The
performance difference is particularly notable for tasks with complex posterior geometries which
require flexible density estimators. SoftCVI bridges between variational inference and contrastive
estimation, which we hope will open up new avenues for further research. Both experimental and
theoretical work would be beneficial to further guide the choice of negative distribution. Further,
it would be interesting to explore different choices of classification objectives, or equivalently, dif-
ferent choices of divergences between the categorical labels and predictions. Finally, it could be
valuable to investigate how advances from classification and contrastive learning, such as label
smoothing (Müller et al., 2019a) and temperature scaling (Wang & Liu, 2021), could be adapted
to SoftCVI to enhance training stability and further control posterior calibration.
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A APPENDIX

A.1 ZERO VARIANCE GRADIENT AT OPTIMUM WITH FINITE K

When the optimal classifier is reached, we can show that the gradient is zero (and hence has zero
variance), even for finite K. To avoid clashes with the parameters ϕ, we will use superscripts for
indices. We have the objective

L(ϕ; {θk}Kk=1,y) = −
K∑

k=1

yk log

(
qϕ(θ

k)/p−(θk)∑K
k′=1 qϕ(θ

k′)/p−(θk′)

)
.

Letting ŷkϕ replace the term inside the log

= −
K∑

k=1

yk log ŷkϕ, (22)

∇L(ϕ; {θk}Kk=1,y) = −
K∑

k=1

yk∇ log ŷkϕ, (23)

= −
K∑

k=1

yk
∇ŷkϕ
ŷkϕ

, (24)

which due to optimality of the classifier we have yk = ŷkϕ

= −
K∑

k=1

∇ŷkϕ, (25)

due to the properties of the softmax, the labels must sum to 1

= −∇
K∑

k=1

ŷkϕ = 0. (26)

A.2 SOFTCVI NORMALIZATION TERM GRADIENT

When p−(θ) = qϕ(θ), we claim in eq. (14) that the normalization term gradient can be written as
1
K

∑K
k=1 ∇ϕ log qϕ(θk). Making use of the property of the logarithmic derivative, ∇x log f(x) =

∇xf(x)
f(x) , we can show this as follows

∇ϕ log
K∑

k=1

qϕ(θk)

p−(θk)
=

∇ϕ
[∑K

k=1 qϕ(θk)/p
−(θk)

]
∑K

k=1 qϕ(θk)/p
−(θk)

,

where we treat p−(θk) as constant with respect to ϕ (i.e., we apply stop-gradient), so

=

∑K
k=1 ∇ϕ[qϕ(θk)]/p−(θk)∑K

k=1 qϕ(θk)/p
−(θk)

,

and using p−(θk) = qϕ(θk) (value-wise only, not in gradient flow), we get

=

∑K
k=1 ∇ϕ[qϕ(θk)]/qϕ(θk)∑K

k=1 qϕ(θk)/qϕ(θk)
,

=
1

K

K∑
k=1

∇ϕ log qϕ(θk). (27)
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A.3 GRADIENT SIGNAL-TO-NOISE RATIO

By evaluating an objective gradient over a set of random seeds (different sets of {θk}Kk=1), it is
possible to empirically inspect the signal-to-noise ratio (SNR) ratio of the gradient for different
objectives. Following Rainforth et al. (2018), we compute the SNR as

SNR(∇ϕL(ϕ)) = |E[∇ϕL(ϕ)]|
/
σ[∇ϕL(ϕ)]

where σ[·] denotes the element-wise standard deviation for each parameter gradient. A low SNR
indicates that the gradient estimation is dominated by noise, making stochastic optimization chal-
lenging. However, it is important to recognize that whilst a high SNR is preferable, it does not alone
guarantee the objective itself is practically useful (or even sensible), for example it may be biased or
heavily favor mode-seeking solutions.

We consider a toy normal task from Glöckler et al. (2022), with the distinction that we vary the
dimensionality of the task d ∈ {1, 50} and the parameterization of variational distribution. The task
is defined through the model

θ ∼ N (0, 4 · Id), x ∼ N (θ, Id),

where the aim is to infer the mean vector θ, given an observation xobs = 1d, where 1d is the d-
dimensional vector of ones. The variational distribution is parameterized as a normal distribution,
with mean vector µ ∈ Rd and log standard deviations logσ ∈ Rd. When assessing the gradient
properties of µ, we hold logσ fixed at the closed form posterior solution, logσ = log(

√
4/5) · 1d.

Similarly, when assessing the gradient properties of logσ, we hold µ fixed at the true closed form
solution µ = 4/5 · 1d. The signal, noise and SNR for each objective are shown in fig. 3.

SoftCVI with α = 1, and the SNIS-fKL objective yield very similar signals, which results from the
two objectives producing the same gradients in expectation (section 3.2). However, the SNIS-fKL
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Figure 3: The signal, noise and signal-to-noise ratio of the objective gradients on a toy normal task
of varying dimensionality. When d = 50, the gradient properties are computed parameter-wise and
averaged. The vertical dashed line shows the true parameter values from the closed form posterior
solution.

17



Published as a conference paper at ICLR 2025

objective has positive noise when the variational distribution approaches the true posterior, meaning
the SNR degrades to zero. In contrast, for the SoftCVI objectives, the gradient noise approaches
zero (see appendix A.1), and a reasonable SNR is present as the variational distribution approaches
the true posterior.

When d = 50 the signal and consequently the SNR, deteriorates larger values of logσ, and lower
choices of α. In this case, both expanding the dimension of the problem, and decreasing the α value,
increases the variance of zk = log[p(θk,xobs)/p

−(θk)] and ẑk = log[qϕ(θk)/p
−(θk)]. This can

lead to degeneracy in the labels and predictions, meaning very few samples meaningfully contribute
to the loss function, reducing the SNR. In an extreme case, e.g. setting α = 0 and further expanding
the dimensionality of the problem, only a single label and prediction will be significantly non-
zero. In this regime, negligible signal would exist for a too large logσ parameter, as the variational
distribution, despite the incorrect logσ, would still result in the correct degenerate predicted labels.

A.4 ALTERNATIVE DIVERGENCES

We can interpret SoftCVI as defining two categorical distributions between which a divergence is
minimized: P , which is defined using the labels such that yk = P (k), and Qϕ, which is defined
using the predictions such that ŷk = Qϕ(k). In this work, we used the cross-entropy objective,
which is equivalent to minimizing the forward KL-divergence between the label distribution P and
the predicted distribution Qϕ:

DKL[P ∥Qϕ] =
K∑

k=1

P (k) log

(
P (k)

Qϕ(k)

)
,

= −
K∑

k=1

P (k) log (Qϕ(k)) + const, (28)

= −
K∑

k=1

yk log ŷk + const.

Alternative divergences could be considered for use with SoftCVI. For example, we could explore
the general class of f -divergences (Ali & Silvey, 1966; Csiszár, 1967), which are defined as:

Df [P ∥Qϕ] =
K∑

k=1

Qϕ(k)f

(
P (k)

Qϕ(k)

)
,

where f is a convex function f : (0,∞) → R, and f(1) = 0. Divergences that are more or less mass-
covering may be better suited to specific tasks. For example, for many generative modelling tasks
reliable uncertainty quantification is considered less critical, in which case a more mode-seeking
objective may be favourable. We leave this investigation for future research.

A.5 TRAINING OF MODEL PARAMETERS: VARIATIONAL AUTOENCODERS

SoftCVI sets up a classification problem which allows fitting the parameters of the variational dis-
tribution ϕ. However, in some contexts, the model may be defined as pψ(θ,xobs), with ψ, being
a set of model parameters which we wish to optimize in some manner alongside ϕ. SoftCVI does
not directly provide a method for fitting such additional model parameters. One approach to resolve
this is to include an additional objective, that trains ψ to (approximately) maximize the marginal
likelihood.

L(ϕ,ψ; {θk}Kk=1,y) = LSoftCVI(ϕ; {θk}Kk=1,y) + Lmodel(ψ; {θk}Kk=1). (29)

where in the above formulation we reuse the proposal distribution samples {θk}Kk=1 already sam-
pled for the SoftCVI objective, and we assume the proposal distribution is equal to the variational
distribution. One could more generally consider alternating between optimizing the two objectives;
however, due to the disjoint parameter sets between the objectives, in addition to the invariance of
common optimizers such a Adam to diagonal rescaling of gradient elements (Kingma & Ba, 2014),
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we found adding the objectives to work well. In this section, we choose

Lmodel(ψ; {θk}Kk=1) = − 1

K

K∑
k=1

log pψ(θk,xobs), (30)

equivalent to training the model parameters ψ by maximizing the ELBO. As an example, we will
train a variational autoencoder (Kingma & Welling, 2014), where ψ includes the parameters of the
decoder in addition to the models prior parameters, and ϕ consists of the parameters of the encoder.
Both the encoder and decoder are parameterized as standard feed-forward networks. The manifolds
learned using either the ELBO or the modified SoftCVI objective from eq. (29) are shown in fig. 4,
showing qualitatively similar results. Whilst we do not investigate the performance, the SoftCVI
method of fitting does not utilize reparameterized gradients and as such is applicable to a broader
class of models.

A.6 BAYESIAN NEURAL ADDITIVE MODEL

Neural additive models enhance the interpretability of neural networks, using an additive model
structure (Agarwal et al., 2021). In the simplest case, for a dataset with C features, for an input
vector x = x1, ..., xC , predictions are computed as

ŷ = β + f1(x1) + f2(x2) + · · ·+ fC(xC),

where each fc is a neural network corresponding to a single input feature. In this section, we consider
a regression problem, in which we parameterize each fc using a Bayesian neural network (Blundell
et al., 2015). Bayesian neural networks have been suggested to reduce the risk of overfitting in
addition to providing a method for assessing prediction uncertainty using the inferred posterior pre-
dictive distribution. Here, we parameterize each fc using a single layer Bayesian neural network
with a width of either 50 or 100, with a Laplace(0, 1) prior on the neural network parameters. This
naturally leads to high dimensional posterior distributions (θ ∈ R1500 and θ ∈ R3000 for the task
considered, respectively). We use an independent Gaussian approximation to the posterior.

We consider a regression problem, with synthetic data generated using the nonlinear function

y = 0.1 · x3
1 + |x2| − x3 + ϵ, where ϵ ∼ N (0, 32)

where x ∈ R10 is generated uniformly from the interval [−4, 4], and the last 7 dimensions are
nuisance features. We use 300 training data points, 150 validation data points and 1000 testing data
points for computing the metrics.

We assess performance using the average test set log-likelihood under the posterior predictive distri-
bution, and report the mean prediction interquartile range (IQR) across the test set and the associated

SoftCVI(α=0) SoftCVI(α=1) ELBO

Figure 4: The manifolds learned by variational autoencoders on the MNIST dataset, trained using
either the ELBO or SoftCVI. To enable training of the model parameters, the SoftCVI objective was
modified by adding the model component of the ELBO, − 1

K

∑K
i=1 log pψ(θk,xobs). In all cases,

the objectives were trained for 100,000 steps with a batch size of 1, and K = 8.
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prediction coverage (i.e. the average frequency with which the true underlying function value is in-
cluded within the predicted IQR). We note there are numerous challenges associated with assessing
performance for Bayesian neural networks. For example, high test log-likelihood or calibrated pre-
dictions is not necessarily indicative of a good posterior approximation (Yao et al., 2019). Further,
we use early stopping based on the validation log-likelihood, in addition to choosing the learning
rates with cross-validation, both of which will tend to bias results to favor models with higher test
log-likelihood, without consideration of the calibration of the posterior predictive distribution.

We train 10 networks initialized with different random seeds, and report the results in table 1. A plot
of the learned components for each method is shown in fig. 5.

Method NN Width Test Log-Likelihood Prediction IQR IQR Coverage

ELBO 50 -2.392 ± 0.005 0.648 ± 0.084 0.262 ± 0.042
100 -2.392 ± 0.005 0.641 ± 0.065 0.264 ± 0.031

SNIS-fKL 50 -2.422 ± 0.007 0.695 ± 0.011 0.186 ± 0.008
100 -2.421 ± 0.005 0.938 ± 0.010 0.256 ± 0.007

SoftCVI (α = 0.75) 50 -2.424 ± 0.007 0.743 ± 0.018 0.202 ± 0.009
100 -2.423 ± 0.005 0.983 ± 0.017 0.271 ± 0.010

SoftCVI (α = 1) 50 -2.422 ± 0.007 0.701 ± 0.012 0.190 ± 0.009
100 -2.423 ± 0.005 0.943 ± 0.012 0.260 ± 0.009

Table 1: Performance metrics for the Bayesian neural additive model. Note a model producing
calibrated predictions on the test set would yield an IQR coverage value of 0.5.

While all methods demonstrated comparable predictive performance, the ELBO achieved slightly
better results, evidenced by the highest test log-likelihood. Both SoftCVI (with α = 0.75 or α = 1)
and SNIS-fKL yielded similar results. Bayesian neural network posteriors are often complex and
highly multimodal (Izmailov et al., 2021). In this case, it is likely that SoftCVI does not show a
significant advantage over SNIS-fKL because the Gaussian posterior is heavily misspecified. As a
result, the approximate posterior may never become sufficiently close to the true posterior in order
to provide the variance reduction benefits associated with SoftCVI.
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Figure 5: The means and 95% prediction intervals for the components of a Bayesian neural additive
model for each method. The true underlying components are shown with the dotted black lines. We
restrict to the first three dimensions, ignoring the nuisance variables.
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A.7 ALTERNATIVE NEGATIVE DISTRIBUTION CHOICES
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Figure 6: Additional metrics analogous to fig. 1, using p−(θ) = p(θ,xobs)
α as the negative distri-

bution choice in the SoftCVI objectives.

The main results focus on parameterizing the negative distribution as a function of the proposal
distribution p−(θ) = π(θ)α. However, another possible choice is to use the unnormalized posterior
to parameterize the negative distribution, for example p−(θ) = p(θ,xobs)

α. This choice, when
α = 1, implies equality between the assumed negative and positive distributions, meaning through
eq. (2) the ground truth labels become constant yk = 1

k for k = 1, ...,K. Inputting these labels into
eq. (7) yields the objective

L(ϕ; {θk}Kk=1,y) = − 1

K

K∑
k=1

log qϕ(θk) + log
K∑

k=1

qϕ(θk)

p−(θk)
+ const. (31)

Assuming the proposal distribution is chosen to match the variational distribution, since
Eπ(θ)[∇ϕ log qϕ(θ)] = Eqϕ(θ)[∇ϕ log qϕ(θ)] = 0, the first term in eq. (7) has an expected gradient
of zero. In contrast to using the proposal distribution as the negative distribution, which results in the
normalization term which penalizes the ratios acting as a control variate, here, the first term instead
acts as a control variate, with the normalization term providing the signal by penalizing the ratio
qϕ(θ)/p(θ,xobs) ∝ qϕ(θ)/p(θ|xobs). As such this choice heavily penalizes qϕ(θ) ≫ p(θ|xobs),
favoring overconfident posteriors. We report in fig. 6 the metrics, using p−(θ) = p(θ,xobs)

α, with
α = 0.75 and α = 1.

A.8 TASKS

For all tasks, where possible, we make use of reparameterizations to reduce the dependencies be-
tween the parameters θ in the model, and to ensure variables are reasonably scaled, which is gen-
erally considered to improve performance (Betancourt & Girolami, 2015; Gorinova et al., 2020;
Papaspiliopoulos et al., 2007). Below, we describe the models used and the source of the reference
posterior samples.
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EIGHT SCHOOLS.

A classic hierarchical inference model (Gelman et al., 1995; Rubin, 1981), aiming to infer the treat-
ment effects of a training program applied to eight schools. The parameter set is θ = {µ, τ,m},
where µ is the average treatment effect across the schools, τ is the standard deviation of the treat-
ment effects across the schools and m is the treatment effects for each school. The model is given
by

µ ∼ N (0, 52),

τ ∼ HalfCauchy(0, 52),

mi ∼ N (µ, τ2), i = 1, ..., 8,

xi ∼ N (mi, σ
2
i ), i = 1, ..., 8,

where σ2 is treated as known, estimated using the standard errors in the data. We use the reference
posterior samples available from PosteriorDB, which are sampled using MCMC (Magnusson et al.,
2024).

LINEAR REGRESSION.

A linear regression model, defined as

βi ∼ N (0, 1), i = 1, ..., 50,

µ ∼ N (0, 1),

xi ∼ N (Xβ + µ, 1), j = 1, ..., 200,

For each run of the task, we sampled a dataset X ∈ R200×50 from a standard normal distribution,
and drew reference posterior samples from the analytical posterior solution.

SIMPLE LIKELIHOOD COMPLEX POSTERIOR

The SLCP task was introduced by Papamakarios et al. (2019), and is designed to be a challenging
inference problem with a multimodal posterior. The data is a set of four samples from a two-
dimensional multivariate Gaussian likelihood function. The likelihood is parameterized using θ
using squaring which introduces a complex multimodal structure (see fig. 2). Specifically, the model
is defined as

θi ∼ Uniform(−3, 3), i = 1, ..., 5 (32)
xi ∼ N (θ1:2,Σ), j = 1, ..., 4, (33)

where the covariance matrix Σ is

Σ =

[
s21 p · s1 · s2

p · s1 · s2 s22

]
, where s1 = θ23, s2 = θ24 and p = tanh(θ5)

Despite being used extensively in the simulation-based inference (SBI) literature, this task has a
tractable likelihood so can be used in the current work. The reference posterior is from the SBI
Benchmark python package (Lueckmann et al., 2021), and was inferred using sampling/importance
resampling using the analytical likelihood function (Rubin, 1988).

GARCH

The GARCH model is a widely used statistical model for analyzing time series data with time-
varying volatility (Bollerslev, 1986). It extends the basic autoregressive framework by allowing the
conditional variance of the observations to depend on both past observations (controlled via the α1

parameter) and variances (controlled by the β1 parameter). GARCH and similar models are often
used for modeling financial data, where autocorrelated variances are common. The priors are defined
as

µ ∼ ImproperUniform(−∞,∞)

α0 ∼ ImproperUniform(0,∞)

α1 ∼ Uniform(0, 1)

β1 ∼ Uniform(0, 1− α1),
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Where ImproperUniform represents an improper flat prior over the specified region. For t =
1, . . . , 200, the variance evolves recursively through the update

σ2
t = α0 + α1(xt−1 − µ)2 + β1σ

2
t−1

and the likelihood is given by
xt ∼ N (µ, σ2

t )

At initialization, y0 is set to the first observation element, and σ2
0 = 0.25. For this task, a reference

posterior is available in PosteriorDB, sampled using MCMC (Magnusson et al., 2024).
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A.9 ADDITIONAL FIGURES
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Figure 7: Average log-probability of the reference posterior samples as a function of K (ranging
from 2 to 64), along with the associated run times (measured on a CPU with 8GB RAM, including
compilation time). The poor performance of SLCP for higher values of K was due to increased
mode-seeking behavior. Some results for SNIS-fKL are truncated on the axes to improve visualiza-
tion of other methods. Note that the run times will be dependent on the architecture of the variational
distribution. For example, the ELBO showed significantly slower run times for the SLCP task due
to the cost of computing reparameterization gradients for a masked autoregressive flow. However,
using an inverse autoregressive flow (Kingma et al., 2016) would likely mitigate this issue.
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Figure 8: Additional metrics analogous to fig. 1, using K = 2, instead of K = 8 samples when
approximating the objectives. The SNIS-fKL objective performance degrades substantially when K
is small.
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Figure 9: The multimodal 2-dimensional posterior marginals for the first six runs of the SLCP task
for each method, with the reference posterior samples shown in green.
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