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ABSTRACT

Traditionally, reinforcement learning (RL) agents learn to solve new tasks by updat-
ing their neural network parameters through interactions with the task environment.
However, recent works demonstrate that some RL agents, after certain pretraining
procedures, can learn to solve unseen new tasks without parameter updates, a
phenomenon known as in-context reinforcement learning (ICRL). The empirical
success of ICRL is widely attributed to the hypothesis that the forward pass of the
pretrained agent neural network implements an RL algorithm. In this paper, we
support this hypothesis by showing, both empirically and theoretically, that when
a transformer is trained for policy evaluation tasks, it can discover and learn to
implement temporal difference learning in its forward pass.

1 INTRODUCTION

In reinforcement learning (RL, Sutton and Barto (2018)), an agent typically learns to solve new tasks
by updating its neural network parameters based on interactions with the task environment. For
example, the DQN agent (Mnih et al., 2015) incrementally updates the parameters of its Q-network
while playing the Atari games (Bellemare et al., 2013). However, recent works (e.g., Duan et al.
(2016); Wang et al. (2016); Laskin et al. (2022)) demonstrate that RL can also occur without any
parameter updates. These works demonstrate that an RL agent with fixed pretrained parameters can
take as input its observation history in the new task (referred to as context) and output good actions
for that task. Specifically, let τt

.
= (S0, A0, R1, . . . , St−1, At−1, Rt) be a sequence of state-action-

reward triples that an agent obtains until time t in some new task. This τt is referred to as the context.
The agent then outputs an action At based on the context τt and the current state St without updating
its parameters. Notably, the context can span multiple episodes. As the context length increases,
action quality improves, suggesting that this improvement is not due to memorized policies encoded
in the fixed parameters. Instead, it indicates that a reinforcement learning process occurs during the
forward pass as the agent processes the context, a phenomenon termed in-context reinforcement
learning (ICRL), where RL occurs at inference time within the forward pass. See Moeini et al. (2025)
for a comprehensive survey of ICRL.

Previous works (e.g., Lin et al. (2023)) understand the ICRL phenomenon from the supervised
pretraining perspective, where during the pretraining stage, the RL agent is explicitly tasked to imitate
the behavior of some existing RL algorithms. It is therefore not surprising that the pretrained agent
neural network implements the corresponding RL algorithm in its forward pass. This paper instead
provides the first theoretical analysis of the emergence of ICRL from reinforcement pretraining,
where in the pretraining stage, the RL agent is only asked to complete some task, but there is no
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constraint on how it should complete it. ICRL emerges in the sense that the agent neural network
itself discovers and implements a certain RL algorithm in the forward pass.

Although most existing ICRL studies focus on control tasks (i.e., outputting actions given a state
and context), to better understand ICRL, in this work, we investigate ICRL for policy evaluation,
as it is widely known in the RL community that understanding policy evaluation is often the first
step toward understanding control (Sutton and Barto, 2018). Specifically, suppose an agent with
fixed pretrained parameters follows some fixed policy π in a new task. We explore how the agent
can estimate the value function vπ(s) for a given state s based on its context τt1 without parameter
updates. We call this in-context policy evaluation and believe that understanding it will pave the
way for a comprehensive understanding of ICRL. We demonstrate that ICRL can emerge even with
simplified neural network architectures, e.g., transformer (Vaswani et al., 2017) with linear attention2.
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Figure 1: A transformer capable of in-context policy evaluation. This 15-layer transformer TFθ∗ takes
the context τt and a state of interest s as input and outputs TFθ∗(τt, s) as the estimation of the state
value vπ(s). The y-axis is the mean square value error (MSVE)

∑
s dπ(s)(TFθ∗(τt, s)− vπ(s))2,

with dπ(s) being the stationary state distribution. The curves are averaged over 300 randomly
generated policy evaluation tasks, with shaded regions being standard errors. The tasks vary in state
space, transition function, reward function, and policy. Yet a single θ∗ is used for all tasks. See
Appendix B for more details.

Figure 1 provides a concrete example of a transformer capable of in-context policy evaluation. To
our knowledge, this is the first empirical demonstration of in-context policy evaluation. Let TFθ∗
denote the transformer used in Figure 1 with parameters θ∗. Figure 1 demonstrates that the value
approximation error of this transformer drops when the context length t increases even though θ∗
remains fixed. Notably, this improvement cannot be attributed to θ∗ hard-coding the true value
function. The approximation error in Figure 1 is averaged over a wide range of tasks and policies,
each with distinct value functions, while only a single θ∗ is used. The only plausible explanation
seems to be that the transformer TFθ∗ is able to perform some policy evaluation algorithm in the
forward pass to process the context and thus predict the value of s. This immediately raises two key
questions:

(Q1) What is the specific policy evaluation algorithm that TFθ∗ is implementing?
(Q2) What kind of pretraining can generate such a powerful transformer?

This work aims to answer these questions to better understand in-context RL for policy evaluation.
To this end, this work makes three contributions.

First, we confirm the existence of such a θ∗ by construction. We prove that this θ∗ enables in-context
policy evaluation because the layer-by-layer forward pass of TFθ∗ is precisely equivalent to the
iteration-by-iteration updates of a batch version of temporal difference learning (TD, Sutton (1988)).
To summarize, a short answer to (Q1) is “TD.” This is the first time that a pretrained agent
neural network for ICRL is fully white-boxed. Furthermore, we also prove by construction that

1We, of course, also need to provide the discount factor to the agent. We ignore it for now to simplify the
presentations.

2Linear attention is a widely used transformer variant for simplifying both computation and analysis
(Katharopoulos et al., 2020; Wang et al., 2020; Schlag et al., 2021; Choromanski et al., 2020; Mahankali et al.,
2023; Ahn et al., 2023; Von Oswald et al., 2023a;b; Wu et al., 2023; Ahn et al., 2024; Gatmiry et al., 2024;
Zhang et al., 2024; Zheng et al., 2024; Sander et al., 2024).
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transformers are capable of implementing many other policy evaluation algorithms, including TD(λ)
(Sutton, 1988), residual gradient (Baird, 1995), and average reward TD (Tsitsiklis and Roy, 1999).

Second, we empirically demonstrate that this θ∗ naturally emerges after we regard TFθ as a standard
nonlinear function approximator and train it using nonlinear TD on multiple randomly generated
policy evaluation tasks (similar to training a single DQN agent on multiple Atari games). This
empirical finding is surprising because the pretraining only drives TFθ to output good value estimates.
There is no explicit mechanism that forces the transformer’s weights to implement TD in its forward
pass (cf. that the forward pass of DQN’s Q-network can be anything as long as it outputs good action
value approximations). Despite having the capacity to implement other algorithms like residual
gradient, the pretraining process consistently leads the transformer weights to converge to those
that implement TD. This observation parallels the historical development of the RL community
itself, where TD became the favored method for policy evaluation after extensive trial-and-error with
alternative approaches. Thus, a short answer to Question (Q2) is also “TD.” Naturally, this leads to
our third and final question.

(Q3) Why does TD pretraining give rise to in-context TD?

Our third contribution addresses this question by proving that the parameters θ∗ that implement TD in
the forward pass lie in an invariant set of the TD pretraining algorithm. It is, of course, not a complete
answer. Similar to Wu et al. (2023); Zhang et al. (2024), we only prove the single-layer case, and we
do not prove that the parameters will surely converge to this invariant set. However, we argue that our
invariant set analysis and the techniques developed to prove it are a significant step toward future
work that can fully characterize how in-context reinforcement learning emerges from reinforcement
pretraining.

2 RELATED WORKS

Our first question (Q1) is closely related to the expressivity of neural networks (Siegelmann and
Sontag, 1992; Graves et al., 2014; Jastrzębski et al., 2017; Hochreiter et al., 2001; Lu et al., 2017).
Per the universal approximation theorem (Hornik et al., 1989; Cybenko, 1989; Leshno et al., 1993;
Bengio et al., 2017), sufficiently wide neural networks can approximate any function arbitrarily
well. However, this theorem focuses only on input-output behavior, meaning that given the same
input, the network will produce similar outputs as the target function. It does not say anything
about how the forward pass is able to produce the desired outputs, nor how the number of layers
affects the approximation error. In the supervised learning community, there are a few works that
are able to white-box the forward pass of neural networks to some extent (Frosst and Hinton, 2017;
Alvarez Melis and Jaakkola, 2018; Chan et al., 2022; Yu et al., 2023; Von Oswald et al., 2023a;
Ahn et al., 2024). But in the RL community, this work is, to our knowledge, the first to white-box
how the forward pass of a pretrained transformer can implement RL algorithms. Notably, Lin et al.
(2023) also construct some weights of transformer such that the forward pass of the transformer can
implement some RL algorithm. However, their constructed transformer is overly complicated and
there is no evidence that their weight construction can emerge through any kind of pretraining in
practice.

Our second question (Q2) is closely related to the pretraining in ICRL, which can be divided into
supervised pretraining and reinforcement pretraining. In supervised pretraining, the agent is explicitly
tasked with imitating the behavior of some existing RL algorithms demonstrated in an offline dataset
(Xu et al., 2022; Laskin et al., 2022; Raparthy et al., 2023; Sinii et al., 2023; Zisman et al., 2023; Shi
et al., 2024; Dai et al., 2024; Huang et al., 2024a;b; Kirsch et al., 2023; Wang et al., 2024; Lee et al.,
2024). It is thus less surprising (Krishnamurthy et al., 2024) that the pretrained agent network does
implement some RL algorithm in the forward pass. Supervised pretraining can be understood through
the lens of behavior cloning, see Lin et al. (2023) for a theoretical analysis of supervised pretraining.
In reinforcement pretraining, the agent is only tasked with maximizing the return, and there is no
constraint on how the agent network should achieve this in the forward pass (Duan et al., 2016; Wang
et al., 2016; Kirsch et al., 2022; Bauer et al., 2023; Grigsby et al., 2023; Lu et al., 2023; Park et al.,
2024; Xu et al., 2024; Grigsby et al., 2024; Cook et al., 2024). Reinforcement pretraining also is
closely related to algorithm discovery in meta RL. The difference is that the reinforcement pretraining
in ICRL discovers and implements novel RL algorithm in the forward pass without parameter updates,
while a large body of prior works of algorithm discovery in meta RL (Kirsch et al., 2019; Oh et al.,
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2020; Lu et al., 2022) require parameter updates when executing the discovered algorithm. See Beck
et al. (2023) for a comprehensive survey of meta RL and see Moeini et al. (2025) for a comprehensive
survey of different pretraining methods for ICRL. The reinforcement pretraining method we use is a
very simple version of multi-task RL and is very standard in the meta RL community. We do not
claim any novelty in our pretraining method. Instead, the novelty lies in the empirical and theoretical
analysis of this simple yet standard pretraining method.

Our third question (Q3) is closely related to the dynamics of RL algorithms (Borkar and Meyn, 2000;
Bhandari et al., 2018; Cai et al., 2019; Qian et al., 2024; Liu et al., 2025), which is an active research
area. In the context of ICRL, the dynamics of supervised pretraining is previously studied in Lin et al.
(2023) following the behavior cloning framework. This work is to our knowledge the first theoretical
analysis of reinforcement pretraining for ICRL.

ICRL is broadly related to the general in-context learning (ICL) community in machine learning (Garg
et al., 2022; Müller et al., 2022; Akyürek et al., 2023; Von Oswald et al., 2023a; Zhao et al., 2023;
Allen-Zhu and Li, 2023; Mahankali et al., 2023; Ahn et al., 2024; Zhang et al., 2024). While ICL
is widely studied in the context of large language models (LLMs) (Brown et al., 2020), ICRL and
LLM-based ICL represent distinct areas of research. ICRL typically needs RL-based pretraining
while LLM’s pretraining is usually unsupervised. Additionally, ICRL focuses on RL capabilities
during inference, while LLM-based ICL typically examines supervised learning behavior during
inference. RL and supervised learning are fundamentally different problems, and similarly, ICRL
and in-context supervised learning (ICSL) require different approaches. For example, Ahn et al.
(2024) prove that ICSL can be viewed as gradient descent in the forward pass. While our work draws
inspiration from Ahn et al. (2024), the scenario in ICRL is more complex. TD, which we analyze
in this paper, is not equivalent to gradient descent. Our proof that transformers can implement TD
in the forward pass is, therefore, more intricate, especially when extending it to TD(λ) and average
reward TD. Moreover, Ahn et al. (2024) consider a gradient descent-based pretraining paradigm
where the transformer is trained to minimize an in-context regression loss. As a result, they analyze
the critical points of the regression loss to understand their pretraining. By contrast, we consider
TD-based pretraining, which is not gradient descent. To address this, we introduce a novel invariant
set perspective to analyze the behavior of transformers under TD-based pretraining.

3 BACKGROUND

Transformers and Linear Self-Attention. All vectors are column vectors. We denote the identity
matrix in Rn by In and an m× n all-zero matrix by 0m×n. We use Z⊤ to denote the transpose of
Z and use both ⟨x, y⟩ and x⊤y to denote the inner product. Given a prompt Z ∈ Rd×n, standard
single-head self-attention (Vaswani et al., 2017) processes the prompt by AttnWk,Wq,Wv

(Z)
.
=

WvZ softmax
(
Z⊤W⊤

k WqZ
)
, where Wv ∈ Rd×d,Wk ∈ Rm×d, and Wq ∈ Rm×d represent the

value, key and query weight matrices. The softmax function is applied to each row. Linear attention
is a widely used architecture in transformers (Mahankali et al., 2023; Ahn et al., 2023; Von Oswald
et al., 2023a;b; Wu et al., 2023; Ahn et al., 2024; Gatmiry et al., 2024; Zhang et al., 2024; Zheng
et al., 2024; Sander et al., 2024), where the softmax function is replaced by an identity function.
Given a prompt Z ∈ R(2d+1)×(n+1), linear self-attention is defined as

LinAttn(Z;P,Q)
.
= PZM(Z⊤QZ), (1)

where P ∈ R(2d+1)×(2d+1) and Q ∈ R(2d+1)×(2d+1) are parameters and M ∈ R(n+1)×(n+1) is a
fixed mask of the input matrix Z, defined as

M
.
=

[
In 0n×1

01×n 0

]
. (2)

Note that we can view P and Q as reparameterizations of the original weight matrices for simplifying
presentation. The mask M is introduced for in-context learning (Von Oswald et al., 2023a) to
designate the last column of Z as the query and the first n columns as the context. We use this fixed
mask in most of this work. However, the linear self-attention mechanism can be altered using a
different mask M ′, when necessary, by defining LinAttn(Z;P,Q,M ′) = PZM ′(Z⊤QZ). In an
L-layer transformer with parameters {(Pl, Ql)}l=0,...,L−1, the input Z0 evolves layer by layer as

Zl+1
.
= Zl +

1
nLinAttnPl,Ql

(Zl) = Zl +
1
nPlZlM(Z⊤

l QlZl). (3)
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Here, 1
n is a normalization factor simplifying presentation. We follow the convention in Von Oswald

et al. (2023a); Ahn et al. (2024) and use

TFL(Z0; {Pl, Ql}l=0,1,...L−1)
.
= −ZL[2d+ 1, n+ 1] (4)

to denote the output of the L-layer transformer, given an input Z0. Note that Zl[2d+ 1, n+ 1] is the
bottom-right element of Zl. Equation (4) establishes the notation convention that we adopt to define
the output of a L-layer transformer. Specifically, linear attention produces a matrix, but for policy
evaluation, we require a scalar output. Following prior works, we define the bottom-right element of
the output matrix as this scalar.

Reinforcement Learning. We consider an infinite horizon Markov Decision Process (MDP, Puterman
(2014)) with a finite state space S, a finite action space A, a reward function rMDP : S ×A → R, a
transition function pMDP : S ×S ×A → [0, 1], a discount factor γ ∈ [0, 1), and an initial distribution
p0 : S → [0, 1]. An initial state S0 is sampled from p0. At a time t, an agent at a state St takes an
action At ∼ π(·|St), where π : A× S → [0, 1] is the policy being followed by the agent, receives
a reward Rt+1

.
= rMDP(St, At), and transitions to a successor state St+1 ∼ pMDP(·|St, At). If the

policy π is fixed, the MDP can be simplified to a Markov Reward Process (MRP) where transitions
and rewards are determined solely by the current state:St+1 ∼ p(·|St) with Rt+1

.
= r(St). Here,

p(s′|s) .=∑a π(a|s)pMDP(s
′|s, a) and r(s) .=

∑
a π(a|s)rMDP(s, a). In this work, we consider the

policy evaluation problem where the policy π is fixed. So, it suffices to consider only an MRP
represented by the tuple (p0, p, r), and trajectories (S0, R1, S1, R2, . . . ) sampled from it. The value
function of this MRP is defined as v(s) .

= E
[∑∞

i=t+1 γ
i−t−1Ri|St = s

]
. Estimating the value

function v is one of the fundamental tasks in RL. To this end, one can consider a linear architecture.
Let ϕ : S → Rd be the feature function. The goal is then to find a weight vector w ∈ Rd such that
for each s, the estimated value v̂(s;w) .= w⊤ϕ(s) approximates v(s). TD is a prevalent method for
learning this weight vector, which updates w iteratively as

wt+1 =wt + αt (Rt+1 + γv̂ (St+1;wt)− v̂ (St;wt))∇v̂ (St;wt)

=wt + αt

(
Rt+1 + γw⊤

t ϕ(St+1)− w⊤
t ϕ(St)

)
ϕ(St), (5)

where {αt} is a sequence of learning rates. Notably, TD is not a gradient descent algorithm. It is
instead considered as a semi-gradient algorithm because the gradient is only taken with respect to
v̂ (St;wt) and does not include the dependence on v̂ (St+1;wt) (Sutton and Barto, 2018). Including
this dependency modifies the update to

wt+1 = wt + αt

(
Rt+1 + γw⊤

t ϕ(St+1)− w⊤
t ϕ(St)

)
(ϕ(St)− γϕ(St+1)) , (6)

known as the (naïve version of) residual gradient method (Baird, 1995).3 The update in (5) is also
called TD(0) — a special case of the TD(λ) algorithm (Sutton, 1988). TD(λ) employs an eligibility
trace that accumulates the gradients as e−1

.
= 0, et

.
= γλet−1 + ϕ(St) and updates w iteratively as

wt+1 = wt + αt(Rt+1 + γw⊤
t ϕ(St+1) − w⊤

t ϕ(St))et. The hyperparameter λ controls the decay
rate of the trace. If λ = 0, we recover (5). On the other end with λ = 1, it is known that TD(λ)
recovers Monte Carlo (Sutton, 1988). Another important setting in RL is the average-reward setting
(Puterman, 2014; Sutton and Barto, 2018), focusing on the rate of receiving rewards, without using
a discount factor γ. The average reward r̄ is defined as r̄ .

= limT→∞
1
T

∑T
t=1 E[Rt]. Similar to

the value function in the discounted setting, a differential value function v̄(s) is defined for the
average-reward setting as v̄(s) .

= E
[∑∞

i=t+1(Ri − r̄)|St = s
]
. One can similarly estimate v̄(s)

using a linear architecture with a vector w as w⊤ϕ(s). Average-reward TD (Tsitsiklis and Roy, 1999)
updates w iteratively as wt+1 = wt + αt

(
Rt+1 − r̄t+1 + w⊤

t ϕ(St+1)− w⊤
t ϕ(St)

)
ϕ(St), where

r̄t
.
= 1

t

∑t
i=1Ri is the empirical average of the received reward.

4 TRANSFORMERS CAN IMPLEMENT IN-CONTEXT TD(0)

In this section, we reveal the parameters of the transformer used to generate Figure 1 and answer
(Q1). Namely, we construct that transformer below and prove that it implements TD(0) in its forward

3This is a naïve version because the update does not account for the double sampling issue. We refer the
reader to Chapter 11 of Sutton and Barto (2018) for detailed discussion.
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pass. Given a trajectory (S0, R1, S1, R2, S3, R4, . . . , Sn) sampled from an MRP, using as shorthand
ϕi

.
= ϕ(Si), we define for l = 0, 1, . . . , L− 1

Z0 =

[
ϕ0 . . . ϕn−1 ϕn
γϕ1 . . . γϕn 0
R1 . . . Rn 0

]
, P TD

l
.
=

[
02d×2d 02d×1

01×2d 1

]
, QTD

l
.
=



−C⊤

l C⊤
l 0d×1

0d×d 0d×d 0d×1

01×d 01×d 0


. (7)

Here, Z0 ∈ R(2d+1)×(n+1) is the prompt matrix, Cl ∈ Rd×d is an arbitrary matrix, and{
(P TD

l , QTD
l )
}
l=0,1,...,L−1

are the parameters of the L-layer transformer. We then have

Theorem 1 (Forward pass as TD(0)). Consider the L-layer linear transformer following (3), using
the mask (2), parameterized by

{
P TD
l , QTD

l

}
l=0,...,L−1

in (7). Let y(n+1)
l be the bottom right element

of the l-th layer’s output, i.e., y(n+1)
l

.
= Zl[2d+ 1, n+ 1]. Then, it holds that y(n+1)

l = −⟨ϕn, wl⟩,
where {wl} is defined as w0 = 0 and

wl+1 = wl +
1
nCl

∑n−1
j=0

(
Rj+1 + γw⊤

l ϕj+1 − w⊤
l ϕj

)
ϕj . (8)

The proof is in Appendix A.1 and with numerical verification in Appendix H as a sanity check.
Notably, Theorem 1 holds for any Cl. In particular, if Cl = αlI (this is used in the transformer
to generate Figure 1), then the update (8) becomes a batch version of TD(0) in (5). For a general
Cl, the update (8) can be regarded as preconditioned batch TD(0) (Yao and Liu, 2008). Theorem 1
precisely demonstrates that transformers are expressive enough to implement iterations of TD in its
forward pass. We call this in-context TD. It should be noted that although the construction of Z0 in
(7) uses ϕn as the query state for conceptual clarity, any arbitrary state s ∈ S can serve as the query
state and Theorem 1 still holds. In other words, by replacing ϕn with ϕ(s), the transformer will then
estimate v(s). Notably, if the transformer has only one layer, i.e., L = 1, there are other parameter
configurations that can also implement in-context TD(0).
Corollary 1. Consider the 1-layer linear transformer following (3), using the mask (2). Consider
the following parameters

P TD
0

.
=

[
02d×2d 02d×1

01×2d 1

]
, QTD

0
.
=



−C⊤

l 0d×d 0d×1

0d×d 0d×d 0d×1

01×d 01×d 0


 (9)

Then, it holds that y(n+1)
1 = −⟨ϕn, w1⟩, where w1 is defined as

w1 = w0 +
1
nCl

∑n−1
j=0

(
Rj+1 + γw⊤

0 ϕj+1 − w⊤
0 ϕj

)
ϕj with w0 = 0.

The proof is in Appendix A.2. An observant reader may notice that this corollary holds primarily
because w0 = 0, making it a unique result for L = 1. Nevertheless, this special case helps understand
a few empirical and theoretical results below.

5 TRANSFORMERS DO IMPLEMENT IN-CONTEXT TD(0)

In this section, we reveal our pretraining method that generates the powerful transformer used in
Figure 1, answering (Q2).4 We also theoretically analyze this pretraining method, answering (Q3).

Multi-Task Temporal Difference Learning. In existing ICRL works for control, the transformer
takes the observation history as input and outputs actions. A behavior cloning loss is used during
pretraining to ensure that the transformer outputs actions similar to those in the pretraining data. In
contrast, our work seeks to understand ICRL through the lens of policy evaluation, where the goal
is for the transformer to output value estimates rather than actions. To ground the value estimation,
we use the most straightforward method in RL: the TD loss. This yields a pretraining algorithm
(Algorithm 1) where the transformer is trained using nonlinear TD on multiple tasks. We call it
multi-task TD.

Recall that a policy evaluation task is essentially a tuple (p0, p, r, ϕ). In Algorithm 1, we assume
that there is a task distribution dtask over those tuples. Recall that TFL(Z0; θ) and TFL(Z

′
0; θ) are

4The implementation is available at https://github.com/Sequential-Intelligence-Lab/
InContextTD
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Algorithm 1: Multi-Task Temporal Difference Learning
1: Input: context length n, MRP sample length τ , number of training tasks k, learning rate α,

discount factor γ, transformer parameters θ .
= {Pl, Ql}l=0,1,...L−1

2: for i← 1 to k do
3: Sample (p0, p, r, ϕ) from dtask
4: Sample (S0, R1, S1, R2, . . . , Sτ , Rτ+1, Sτ+1) from the MRP (p0, p, r)
5: for t = 0, . . . , τ − n− 1 do

6: Z0 ←
[

ϕt · · · ϕt+n−1 ϕt+n+1

γϕt+1 · · · γϕt+n 0
Rt+1 · · · Rt+n 0

]
, Z ′

0 ←
[
ϕt+1 · · · ϕt+n ϕt+n+2

γϕt+2 · · · γϕt+n+1 0
Rt+2 · · · Rt+n+1 0

]

7: θ ← θ + α(Rt+n+2 + γTFL(Z
′
0; θ)− TFL(Z0; θ))∇θTFL(Z0; θ) // TD

8: end for
9: end for

intended to estimate v(St+n+1) and v(St+n+2) respectively. So, Algorithm 1 essentially applies
TD using (St+n+1, Rt+n+2, St+n+2) to train the transformer. Ideally, when a new prompt Ztest is
constructed using a trajectory from a new (possibly out-of-distribution) evaluation task (p0, p, r, ϕ)test,
the predicted value TFL(Ztest; θ) with θ from Algorithm 1 should be close to the value of the query
state in Ztest. This problem is a multi-task meta-learning problem, a well-explored area with many
existing methodologies (Beck et al., 2023). However, the unique and significant aspect of our
work is the demonstration that in-context TD emerges in the learned transformer, providing a novel
explanation for how the model solves the problem.

Empirical Analysis. We first empirically study Algorithm 1. To this end, we construct dtask based on
Boyan’s chain (Boyan, 1999), a canonical environment for diagnosing RL algorithms. We keep the
structure of Boyan’s chain but randomly generate initial distributions p0, transition probabilities p,
reward functions r, and the feature function ϕ. Details of this random generation process are provided
in Algorithm 2 with Figure 3 visualizing Boyan’s chain, both in Appendix C.

For the linear transformer specified in (3), we first consider the autoregressive case following
(Akyürek et al., 2023; Von Oswald et al., 2023a), where all the transformer layers share the same
parameters, i.e., Pl ≡ P0 and Ql ≡ Q0 for l = 0, 1, . . . , L−1. We consider a three-layer transformer
(L = 3). Importantly, all elements of P0 andQ0 are equally trainable — we did not force any element
of P0 or Q0 to be 0. We then run Algorithm 1 with Boyan’s chain-based evaluation tasks (i.e., dtask)
to train this autoregressive transformer. The dimension of the feature is d = 4 (i.e., ϕ(s) ∈ R4).
Other hyperparameters of Algorithm 1 are specified in Appendix D.1.

Figure 2a visualizes the final learned P0 and Q0 by Algorithm 1 after 4000 MRPs (i.e., k = 4000),
which closely match our specifications P TD and QTD in (7) with Cl = Id. In Figure 2b, we visualize
the element-wise learning progress of P0 and Q0. We observe that the bottom right element of P0

increases (the P0[−1,−1] curve), while the average absolute value of all other elements remain
close to zero (the “Avg Abs Others” curve), closely aligning with P TD up to some scaling factor.
Furthermore, the trace of the upper left d× d block of Q0 approaches −d (the tr(Q0[: d, : d]) curve),
and the trace of the upper right block (excluding the last column) approaches d (the tr(Q0[: d, d : 2d])
curve). Meanwhile, the average absolute value of all the other elements in Q0 remain near zero,
aligning with QTD using Cl = Id up to some scaling factor.

More empirical analysis is provided in the Appendix. In particular, besides showing the parameter-
wise convergence in Figure 2, we also use other metrics including value difference, implicit weight
similarity, and sensitivity similarity, inspired by Von Oswald et al. (2023a); Akyürek et al. (2023), to
examine the learned transformer. We also study normal transformers without parameter sharing
(Appendix D.3), as well as different choices of hyperparameters in Algorithm 1. Furthermore, we
empirically investigate the original softmax-based transformers (Appendix E). Finally, we also
conducted experiments where we constructed dtask based on the Cartpole environment (Brockman
et al., 2016) (Appendix F). The overall conclusion is the same — in-context TD emerges in the
transformers learned by Algorithm 1. Notably, Theorem 1 and Corollary 1 suggest that for L = 1,
there are two distinct ways to implement in-context TD (i.e., (7) v.s. (9)). Our empirical results in
Appendix D.2 show that Algorithm 1 ends up with (9) in Corollary 1 for L = 1, aligning well with

7



Published as a conference paper at ICLR 2025

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

Final P0
0 1 2 3 4 5 6 7 8

Final Q0

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(a) Learned P0 and Q0 after 4000 MRPs

0 1000 2000 3000 4000

# MRPs

0.0

0.5

1.0

1.5

2.0
P0 Metrics

P0[−1, − 1]

Avg Abs Others

0 1000 2000 3000 4000

# MRPs

−4

−2

0

2

4
Q0 Metrics

tr(Q0[ : d, : d])

tr(Q0[ : d, d : 2d])

Avg Abs Others

(b) Element-wise learning progress of P0 and Q0

Figure 2: Visualization of the learned transformers and the learning progress. Both (a) and (b) are
averaged across 30 seeds and the shaded regions in (b) denotes the standard errors. Since P0 and Q0

are in the same product in (1), the algorithm can rescale both or flip the sign of both, but still end
up with exactly the same transformer. Therefore, to make sure the visualization are informative, we
rescale P0 and Q0 properly first before visualization. See Appendix D.1.1 for details.

Theorem 2. For L = 2, 3, 4, Algorithm 1 always ends up with (7) in Theorem 1, as shown in Figure 4
in Appendix D.2. We also empirically observed that for in-context TD to emerge, the task distribution
dtask has to be “difficult” enough. For example, if (p0, p) or ϕ are always fixed, we did not observe
the emergence of in-context TD.

Theoretical Analysis. The problem that Algorithm 1 aims to solve is highly non-convex and
non-linear (the linear transformer is still a nonlinear function). We analyze a simplified version of
Algorithm 1 and leave the treatment to the full version for future work. In particular, we study the
single-layer case with L = 1, and let θ .

= (P0, Q0) be the parameters of the single-layer transformer.
We consider expected updates, i.e.,

θk+1 =θk + αk∆(θk) with ∆(θ)
.
= E [(R+ γTF1(Z

′
0, θ)− TF1(Z0, θ))∇TF1(Z0, θ)] . (10)

Here, the expectation integrates both the randomness in sampling (p0, p, r, ϕ) from dtask and the
randomness in constructing (R,Z0, Z

′
0) thereafter. We sample (S0, R1, S1, . . . , Sn+1, Rn+2, Sn+2)

following (p0, p, r) and construct using shorthand ϕi
.
= ϕ(Si)

Z0
.
=

[
ϕ0 . . . ϕn−1 ϕn+1

γϕ1 . . . γϕn 0
R1 . . . Rn 0

]
, Z ′

0
.
=

[
ϕ1 . . . ϕn ϕn+2

γϕ2 . . . γϕn+1 0
R2 . . . Rn+1 0

]
, R

.
= Rn+2. (11)

The structure of Z0 and Z ′
0 is similar to those in Algorithm 1. The main difference is that we do not

use the sliding window. We recall that (p0, p, r, ϕ) are random variables with joint distribution dtask.
Here, ϕ is essentially a random matrix taking value in Rd×|S|, represented as ϕ = [ϕ(s)]s∈S . We use
≜ to denote “equal in distribution" and make the following assumptions.
Assumption 5.1. The random matrix ϕ is independent of (p0, p, r).

Assumption 5.2. Πϕ ≜ ϕ,Λϕ ≜ ϕ, where Π is any d-dimensional permutation matrix and Λ is any
diagonal matrix in Rd where each diagonal element of Λ can only be −1 or 1.

Those assumptions are easy to satisfy. For example, as long as the elements of the random matrix ϕ
are i.i.d. from a symmetric distribution centered at zero, e.g., a uniform distribution on [−1, 1], then
both assumptions hold. We say a set Θ is an invariant set of (10) if for any k, θk ∈ Θ =⇒ θk+1 ∈ Θ.
Define

θ∗(η, c, c
′)
.
=

(
P0 =

[
02d×2d 02d×1

01×2d η

]
, Q0 =

[
cId 0d×d 0d×1

c′Id 0d×d 0d×1

01×d 01×d 0

])
.

Theorem 2. Let Assumptions 5.1 and 5.2 hold. For the construction (11) of (R,Z0, Z
′
0), the set

Θ∗
.
= {θ∗(η, c, c′)|η, c, c′ ∈ R} is an invariant set of (10).

The proof is in Appendix A.3. Theorem 2 demonstrates that once θk enters Θ∗ at some k, it can
never leave, i.e., Θ∗ is a candidate set that the update (10) can possibly converge to. Consider a
subset Θ′

∗ ⊂ Θ∗ with a stricter constraint c′ = 0, i.e., Θ′
∗
.
= {θ∗(η, c, 0)|η, c ∈ R}. Corollary 1

then confirms that all parameters in Θ′
∗ implement in-context TD. That being said, whether (10) is

guaranteed to converge to Θ∗, or further to Θ′
∗, is left for future work.
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6 TRANSFORMERS CAN IMPLEMENT MORE RL ALGORITHMS

In this section, we prove that transformers are expressive enough to implement three additional well-
known RL algorithms in the forward pass. We warm up with the (naive version of) residual gradient
(RG). We then move to the more difficult TD(λ). This section culminates with average-reward TD,
which requires multi-head linear attention and memory within the prompt. We do note that whether
those three RL algorithms will emerge after training is left for future work.

Residual Gradient. The construction of RG is an easy extension of Theorem 1. We define

PRG
l = P TD

l , QRG
l

.
=



−C⊤

l C⊤
l 0d×1

C⊤
l −C⊤

l 0d×1

01×d 01×d 0


 ∈ R(2d+1)×(2d+1). (12)

Corollary 2 (Forward pass as Residual Gradient). Consider the L-layer linear transformer following
(3), using the mask (2), parameterized by

{
P RG
l , QRG

l

}
l=0,...,L−1

in (12). Define y(n+1)
l

.
= Zl[2d+

1, n+ 1]. Then, it holds that y(n+1)
l = −⟨ϕn, wl⟩, where {wl} is defined as w0 = 0 and

wl+1 = wl +
1
nCl

∑n−1
j=0

(
Rj+1 + γw⊤

l ϕj+1 − w⊤
l ϕj

)
(ϕj − γϕj+1). (13)

The proof is in A.4 with numerical verification in Appendix H as a sanity check. Again, if Cl
.
= αlId,

then (13) can be regarded as a batch version of (6). For a general Cl, it is then preconditioned
batch RG. Notably, Figure 2 empirically demonstrates that Algorithm 1 eventually ends up with
in-context TD instead of in-context RG. This observation aligns with the conventional wisdom in
the RL community that TD is usually superior to the naïve RG (see, e.g., Zhang et al. (2020) and
references therein).

TD(λ). Incorporating eligibility traces is an important extension of TD(0). We now demonstrate that
by using a different mask, transformers are able to implement in-context TD(λ). We define

MTD(λ) .=




1 0 0 0 · · · 0 0
λ 1 0 0 · · · 0 0
...

...
...

...
. . .

...
...

λn−1 λn−2 λn−3 λn−4 · · · 1 0
0 0 0 0 · · · 0 0



∈ R(n+1)×(n+1). (14)

Notably, if λ = 0, the above mask for TD(λ) recovers the mask for TD(0) in (2).

Corollary 3 (Forward pass as TD(λ)). Consider the L-layer linear transformer parameterized by{
P TD
l , QTD

l

}
l=0,...,L−1

as specified in (7) with the input mask used in (3) being MTD(λ) in (14).

Define y(n+1)
l

.
= Zl[2d+ 1, n+ 1]. Then, it holds that y(n+1)

l = −⟨ϕn, wl⟩ where {wl} is defined
with w0 = 0, e0 = 0, ej = λej−1 + ϕj , and

wk+1 = wk + 1
nCk

∑n−1
i=0

(
ri+1 + γw⊤

k ϕi+1 − w⊤
k ϕi

)
ei.

The proof is in A.5 with numerical verification in Appendix H as a sanity check.

Average-Reward TD. We now demonstrate that transformers are expressive enough to implement
in-context average-reward TD. Different from TD(0), average-reward TD (Tsitsiklis and Roy, 1999)
exhibits additional challenges in that it updates two estimates (i.e., wt and r̄t) in parallel. To account
for this challenge, we use two additional mechanisms beyond the basic single-head linear transformer.
Namely, we allow additional “memory” in the prompt and consider two-head linear transformers.
Given a trajectory (S0, R1, S1, R2, S3, R4, . . . , Sn) sampled from an MRP, we construct the prompt
matrix Z0 as

Z0 =



ϕ0 . . . ϕn−1 ϕn
ϕ1 . . . ϕn 0
R1 . . . Rn 0
0 . . . 0 0


 ∈ R(2d+2)×(n+1).

9
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Notably, the last row of zeros is the “memory”, which is used by the transformer to store some
intermediate quantities during the inference time. We then define the transformer parameters and
masks as

P
TD,(1)
l

.
=

[
02d×2d 02d×1 02d×1

01×2d 1 0
01×2d 0 0

]
, P

TD,(2)
l

.
=

[
02d×2d 02d×1 02d×1

01×2d 0 0
01×2d 0 1

]
, (15)

QTD
l

.
=



−C⊤

l C⊤
l 0d×2

0d×d 0d×d 0d×2

02×d 02×d 02×2


,Wl

.
=

[
02d×2d 02d×1 02d×(2d+2) 02d×1

01×2d 1 01×(2d+2) 1

]
, (16)

MTD,(2) .=

[
In 0n×1

01×n 0

]
, MTD,(1) .=

(
In+1 − Un+1diag

([
1 1

2 . . . 1
n+1

]))
MTD,(2),(17)

where Cl ∈ Rd×d is again an arbitrary matrix, Un+1 is the (n+ 1)× (n+ 1) upper triangle matrix
where all the nonzero elements are 1, and diag(x) constructs a diagonal matrix, with the diagonal
entry being x. Here,

{
P

TD,(1)
l , QTD

l

}
l=0,...,L−1

are the parameters of the first attention heads, with

the input mask being MTD,(1).
{
P

TD,(2)
l , QTD

l

}
l=0,...,L−1

are the parameters of the second attention

heads, with the input mask being MTD,(2). The two heads coincide on some parameters. Wl is
the affine transformation that combines the embeddings from the two attention heads. Define the

two-head linear-attention as TwoHead(Z;P,Q,M,P ′, Q′,M ′,W )
.
=W

[
LinAttn(Z;P,Q,M)

LinAttn(Z;P ′, Q′,M ′)

]
.

The L-layer transformer we are interested in is then given by

Zl+1
.
= Zl +

1
nTwoHead(Zl;P

TD,(1)
l , QTD

l ,MTD,(1), P
TD,(2)
l , QTD

l ,MTD,(2),Wl). (18)

Theorem 3 (Forward pass as average-reward TD). Consider the L-layer transformer in (18). Let
h
(n+1)
l be the bottom-right element of the l-th layer output, i.e., h(n+1)

l
.
= Zl[2d+ 2, n+ 1]. Then, it

holds that h(n+1)
l = −⟨ϕn, wl⟩ where {wl} is defined as w0 = 0,

wl+1 = wl +
1
nCl

∑n
j=1

(
Rj − r̄j + w⊤

l ϕj − w⊤
l ϕj−1

)
ϕj−1

for l = 0, . . . , L− 1, where r̄j
.
= 1

j

∑j
k=1Rk.

The proof is in A.6 with numerical verification in Appendix H as a sanity check.

7 CONCLUSION

This work makes the first step towards white-boxing the mechanism of ICRL under reinforcement
pretraining, focusing specifically on policy evaluation. We provide constructive proof that trans-
formers can implement multiple temporal difference algorithms in the forward pass for in-context
policy evaluation. Additionally, we theoretically and empirically show that the parameters enabling
in-context policy evaluation emerge naturally through multi-task TD pretraining. We find it com-
pelling that a randomly initialized transformer, only trained for simple policy evaluation tasks, can
learn to discover and implement TD, a provably capable RL algorithm for policy evaluation.

Admittedly, this work does have a few limitations. First, we focus solely on policy evaluation. Second,
to facilitate theoretical analysis, we make a few assumptions (e.g., Assumptions 5.1 & 5.2) and
simplifications (e.g., using linear attention instead of softmax attention). Yet those assumptions and
simplifications may not hold in many practical scenarios. Third, our pretraining method (Algorithm 1)
requires the ability to randomly generate policy evaluation tasks, which may not be available in
many cases, such as offline training. Fourth, despite the fact that we evaluate Algorithm 1 in both
Boyan’s chain and CartPole, it is not evaluated on large-scale environments such as the Atari games
(Bellemare et al., 2013) or DeepMindLab (Beattie et al., 2016). We believe that addressing those
limitations would be fruitful directions for future works.
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Jastrzębski, S., Arpit, D., Ballas, N., Verma, V., Che, T., and Bengio, Y. (2017). Residual connections
encourage iterative inference. ArXiv Preprint.

Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret, F. (2020). Transformers are rnns: Fast
autoregressive transformers with linear attention. In Proceedings of the International Conference
on Machine Learning.

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In Proceedings of the
International Conference on Learning Representations.

Kirsch, L., Flennerhag, S., Hasselt, H. v., Friesen, A., Oh, J., and Chen, Y. (2022). Introducing
symmetries to black box meta reinforcement learning. In Proceedings of the AAAI Conference on
Artificial Intelligence.

Kirsch, L., Harrison, J., Freeman, C., Sohl-Dickstein, J., and Schmidhuber, J. (2023). Towards
general-purpose in-context learning agents. In NeurIPS Foundation Models for Decision Making
Workshop.

Kirsch, L., van Steenkiste, S., and Schmidhuber, J. (2019). Improving generalization in meta
reinforcement learning using learned objectives. ArXiv Preprint.

Krishnamurthy, A., Harris, K., Foster, D. J., Zhang, C., and Slivkins, A. (2024). Can large language
models explore in-context? ArXiv Preprint.

Laskin, M., Wang, L., Oh, J., Parisotto, E., Spencer, S., Steigerwald, R., Strouse, D., Hansen, S.,
Filos, A., Brooks, E., et al. (2022). In-context reinforcement learning with algorithm distillation.
ArXiv Preprint.

Lee, J., Xie, A., Pacchiano, A., Chandak, Y., Finn, C., Nachum, O., and Brunskill, E. (2024). Super-
vised pretraining can learn in-context reinforcement learning. In Advances in Neural Information
Processing Systems.

Leshno, M., Lin, V. Y., Pinkus, A., and Schocken, S. (1993). Multilayer feedforward networks with a
nonpolynomial activation function can approximate any function. Neural Networks.

Lin, L., Bai, Y., and Mei, S. (2023). Transformers as decision makers: Provable in-context reinforce-
ment learning via supervised pretraining. ArXiv Preprint.

Liu, S., Chen, S., and Zhang, S. (2025). The ODE method for stochastic approximation and
reinforcement learning with markovian noise. Journal of Machine Learning Research.

Lu, C., Kuba, J., Letcher, A., Metz, L., Schroeder de Witt, C., and Foerster, J. (2022). Discovered
policy optimisation. In Advances in Neural Information Processing Systems.

Lu, C., Schroecker, Y., Gu, A., Parisotto, E., Foerster, J., Singh, S., and Behbahani, F. (2023).
Structured state space models for in-context reinforcement learning. In Advances in Neural
Information Processing Systems.

Lu, Z., Pu, H., Wang, F., Hu, Z., and Wang, L. (2017). The expressive power of neural networks: A
view from the width. In Advances in Neural Information Processing Systems.

Mahankali, A., Hashimoto, T. B., and Ma, T. (2023). One step of gradient descent is provably the
optimal in-context learner with one layer of linear self-attention. ArXiv Preprint.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A.,
Riedmiller, M. A., Fidjeland, A., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou,
I., King, H., Kumaran, D., Wierstra, D., Legg, S., and Hassabis, D. (2015). Human-level control
through deep reinforcement learning. Nature.

13



Published as a conference paper at ICLR 2025

Moeini, A., Wang, J., Beck, J., Blaser, E., Whiteson, S., Chandra, R., and Zhang, S. (2025). A survey
of in-context reinforcement learning. ArXiv Preprint.

Müller, S., Hollmann, N., Arango, S. P., Grabocka, J., and Hutter, F. (2022). Transformers can do
bayesian inference. In Proceedings of the International Conference on Learning Representations.

Oh, J., Hessel, M., Czarnecki, W. M., Xu, Z., van Hasselt, H. P., Singh, S., and Silver, D. (2020).
Discovering reinforcement learning algorithms. In Advances in Neural Information Processing
Systems.

Park, C., Liu, X., Ozdaglar, A., and Zhang, K. (2024). Do llm agents have regret? a case study in
online learning and games. ArXiv Preprint.

Puterman, M. L. (2014). Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons.

Qian, X., Xie, Z., Liu, X., and Zhang, S. (2024). Almost sure convergence rates and concentration of
stochastic approximation and reinforcement learning with markovian noise. ArXiv Preprint.

Raparthy, S. C., Hambro, E., Kirk, R., Henaff, M., and Raileanu, R. (2023). Generalization to new
sequential decision making tasks with in-context learning. ArXiv Preprint.

Sander, M. E., Giryes, R., Suzuki, T., Blondel, M., and Peyré, G. (2024). How do transformers
perform in-context autoregressive learning? ArXiv Preprint.

Schlag, I., Irie, K., and Schmidhuber, J. (2021). Linear transformers are secretly fast weight
programmers. In Proceedings of the International Conference on Machine Learning.

Shi, L. X., Jiang, Y., Grigsby, J., Fan, L., and Zhu, Y. (2024). Cross-episodic curriculum for
transformer agents. In Advances in Neural Information Processing Systems.

Siegelmann, H. T. and Sontag, E. D. (1992). On the computational power of neural nets. In
Proceedings of the Annual Workshop on Computational Learning Theory.

Sinii, V., Nikulin, A., Kurenkov, V., Zisman, I., and Kolesnikov, S. (2023). In-context reinforcement
learning for variable action spaces. ArXiv Preprint.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine Learning.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learning: An Introduction (2nd Edition). MIT
press.

Tsitsiklis, J. N. and Roy, B. V. (1999). Average cost temporal-difference learning. Automatica.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. u., and
Polosukhin, I. (2017). Attention is all you need. In Advances in Neural Information Processing
Systems.

Von Oswald, J., Niklasson, E., Randazzo, E., Sacramento, J., Mordvintsev, A., Zhmoginov, A., and
Vladymyrov, M. (2023a). Transformers learn in-context by gradient descent. In Proceedings of the
International Conference on Machine Learning.

Von Oswald, J., Niklasson, E., Schlegel, M., Kobayashi, S., Zucchet, N., Scherrer, N., Miller,
N., Sandler, M., Vladymyrov, M., Pascanu, R., et al. (2023b). Uncovering mesa-optimization
algorithms in transformers. ArXiv Preprint.

Wang, J. X., Kurth-Nelson, Z., Tirumala, D., Soyer, H., Leibo, J. Z., Munos, R., Blundell, C.,
Kumaran, D., and Botvinick, M. (2016). Learning to reinforcement learn. ArXiv Preprint.

Wang, S., Li, B. Z., Khabsa, M., Fang, H., and Ma, H. (2020). Linformer: Self-attention with linear
complexity. ArXiv Preprint.

Wang, Z., Wang, H., and Qi, Y. (2024). Hierarchical prompt decision transformer: Improving
few-shot policy generalization with global and adaptive. ArXiv Preprint.

14



Published as a conference paper at ICLR 2025

Wu, J., Zou, D., Chen, Z., Braverman, V., Gu, Q., and Bartlett, P. L. (2023). How many pretraining
tasks are needed for in-context learning of linear regression? ArXiv Preprint.

Xu, M., Shen, Y., Zhang, S., Lu, Y., Zhao, D., Tenenbaum, J., and Gan, C. (2022). Prompting decision
transformer for few-shot policy generalization. In Proceedings of the International Conference on
Machine Learning.

Xu, T., Li, Z., and Ren, Q. (2024). Meta-reinforcement learning robust to distributional shift
via performing lifelong in-context learning. In Proceedings of the International Conference on
Machine Learning.

Yao, H. and Liu, Z.-Q. (2008). Preconditioned temporal difference learning. In Proceedings of the
International Conference on Machine Learning.

Yu, Y., Buchanan, S., Pai, D., Chu, T., Wu, Z., Tong, S., Haeffele, B., and Ma, Y. (2023). White-box
transformers via sparse rate reduction. In Advances in Neural Information Processing Systems.

Zhang, R., Frei, S., and Bartlett, P. L. (2024). Trained transformers learn linear models in-context.
Journal of Machine Learning Research.

Zhang, S., Boehmer, W., and Whiteson, S. (2020). Deep residual reinforcement learning. In
Proceedings of the International Conference on Autonomous Agents and Multiagent Systems.

Zhao, H., Panigrahi, A., Ge, R., and Arora, S. (2023). Do transformers parse while predicting the
masked word? ArXiv Preprint.

Zheng, C., Huang, W., Wang, R., Wu, G., Zhu, J., and Li, C. (2024). On mesa-optimization in
autoregressively trained transformers: Emergence and capability. ArXiv Preprint.

Zisman, I., Kurenkov, V., Nikulin, A., Sinii, V., and Kolesnikov, S. (2023). Emergence of in-context
reinforcement learning from noise distillation. ArXiv Preprint.

15



Published as a conference paper at ICLR 2025

TABLE OF CONTENTS

1 Introduction 1

2 Related Works 3

3 Background 4

4 Transformers Can Implement In-Context TD(0) 5

5 Transformers Do Implement In-Context TD(0) 6

6 Transformers Can Implement More RL Algorithms 9

7 Conclusion 10

A Proofs 18

A.1 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

A.2 Proof of Corollary 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

A.3 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

A.4 Proof of Corollary 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

A.5 Proof of Corollary 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

A.6 Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

B Experimental Details of Figure 1 41

C Boyan’s Chain Evaluation Task Generation 41

D Additional Experiments with Linear Transformers 42

D.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

D.1.1 Trained Transformer Element-wise Convergence Metrics . . . . . . . . . . 43

D.1.2 Trained Transformer and Batch TD Comparison Metrics . . . . . . . . . . 43

D.2 Autoregressive Linear Transformers with L = 1, 2, 3, 4 Layers . . . . . . . . . . . 44

D.3 Sequential Transformers with L = 2, 3, 4 Layers . . . . . . . . . . . . . . . . . . . 46

E Nonlinear Attention 47

F Experiments with CartPole Environment 48

F.1 CartPole Evaluation Task Generation . . . . . . . . . . . . . . . . . . . . . . . . . 48

F.2 Experimental Results of Pre-training with CartPole . . . . . . . . . . . . . . . . . 49

G Investigation of In-Context TD with RNN 50

G.1 Theoretical Analysis of Linear RNN . . . . . . . . . . . . . . . . . . . . . . . . . 50

G.2 Multi-task TD with Deep RNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

16



Published as a conference paper at ICLR 2025

H Numerical Verification of Proofs 52

17



Published as a conference paper at ICLR 2025

A PROOFS

A.1 PROOF OF THEOREM 1

Proof. We recall from (3) that the embedding evolves according to

Zl+1 = Zl +
1

n
PlZlM(Z⊤

l QlZl).

We first express Zl using elements of Z0. To this end, it is convenient to give elements of Zl different
names, in particular, we refer to the elements in Zl as

{
(x

(i)
l , y

(i)
l )
}
i=1,...,n+1

in the following way

Zl =

[
x
(1)
l . . . x

(n)
l x

(n+1)
l

y
(1)
l . . . y

(n)
l y

(n+1)
l

]
,

where we recall that Zl ∈ R(2d+1)×(n+1), x
(i)
l ∈ R2d, y

(i)
l ∈ R. Sometimes it is more convenient

to refer to the first half and second half of x(i)l separately, by, e.g., ν(i)l ∈ Rd, ξ
(i)
l ∈ Rd, i.e.,

x
(i)
l =

[
ν
(i)
l

ξ
(i)
l

]
. Then we have

Zl =



ν
(1)
l . . . ν

(n)
l ν

(n+1)
l

ξ
(1)
l . . . ξ

(n)
l ξ

(n+1)
l

y
(1)
l . . . y

(n)
l y

(n+1)
l


.

We utilize the shorthands

Xl =
[
x
(1)
l . . . x

(n)
l

]
∈ R2d×n,

Yl =
[
y
(1)
l . . . y

(n)
l

]
∈ R1×n.

Then we have

Zl =

[
Xl x

(n+1)
l

Yl y
(n+1)
l

]
.

For the input Z0, we assume ξ(n+1)
0 = 0, y

(n+1)
0 = 0 but all other entries of Z0 are arbitrary. We

recall our definition of M in (2) and
{
P TD
l , QTD

l

}
l=0,...,L−1

in (7). In particular, we can express
QTD

l in a more compact way as

M1
.
=

[
−Id Id
0d×d 0d×d

]
∈ R2d×2d,

Bl
.
=

[
C⊤

l 0d×d

0d×d 0d×d

]
∈ R2d×2d,

Al
.
=BlM1 =

[
−C⊤

l C⊤
l

0d×d 0d×d

]
∈ R2d×2d,

QTD
l

.
=

[
Al 02d×1

01×2d 0

]
∈ R(2d+1)×(2d+1).

We now proceed with the following claims.

Claim 1. Xl ≡ X0, x
(n+1)
l ≡ x(n+1)

0 ,∀l.

Recall that P TD
l

.
=

[
02d×2d 02d×1

01×2d 1

]
∈ R(2d+1)×(2d+1). Let

Wl
.
= ZlM

(
Z⊤
l Q

TD
l Zl

)
∈ R(2d+1)×(n+1).
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The embedding evolution can then be expressed as

Zl+1 = Zl +
1

n
P TD
l Wl.

By simple matrix arithmetic, we get

P TD
l Wl =

[
02d×(n+1)

Wl(2d+ 1)

]
,

where Wl(2d + 1) denotes the (2d + 1)-th row of Wl. Therefore, we have Xl+1 = Xl, x
(n+1)
l+1 =

x
(n+1)
l . By induction, we get Xl ≡ X0 and x(n+1)

l ≡ x(n+1)
0 for all l = [0, . . . , L− 1].

In light of this, we drop all the subscripts of Xl, as well as subscripts of x(i)l for i = 1, . . . , n+ 1.

Claim 2.

Yl+1 = Yl +
1

n
YlX

⊤AlX

y
(n+1)
l+1 = y

(n+1)
l +

1

n
YlX

⊤Alx
(n+1).

The easier way to show why this claim holds is to factor the embedding evolution into the product of
P TD
l ZlM and Z⊤

l Q
TD
l Zl. Firstly, we have

P TD
l Zl =

[
02d×n 02d×1

Yl y
(n+1)
l

]
.

Applying the mask, we get

P TD
l ZlM =

[
02d×n 02d×1

Yl 0

]
.

Then, we analyze Z⊤
l Q

TD
l Zl. Applying the block matrix notations, we get

Z⊤
l Q

TD
l Zl =

[
X⊤ Y ⊤

l

x(n+1)⊤ y
(n+1)
l

][
Al 02d×1

01×2d 0

][
X x(n+1)

Yl y
(n+1)
l

]

=

[
X⊤Al 0n×1

x(n+1)⊤Al 0

][
X x(n+1)

Yl y
(n+1)
l

]

=

[
X⊤AlX X⊤Alx

(n+1)

x(n+1)⊤AlX x(n+1)⊤Alx
(n+1)

]
.

Combining the two, we get

P TD
l ZlM

(
Z⊤
l Q

TD
l Zl

)
=

[
02d×n 02d×1

Yl 0

][
X⊤AlX X⊤Alx

(n+1)

x(n+1)⊤AlX x(n+1)⊤Alx
(n+1)

]

=

[
02d×n 02d×1

YlX
⊤AlX YlX

⊤Alx
(n+1)

]
.

Hence, according to our update rule in (3), we get

Yl+1 = Yl +
1

n
YlX

⊤AlX

y
(n+1)
l+1 = y

(n+1)
l +

1

n
YlX

⊤Alx
(n+1).

Claim 3.

y
(i)
l+1 = y

(i)
0 +

〈
M1x

(i),
1

n

l∑

j=0

B⊤
j M2XY

⊤
j

〉
,
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for i = 1, . . . , n+ 1, where M2 =

[
Id 0d×d

0d×d 0d×d

]
.

Following Claim 2, we can unroll Yl+1 as

Yl+1 = Yl +
1

n
YlX

⊤AlX

Yl = Yl−1 +
1

n
Yl−1X

⊤Al−1X

...

Y1 = Y0 +
1

n
Y0X

⊤A0X.

We can then compactly express Yl+1 as

Yl+1 = Y0 +
1

n

l∑

j=0

YjX
⊤AjX.

Recall that we define Aj = BjM1. Then, we can rewrite Yl+1 as

Yl+1 = Y0 +
1

n

l∑

j=0

YjX
⊤M2BjM1X.

The introduction of M2 here does not break the equivalence because Bj =M2Bj . However, it will
help make our proof steps easier to comprehend later.

With the identical procedure, we can easily rewrite y(n+1)
l+1 as

y
(n+1)
l+1 = y

(n+1)
0 +

1

n

l∑

j=0

YjX
⊤M2BjM1x

(n+1).

In light of this, we define ψ0
.
= 0 and for l = 0, . . .

ψl+1
.
=
1

n

l∑

j=0

B⊤
j M2XY

⊤
j ∈ R2d. (19)

Then we can write

y
(i)
l+1 = y

(i)
0 +

〈
M1x

(i), ψl+1

〉
, (20)

for i = 1, . . . , n + 1, which is the claim we made. In particular, since we assume y(n+1)
0 = 0, we

have

y
(n+1)
l+1 =

〈
M1x

(n+1), ψl+1

〉
.

Claim 4. The bottom d elements of ψl are always 0, i.e., there exists a sequence
{
wl ∈ Rd

}
such

that we can express ψl as

ψl =

[
wl

0d×1

]
. (21)

for all l = 0, 1, . . . , L.

We prove the claim by induction. The base case holds trivially since ψ0
.
= 0. Suppose that for some l,

(21) holds. It can be easily verified from the definition of ψl+1 in (19) that

ψl+1 = ψl +
1

n
B⊤

l M2XY
⊤
l . (22)

20



Published as a conference paper at ICLR 2025

If we let

Nl =
1

n
M2XY

⊤
l ∈ R2d×1,

the evolution of ψl+1 can then be compactly expressed as,

ψl+1 = ψl +B⊤
l Nl.

By matrix arithmetic, we have

B⊤
l Nl =

[
C⊤

l 0d×d

0d×d 0d×d

]⊤[
Nl(1 : d)
Nl(d : 2d)

]

=

[
ClNl(1 : d)

0d×1

]

where Nl(1 : d) ∈ Rd and Nl(d : 2d) ∈ Rd represent the first d and second d elements of Nl

respectively. Substituting in our inductive hypothesis into (22), we have:

ψl+1 =

[
wl

0d×1

]
+

[
ClNl(1 : d)

0d×1

]
,

=

[
wl + ClNl(1 : d)

0d×1

]

if we let wl+1 = wl + ClNl(1 : d), we can see that the property holds for ψl+1, thereby verifying
Claim 4.

Given all the claims above, we can then compute that
〈
ψl+1,M1x

(n+1)
〉

=
〈
ψl,M1x

(n+1)
〉
+

1

n

〈
B⊤

l M2XY
⊤
l ,M1x

(n+1)
〉

(By (22))

=
〈
ψl,M1x

(n+1)
〉
+

1

n

n∑

i=1

〈
B⊤

l M2x
(i)y

(i)
l ,M1x

(n+1)
〉

=
〈
ψl,M1x

(n+1)
〉
+

1

n

n∑

i=1

〈
B⊤

l M2x
(i)
(〈
ψl,M1x

(i)
〉
+ y

(i)
0

)
,M1x

(n+1)
〉

(By (20))

=
〈
ψl,M1x

(n+1)
〉
+

1

n

n∑

i=1

〈
B⊤

l

[
ν(i)

0d×1

](〈
ψl,

[
−ν(i) + ξ(i)

0d×1

]〉
+ y

(i)
0

)
,M1x

(n+1)

〉

=
〈
ψl,M1x

(n+1)
〉
+

1

n

n∑

i=1

〈[
Clν

(i)

0d×1

](
y
(i)
0 + w⊤

l ξ
(i) − w⊤

l ν
(i)
)
,M1x

(n+1)

〉
(By Claim 4)

=
〈
ψl,M1x

(n+1)
〉
+

1

n

n∑

i=1

〈[
Clν

(i)
(
y
(i)
0 + w⊤

l ξ
(i) − w⊤

l ν
(i)
)

0d×1

]
,M1x

(n+1)

〉

This means
〈
wl+1, ν

(n+1)
〉
=
〈
wl, ν

(n+1)
〉
+

1

n

n∑

i=1

〈
Clν

(i)
(
y
(i)
0 + w⊤

l ξ
(i) − w⊤

l ν
(i)
)
, ν(n+1)

〉
.

Since the choice of the query ν(n+1) is arbitrary, we get

wl+1 = wl +
1

n

n∑

i=1

Cl

(
y
(i)
0 + w⊤

l ξ
(i) − w⊤

l ν
(i)
)
ν(i).

In particular, when we construct Z0 such that ν(i) = ϕi−1, ξ(i) = γϕi and y(i)0 = Ri, we get

wl+1 = wl +
1

n

n∑

i=1

Cl

(
Ri + γw⊤

l ϕi − w⊤
l ϕi−1

)
ϕi−1

21



Published as a conference paper at ICLR 2025

which is the update rule for pre-conditioned TD learning. We also have

y
(n+1)
l =

〈
ψl,M1x

(n+1)
〉
= −

〈
wl, ϕ

(n+1)
〉
.

This concludes our proof.

A.2 PROOF OF COROLLARY 1

Proof. The proof presented here closely mirrors the methodology and notation established in Theorem
1. Since we are only considering a 1-layer transformer in this Corollary, we can recall the embedding
evolution from (3) and write

Z1 = Z0 +
1

n
P0Z0M(Z⊤

0 Q0Z0).

We once again refer to the elements in Zl as
{
(x

(i)
l , y

(i)
l )
}
i=1,...,n+1

in the following way

Zl =

[
x
(1)
l . . . x

(n)
l x

(n+1)
l

y
(1)
l . . . y

(n)
l y

(n+1)
l

]
,

where we recall that Zl ∈ R(2d+1)×(n+1), x
(i)
l ∈ R2d, y

(i)
l ∈ R. We utilize, ν(i)l ∈ Rd, ξ

(i)
l ∈ Rd, to

refer to the first half and second half of x(i)l i.e., x(i)l =

[
ν
(i)
l

ξ
(i)
l

]
. Then we have

Zl =



ν
(1)
l . . . ν

(n)
l ν

(n+1)
l

ξ
(1)
l . . . ξ

(n)
l ξ

(n+1)
l

y
(1)
l . . . y

(n)
l y

(n+1)
l


.

We further define as shorthands

Xl =
[
x
(1)
l . . . x

(n)
l

]
∈ R2d×n, Yl =

[
y
(1)
l . . . y

(n)
l

]
∈ R1×n.

Then the block-wise structure of Zl can be succinctly expressed as:

Zl =

[
Xl x

(n+1)
l

Yl y
(n+1)
l

]
.

For the input Z0, we assume ξ(n+1)
0 = 0, y

(n+1)
0 = 0 but all other entries of Z0 are arbitrary. We

recall our definition of M in (2) and {P0, Q0} in (7). In particular, we can express Q0 in a more
compact way as

M1
.
=

[
−Id 0d×d

0d×d 0d×d

]
∈ R2d×2d, B0

.
=

[
C⊤

0 0d×d

0d×d 0d×d

]
∈ R2d×2d,

A0
.
=B0M1 =

[
−C⊤

0 0d×d

0d×d 0d×d

]
∈ R2d×2d,

Q0
.
=

[
A0 02d×1

01×2d 0

]
∈ R(2d+1)×(2d+1).

We will proceed with the following claims.

Claim 1. X1 ≡ X0, x
(n+1)
1 ≡ x(n+1)

0

Because we are considering the special case of L = 1 and because we utilize the same definition of
P0 as in Theorem 1, the argument proving Claim 1 in Theorem 1 holds here as well. As a result, we
drop all the subscripts of X1, as well as subscripts of x(i)1 for i = 1, . . . , n+ 1.

Claim 2.

Y1 = Y0 +
1

n
Y0X

⊤A0X
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y
(n+1)
1 = y

(n+1)
0 +

1

n
Y0X

⊤A0x
(n+1).

This claim is a special case of Claim 2 from the proof of Theorem 1 in Appendix A.1, where L = 1.
Our block-wise construction of Q0 matches that in the proof of Theorem 1. Although our A0 here
differs from the specific form of A0 in the proof of Theorem 1, this specific form is not utilized in the
proof of Claim 2. Therefore, the proof of Claim 2 in Appendix A.1 applies here, and we omit the
steps to avoid redundancy.

Claim 3.

y
(i)
1 = y

(i)
0 +

〈
M1x

(i),
1

n
B⊤

0 M2XY
⊤
0

〉
,

for i = 1, . . . , n+ 1, where M2 =

[
Id 0d×d

0d×d 0d×d

]
.

This claim once again is the L = 1 case of Claim 3 from the proof of Theorem 1 in Appendix A.1.
The specific form of M1 is not utilized in the proof of Claim 3 from Appendix A.1, so it applies here.

We can then define ψ0
.
= 0 and,

ψ1
.
=

1

n
B⊤

0 M2XY
⊤
0 ∈ R2d. (23)

Then we can write

y
(i)
1 = y

(i)
0 +

〈
M1x

(i), ψ1

〉
,

for i = 1, . . . , n + 1, which is the claim we made. In particular, since we assume y(n+1)
0 = 0, we

have

y
(n+1)
1 =

〈
M1x

(n+1), ψ1

〉
.

Claim 4. The bottom d elements of ψ1 are always 0, i.e., there exists w1 ∈ Rd such that we can
express ψ1 as

ψ1 =

[
w1

0d×1

]
.

Since our B0 here is identical to that in the proof of Theorem 1 in A.1, Claim 4 holds for the same
reason. We therefore omit the proof details to avoid repetition.

Given all the claims above, we can then compute that
〈
ψ1,M1x

(n+1)
〉
=
1

n

〈
B⊤

0 M2XY
⊤
0 ,M1x

(n+1)
〉

(By (23))

=
1

n

n∑

i=1

〈
B⊤

0 M2x
(i)y

(i)
0 ,M1x

(n+1)
〉

=
1

n

n∑

i=1

〈
B⊤

0

[
ν(i)

0d×1

](
y
(i)
0

)
,M1x

(n+1)

〉

=
1

n

n∑

i=1

〈[
C0ν

(i)

0d×1

](
y
(i)
0

)
,M1x

(n+1)

〉
(By Claim 4)

=
1

n

n∑

i=1

〈[
C0ν

(i)y
(i)
0

0d×1

]
,M1x

(n+1)

〉

This means
〈
w1, ν

(n+1)
〉
=

1

n

n∑

i=1

〈
C0ν

(i)y
(i)
0 , ν(n+1)

〉
.
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Since the choice of the query ν(n+1) is arbitrary, we get

w1 =
1

n

n∑

i=1

C0y
(i)
0 ν(i).

In particular, when we construct Z0 such that ν(i) = ϕi−1 and y(i)0 = Ri, we get

w1 =
1

n

n∑

i=1

C0Riϕi−1

which is the update rule for a single step of TD(0) with w0 = 0. We also have

y
(n+1)
1 =

〈
ψ1,M1x

(n+1)
〉
= −

〈
w1, ϕ

(n+1)
〉
.

This concludes our proof.

A.3 PROOF OF THEOREM 2

Preliminaries Before we present the proof, we first introduce notations convenient for our analysis.
We decompose P0 and Q0 as

P0 =

[
P ∈ R2d×(2d+1)

p ∈ R1×(2d+1)

]
, Q0 =



Qa ∈ Rd×d Qb ∈ Rd×d qc ∈ Rd×1

Q′
a ∈ Rd×d Q′

b ∈ Rd×d q′c ∈ Rd×1

qa ∈ R1×d qb ∈ R1×d q′′c ∈ R


.

One can readily check that TF1 is independent of P,Qb, Q
′
b, qb, qc, q

′
c, q

′′
c . Thus, we can assume that

these matrices are zero. Let z(i) be the i-th column of Z0. Indeed, TF1 can be written as
TF1(Z0, {P0, Q0}) = −Z1[2d+ 1, n+ 1] (By (4))

= − 1

n
p⊤

(
n∑

i=1

z(i)z(i)
⊤

)
Q0z

(n+1)

= − 1

n

n∑

i=1

〈
p, z(i)

〉
z(i)

⊤
Q0z

(n+1)

= − 1

n

n∑

i=1

〈
p, z(i)

〉(
ϕ⊤i−1Qaϕn+1 + γϕ⊤i Q

′
aϕn+1 +Riϕ

⊤
n+1qa

)
(24)

= − 1

n

n∑

i=1



〈
p[1:d], ϕi−1

〉
+ γ
〈
p[d+1:2d], ϕi

〉
+ p[2d+1]Ri︸ ︷︷ ︸

αi(Z0,P0)




·


ϕ⊤i−1Qaϕn+1 + γ(ϕi)

⊤Q′
aϕn+1 +Riϕ

⊤
n+1qa︸ ︷︷ ︸

βi(Z0,Q0)


.

We prepare the following gradient computations for future use:

∇p[1:d]
TF1(Z0, {P0, Q0}) = −

1

n

n∑

i=1

βi(Z0, Q0)ϕi−1

∇p[d+1:2d]
TF1(Z0, {P0, Q0}) = −

γ

n

n∑

i=1

βi(Z0, Q0)ϕi

∇Qa
TF1(Z0, {P0, Q0}) = −

1

n

n∑

i=1

αi(Z0, P0)ϕi−1ϕ
⊤
n+1

∇Q′
a
TF1(Z0, {P0, Q0}) = −

γ

n

n∑

i=1

αi(Z0, P0)ϕiϕ
⊤
n+1

∇qaTF1(Z0, {P0, Q0}) = −
1

n

n∑

i=1

Riαi(Z0, P0)ϕn+1.

(25)
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We will also reference the following two lemmas in our main proof.
Lemma A.3.1. Let Λ be a diagonal matrix whose diagonal elements are i.i.d Rademacher random
variables 5 ζ1, . . . ζd. For any matrix K ∈ Rd×d, we have that EΛ[ΛKΛ] = diag(K).

Proof. First, we can write ΛKΛ explicitly as

ΛKΛ =




ζ1 0 . . . 0
0 ζ2 . . . 0
...

...
. . .

...
0 0 . . . ζd







k11 k12 . . . k1d
k21 k22 . . . k2d

...
...

. . .
...

kd1 kd2 . . . kdd







ζ1 0 . . . 0
0 ζ2 . . . 0
...

...
. . .

...
0 0 . . . ζd


.

Using (ΛKΛ)ij to denote the element in the i-th row at column j of ΛKΛ, from elementary matrix
multiplication we have

(ΛKΛ)ij = ζikijζj .

When i ̸= j, E[ζiζj ] = E[ζi]E[ζj ] = 0 becasue ζi and ζj are independent. For i = j, E[ζiζj ] =
E[ζ2i ] = 1. We can then compute the expectation

EΛ[(ΛKΛ)]ij =

{
kij i = j

0 i ̸= j.

Consequently,

EΛ[ΛKΛ] = diag(K).

Lemma A.3.2. Let Π ∈ Rd×d be a random permutation matrix uniformly distributed over all d× d
permutation matrices and L ∈ Rd×d be a diagonal matrix. Then, it holds that

EΠ

[
ΠLΠ⊤] = 1

d
tr(L)Id.

Proof. By definition,

[ΠLΠ⊤]ij =

d∑

k=1

ΠikLkkΠjk.

We note that each row of Π is a standard basis. Given the orthogonality of standard bases, we get

[ΠLΠ⊤]ij =

{
0 i ̸= j

Lqiqi i = j
,

where qi is the unique index such that Πiqi = 1. If the distribution of Π is uniform, then [ΠLΠ⊤]ii
is equal to one of L11, . . . , Ldd with the same probability. Thus, the expected value [ΠLΠ⊤]ii is
1
d tr(L).

Now, we start with the proof of the theorem statement.

Proof. We recall the definition of the set Θ∗ as

Θ∗ .
= ∪η,c,c′∈R

{
P =

[
02d×2d 02d×1

01×2d η

]
, Q =

[
cId 0d×d 0d×1

c′Id 0d×d 0d×1

01×d 01×d 0

]}
.

Suppose θk ∈ Θ∗, then by (24) and (25), we get

TF1(Z0, θk) = −
ηk
n

n∑

i=1

Ri

(
ckϕ

⊤
i−1ϕn+1 + c′kγϕ

⊤
i ϕn+1

)
(26)

5A Rademacher random variable takes values 1 or −1, each with an equal probability of 0.5.
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TF1(Z
′
0, θk) = −

ηk
n

n∑

i=1

Ri+1

(
ckϕ

⊤
i ϕn+2 + c′kγϕ

⊤
i+1ϕn+2

)

∇p[1:d]
TF1(Z0, θk) = −

1

n

n∑

i=1

(
ckϕ

⊤
i−1ϕn+1 + c′kγϕ

⊤
i ϕn+1

)
ϕi−1

∇p[d+1:2d]
TF1(Z0, θk) = −

γ

n

n∑

i=1

(
ckϕ

⊤
i−1ϕn+1 + c′kγϕ

⊤
i ϕn+1

)
ϕi

∇Qa
TF1(Z0, θk) = −

ηk
n

n∑

i=1

Riϕi−1ϕ
⊤
n+1

∇Q′
a
TF1(Z0, θk) = −

γηk
n

n∑

i=1

Riϕiϕ
⊤
n+1

∇qaTF1(Z0, θk) = −
ηk
n

n∑

i=1

R2
iϕn+1

Recall the definition of ∆(θ) in (10). With a slight abuse of notation, we define ∆(p[1:d]) to be the
p[1:d] component of ∆(θ), i.e.,

∆(p[1:d])
.
= E

[
(R+ γTF1(Z

′
0, θ)− TF1(Z0, θ))

∂TF1(Z0, θ)

∂p[1:d]

]
.

Same goes for ∆(p[d+1:2d]),∆(Qa),∆(Q′
a), and ∆(qa).

We will prove that

(a) ∆(p[1:d]) = ∆(p[d+1:2d]) = ∆(qa) = 0 for ∆(θk);

(b) ∆(Qa) = δId and ∆(Q′
a) = δ′Id for some δ, δ′ ∈ R for ∆(θk)

using Assumptions 5.1 and 5.2. We can see that the combination of (a) and (b) are sufficient for
proving the theorem. Recall that Z0 and Z ′

0 are sampled from (p0, p, r, ϕ). We make the following
claims to assist our proof of (a) and (b).

Claim 1. Let ζ be a Rademacher random variable. We denote Zζ and Z ′
ζ as the prompts sampled

from (p0, p, r, ζϕ). We then have Z0 ≜ Zζ and Z ′
0 ≜ Z ′

ζ . To show this is true, we notice that for any
realization of ζ, denoted as ζ̄ ∈ {1,−1}, we have

Pr(p0, p, r, ϕ) = Pr(p0, p, r) Pr(ϕ) (Assumption 5.1)

= Pr(p0, p, r) Pr
(
ζ̄Idϕ

)
(Assumption 5.2)

= Pr
(
p0, p, r, ζ̄ϕ

)
. (Assumption 5.1)

It then follows that

Pr(p0, p, r, ϕ) =Pr(p0, p, r, ϕ)
∑

ζ̄∈{1,−1}

Pr
(
ζ = ζ̄

)

=
∑

ζ̄∈{1,−1}

Pr(p0, p, r, ϕ) Pr
(
ζ = ζ̄

)

=
∑

ζ̄∈{1,−1}

Pr
(
p0, p, r, ζ̄ϕ

)
Pr
(
ζ = ζ̄

)

=Pr(p0, p, r, ζϕ).

This implies Claim 1 holds.

Claim 2. Define Λ as the diagonal matrix whose diagonal elements are i.i.d. Rademacher random
variables ζ1, . . . , ζd. We denote ZΛ and Z ′

Λ as the prompts sampled from (p0, p, r,Λϕ), where Λϕ
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means [Λϕ(s)]s∈S . We then have Z0 ≜ ZΛ and Z ′
0 ≜ Z ′

Λ. The proof follows the same procedures as
Claim 1.

Claim 3. Let Π be a random permutation matrix uniformly distributed over all d× d permutation
matrices. We denote ZΠ and Z ′

Π as the prompts sampled from (p0, p, r,Πϕ), where Πϕ means
[Πϕ(s)]s∈S . We then have Z0 ≜ ZΠ and Z ′

0 ≜ Z ′
Π. The proof follows the same procedures as

Claim 1.

Proof of (a) using Claim 1 It is easy to check by (26) that

TF1(Zζ , θk) = −
ηk
n

n∑

i=1

Ri

(
ckζ

2ϕ⊤i−1ϕn+1 + c′kγζ
2ϕ⊤i ϕn+1

)

= ζ2︸︷︷︸
=1

TF1(Z0, θk)

= TF1(Z0, θk). (27)

Similarly, one can check that TF1(Z
′
ζ , θk) = TF1(Z

′
0, θk).

Furthermore,

∇p[1:d]
TF1(Zζ , θk) =−

1

n

n∑

i=1


ck ζ2︸︷︷︸

=1

ϕ⊤i−1ϕn+1 + c′kγ ζ2︸︷︷︸
=1

ϕ⊤i ϕn+1


ζϕi−1

=− ζ

n

n∑

i=1

(
ckϕ

⊤
i−1ϕn+1 + c′kγϕ

⊤
i ϕn+1

)
ϕi−1

=ζ∇p[1:d]
TF1(Z0, θk). (28)

Then, from (10), we get

∆(p[1:d])

=E
[
(Rn+2 + γTF1(Z

′
0, θk)− TF1(Z0, θk))∇p[1:d]

TF1(Z0, θk)
]

=E
[(
Rn+2 + γTF1(Z

′
ζ , θk)− TF1(Zζ , θk)

)
∇p[1:d]

TF1(Zζ , θk)
]

(By Claim 1)

=Eζ

[
E
[(
Rn+2 + γTF1(Z

′
ζ , θk)− TF1(Zζ , θk)

)
∇p[1:d]

TF1(Zζ , θk) | ζ
]]

=Eζ

[
E
[
(Rn+2 + γTF1(Z

′
0, θk)− TF1(Z0, θk))ζ∇p[1:d]

TF1(Z0, θk) | ζ
]]

(By (27), (28))

=Eζ

[
ζE
[
(Rn+2 + γTF1(Z

′
0, θk)− TF1(Z0, θk))∇p[1:d]

TF1(Z0, θk) | ζ
]]

=Eζ

[
ζE
[
(Rn+2 + γTF1(Z

′
0, θk)− TF1(Z0, θk))∇p[1:d]

TF1(Z0, θk)
]]

=Eζ [ζ]E
[
(Rn+2 + γTF1(Z

′
0, θk)− TF1(Z0, θk))∇p[1:d]

TF1(Z0, θk)
]

=0.

The proof is analogous for ∆(p[d+1:2d]) = 0, and ∆(qa) = 0.

Proof of (b) using Claims 2 and 3 We first show that ∆(Qa) is a diagonal matrix. Similar to (a),
we have

TF1(ZΛ, θk) = −
1

n

n∑

i=1

ηkRi

(
ckϕ

⊤
i−1 Λ2
︸︷︷︸
=I

ϕn+1 + c′kγϕ
⊤
i Λ2
︸︷︷︸
=I

ϕn+1

)
(29)

= TF1(Z0, θk).

Similarly, we get TF1(Z
′
Λ, θk) = TF1(Z

′
0, θk). Additionally, we have

∇Qa
TF1(ZΛ, θk) = −

1

n

n∑

i=1

ηkRiΛϕi−1ϕ
⊤
n+1Λ

⊤ = Λ∇Qa
TF1(Z0, θk)Λ. (30)

By (10) again, we get

∆(Qa)
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=E[(Rn+2 + γTF1(Z
′
0, θk)− TF1(Z0, θk))∇Qa

TF1(Z0, θk)]

=E[(Rn+2 + γTF1(Z
′
Λ, θk)− TF1(ZΛ, θk))∇Qa

TF1(ZΛ, θk)] (By Claim 2)

=EΛ[E[(Rn+2 + γTF1(Z
′
Λ, θk)− TF1(ZΛ, θk))∇QaTF1(ZΛ, θk) | Λ]]

=EΛ[E[(Rn+2 + γTF1(Z
′
0, θk)− TF1(Z0, θk))Λ∇Qa

TF1(Z0, θk)Λ | Λ]] (By (29), (30))

=EΛ[ΛE[(Rn+2 + γTF1(Z
′
0, θk)− TF1(Z0, θk))∇Qa

TF1(Z0, θk) | Λ]Λ]
=EΛ[ΛE[(Rn+2 + γTF1(Z

′
0, θk)− TF1(Z0, θk))∇QaTF1(Z0, θk)]Λ]

=diag(E[(Rn+2 + γTF1(Z
′
0, θk)− TF1(Z0, θk))∇Qa

TF1(Z0, θk)]) (By Lemma A.3.1)
=diag(∆(Qa)).

The last equation holds if and only if ∆(Qa) is diagonal. We have proven this claim.

Now, we prove that ∆(Qa) = δId for some δ ∈ R using Claim 3 and Lemma A.3.2. Let Π be a
random permutation matrix uniformly distributed over all permutation matrices. Recall the definition
of ZΠ and Z ′

Π in Claim 3. We have

TF1(ZΠ, θk) = −
1

n

n∑

i=1

ηkRi

(
ckϕ

⊤
i−1 Π

⊤Π︸ ︷︷ ︸
=I

ϕn+1 + c′kγϕ
⊤
i Π⊤Π︸ ︷︷ ︸

=I

ϕn+1

)
= TF1(Z0, θk).(31)

Analogously, we get TF1(Z
′
Π, θk) = TF1(Z

′
0, θk). Furthermore, we have

∇QaTF1(ZΠ, θk) = −
1

n

n∑

i=1

ηkRiΠϕi−1ϕ
⊤
n+1Π

⊤ = Π∇QaTF1(Z0, θk)Π
⊤. (32)

By (10), we are ready to show that

∆(Qa)

=E[(Rn+2 + γTF1(Z
′
0, θk)− TF1(Z0, θk))∇QaTF1(Z0, θk)]

=E[(Rn+2 + γTF1(Z
′
Π, θk)− TF1(ZΠ, θk))∇Qa

TF1(ZΠ, θk)] (By Claim 3)

=EΠ[E[(Rn+2 + γTF1(Z
′
Π, θk)− TF1(ZΠ, θk))∇Qa

TF1(ZΠ, θk) | Π]]

=EΠ

[
E
[
(Rn+2 + γTF1(Z

′
0, θk)− TF1(Z0, θk))Π∇Qa

TF1(Z0, θk)Π
⊤ | Π

]]
(By (31), (32))

=EΠ

[
ΠE[(Rn+2 + γTF1(Z

′
0, θk)− TF1(Z0, θk))∇QaTF1(Z0, θk) | Π]Π⊤]

=EΠ

[
ΠE[(Rn+2 + γTF1(Z

′
0, θk)− TF1(Z0, θk))∇Qa

TF1(Z0, θk)]Π
⊤]

=EΠ

[
Πdiag(∆(Qa))Π

⊤]

=
1

d
tr(∆(Qa))Id (By Lemma A.3.2)

=δId.

The proof is analogous for ∆(Q′
a) = δ′Id for some δ′ ∈ R.

Suppose that ∆(p[2d+1]) = ρ ∈ R, we now can conclude that

∆(θk) =

{
∆(P0) =

[
02d×2d 02d×1

01×2d ρ

]
,∆(Q0) =

[
δId 0d×d 0d×1

δ′Id 0d×d 0d×1

01×d 01×d 0

]}
.

Therefore, according to (10), we get

θk+1

=θk + αk∆(θk)

=

{[
02d×2d 02d×1

01×2d ηk + αkρ

]
,

[
ck + αkδId 0d×d 0d×1

c′k + αkδ
′Id 0d×d 0d×1

01×d 01×d 0

]}
∈ Θ∗.
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A.4 PROOF OF COROLLARY 2

Proof. We recall from (3) that the embedding evolves according to

Zl+1 = Zl +
1

n
PlZlM(Z⊤

l QlZl).

We again refer to the elements in Zl as
{
(x

(i)
l , y

(i)
l )
}
i=1,...,n+1

in the following way

Zl =

[
x
(1)
l . . . x

(n)
l x

(n+1)
l

y
(1)
l . . . y

(n)
l y

(n+1)
l

]
,

where we recall that Zl ∈ R(2d+1)×(n+1), x
(i)
l ∈ R2d, y

(i)
l ∈ R. Sometimes, it is more convenient

to refer to the first half and second half of x(i)l separately, by, e.g., ν(i)l ∈ Rd, ξ
(i)
l ∈ Rd, i.e.,

x
(i)
l =

[
ν
(i)
l

ξ
(i)
l

]
. Then, we have

Zl =



ν
(1)
l . . . ν

(n)
l ν

(n+1)
l

ξ
(1)
l . . . ξ

(n)
l ξ

(n+1)
l

y
(1)
l . . . y

(n)
l y

(n+1)
l


.

We utilize the shorthands

Xl =
[
x
(1)
l . . . x

(n)
l

]
∈ R2d×n,

Yl =
[
y
(1)
l . . . y

(n)
l

]
∈ R1×n.

Then we have

Zl =

[
Xl x

(n+1)
l

Yl y
(n+1)
l

]
.

For the input Z0, we assume ξ(n+1)
0 = 0, y

(n+1)
0 = 0 but all other entries of Z0 are arbitrary. We

recall our definition of M in (2) and
{
PRG
l , QRG

l

}
in (12). In particular, we can express QRG

l in a
more compact way as

M1
.
=

[
−Id Id
0d×d 0d×d

]
∈ R2d×2d,

M2
.
=−M1

Bl
.
=

[
C⊤

l 0d×d

0d×d 0d×d

]
∈ R2d×2d,

Al
.
=M⊤

2 BlM1 =

[
−C⊤

l C⊤
l

C⊤
l −C⊤

l

]
∈ R2d×2d,

QRG
l

.
=

[
Al 02d×1

01×2d 0

]
∈ R(2d+1)×(2d+1).

We then verify the following claims.

Claim 1. Xl ≡ X0, x
(n+1)
l ≡ x(n+1)

0 ,∀l.
We note that PRG

l is the key reason Claim 1 holds and is the same as the TD(0) case. Referring to
A.1, we omit the proof of Claim 1 here.

Claim 2.

Yl+1 = Yl +
1

n
YlX

⊤AlX

y
(n+1)
l+1 = y

(n+1)
l +

1

n
YlX

⊤Alx
(n+1).
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Since the only difference between the true residual gradient and TD(0) configurations is the internal
structure of Al, we argue that it’s irrelevant to Claim 2. We therefore again refer the readers to A.1
for a detailed proof.

Claim 3.

y
(i)
l+1 = y

(i)
0 +

〈
M1x

(i),
1

n

l∑

j=0

B⊤
j M2XY

⊤
j

〉
,

for i = 1, . . . , n+ 1.

By Claim 2, we can unroll Yl+1 as

Yl+1 = Yl +
1

n
YlX

⊤AlX

Yl = Yl−1 +
1

n
Yl−1X

⊤Al−1X

...

Y1 = Y0 +
1

n
Y0X

⊤A0X.

We can then compactly express Yl+1 as

Yl+1 = Y0 +
1

n

l∑

j=0

YjX
⊤AjX.

Recall that we define Aj =M⊤
2 BjM1. Then, we can rewrite Yl+1 as

Yl+1 = Y0 +
1

n

l∑

j=0

YjX
⊤M⊤

2 BjM1X.

With the identical procedure, we can easily rewrite y(n+1)
l+1 as

y
(n+1)
l+1 = y

(n+1)
0 +

1

n

l∑

j=0

YjX
⊤M⊤

2 BjM1x
(n+1).

In light of this, we define ψ0
.
= 0 and for l = 0, . . .

ψl+1
.
=
1

n

l∑

j=0

B⊤
j M2XY

⊤
j ∈ R2d

=ψl +
1

n
B⊤

l M2XY
⊤
l (33)

Then we can write

y
(i)
l+1 = y

(i)
0 +

〈
M1x

(i), ψl+1

〉
, (34)

for i = 1, . . . , n + 1, which is the claim we made. In particular, since we assume y(n+1)
0 = 0, we

have

y
(n+1)
l+1 =

〈
M1x

(n+1), ψl+1

〉
.

Claim 4. The bottom d elements of ψl are always 0, i.e., there exists a sequence
{
wl ∈ Rd

}
such

that we can express ψl as

ψl =

[
wl

0d×1

]
.
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for all l = 0, 1, . . . , L.

Since Bl is the key reason Claim 4 holds and is identical to the TD(0) case, we refer the reader to A.1
for detailed proof.

Given all the claims above, we can then compute that
〈
ψl+1,M1x

(n+1)
〉

=
〈
ψl,M1x

(n+1)
〉
+

1

n

〈
B⊤

l M2XY
⊤
l ,M1x

(n+1)
〉

(By (33))

=
〈
ψl,M1x

(n+1)
〉
+

1

n

n∑

i=1

〈
B⊤

l M2x
(i)y

(i)
l ,M1x

(n+1)
〉

=
〈
ψl,M1x

(n+1)
〉
+

1

n

n∑

i=1

〈
B⊤

l M2x
(i)
(〈
ψl,M1x

(i)
〉
+ y

(i)
0

)
,M1x

(n+1)
〉

(By (34))

=
〈
ψl,M1x

(n+1)
〉
+

1

n

n∑

i=1

〈
B⊤

l

[
ν(i) − ξ(i)

0d×1

](〈
ψl,

[
−ν(i) + ξ(i)

0d×1

]〉
+ y

(i)
0

)
,M1x

(n+1)

〉

=
〈
ψl,M1x

(n+1)
〉
+

1

n

n∑

i=1

〈[
Cl

(
ν(i) − ξ(i)

)
0d×1

](
y
(i)
0 + w⊤

l ξ
(i) − w⊤

l ν
(i)
)
,M1x

(n+1)

〉

(By Claim 4)

=
〈
ψl,M1x

(n+1)
〉
+

1

n

n∑

i=1

〈[
Cl

(
ν(i) − ξ(i)

)(
y
(i)
0 + w⊤

l ξ
(i) − w⊤

l ν
(i)
)

0d×1

]
,M1x

(n+1)

〉

This means
〈
wl+1, ν

(n+1)
〉
=
〈
wl, ν

(n+1)
〉
+

1

n

n∑

i=1

〈
Cl

(
ν(i) − ξ(i)

)(
y
(i)
0 + w⊤

l ξ
(i) − w⊤

l ν
(i)
)
, ν(n+1)

〉
.

Since the choice of the query ν(n+1) is arbitrary, we get

wl+1 = wl +
1

n

n∑

i=1

Cl

(
y
(i)
0 + w⊤

l ξ
(i) − w⊤

l ν
(i)
)(
ν(i) − ξ(i)

)
.

In particular, when we construct Z0 such that ν(i) = ϕi−1, ξ(i) = γϕi and y(i)0 = Ri, we get

wl+1 = wl +
1

n

n∑

i=1

Cl

(
Ri + γw⊤

l ϕi − w⊤
l ϕi−1

)
(ϕi−1 − γϕi)

which is the update rule for pre-conditioned residual gradient learning. We also have

y
(n+1)
l =

〈
ψl,M1x

(n+1)
〉
= −

〈
wl, ϕ

(n+1)
〉
.

This concludes our proof.

A.5 PROOF OF COROLLARY 3

Proof. The proof presented here closely mirrors the methodology and notation established in the
proof of Theorem 1 from Appendix A.1. We begin by recalling the embedding evolution from (3) as,

Zl+1 = Zl +
1

n
PlZlM

TD(λ)(Z⊤
l QlZl).
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where we have substituted the original mask defined in (2) with the TD(λ) mask in (14). We once
again refer to the elements in Zl as

{
(x

(i)
l , y

(i)
l )
}
i=1,...,n+1

in the following way

Zl =

[
x
(1)
l . . . x

(n)
l x

(n+1)
l

y
(1)
l . . . y

(n)
l y

(n+1)
l

]
,

where we recall that Zl ∈ R(2d+1)×(n+1), x
(i)
l ∈ R2d, y

(i)
l ∈ R. We utilize, ν(i)l ∈ Rd, ξ

(i)
l ∈ Rd, to

refer to the first half and second half of x(i)l i.e., x(i)l =

[
ν
(i)
l

ξ
(i)
l

]
.

Then we have

Zl =



ν
(1)
l . . . ν

(n)
l ν

(n+1)
l

ξ
(1)
l . . . ξ

(n)
l ξ

(n+1)
l

y
(1)
l . . . y

(n)
l y

(n+1)
l


.

We further define as shorthands,

Xl =
[
x
(1)
l . . . x

(n)
l

]
∈ R2d×n,

Yl =
[
y
(1)
l . . . y

(n)
l

]
∈ R1×n.

Then the blockwise structure of Zl can be succinctly expressed as:

Zl =

[
Xl x

(n+1)
l

Yl y
(n+1)
l

]
.

We proceed to the formal arguments by paralleling those in Theorem 1. As in the theorem, we assume
that certain initial conditions, such as ξ(n+1)

0 = 0 and y(n+1)
0 = 0, hold, but other entries of Z0 are

arbitrary. We recall our definition of MTD(λ) in (14) and
{
P TD
l , QTD

l

}
l=0,...,L−1

in (7). In particular,
we can express QTD

l in a more compact way as

M1
.
=

[
−Id Id
0d×d 0d×d

]
∈ R2d×2d,

Bl
.
=

[
C⊤

l 0d×d

0d×d 0d×d

]
∈ R2d×2d,

Al
.
=BlM1 =

[
−C⊤

l C⊤
l

0d×d 0d×d

]
∈ R2d×2d,

QTD
l

.
=

[
Al 02d×1

01×2d 0

]
∈ R(2d+1)×(2d+1),

We now proceed with the following claims.

In subsequent steps, it sometimes is useful to refer to the matrix MTD(λ)Z⊤ in block form. Therefore,
we will define H⊤ ∈ R(n×2d) as the first n rows of MTD(λ)Z

⊤ except for the last column, which we
define as Y (λ)

l ∈ Rn.

MTD(λ)Z⊤
l =

[
H⊤ Y

(λ)
l

01×2d 0

]
∈ R(n+1)×(2d+1)

Let h(i) denote i-th column of H .

We proceed with the following claims.

Claim 1. Xl ≡ X0, x
(n+1)
l ≡ x(n+1)

0 ,∀l.
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Because we utilize the same definition of P TD
l as in Theorem 1, the argument proving Claim 1 in

Theorem 1 holds here as well. As a result, we drop all the subscripts of Xl, as well as subscripts of
x
(i)
l for i = 1, . . . , n+ 1.

Claim 2. Let H ∈ R(2d×n), where the i-th column of H is,

h(i) =

i∑

k=1

λi−kx(i) ∈ R2d.

Then we can write the updates for Yl+1, and y(n+1)
l+1 as,

Yl+1 = Yl +
1

n
YlH

⊤AlX,

y
(n+1)
l+1 = y

(n+1)
l +

1

n
YlH

⊤Alx
(n+1).

We will show this by factoring the embedding evolution into the product of P TD
l Zl and MTD(λ)Z⊤

l ,
and QTD

l Zl. Firstly, we have

P TD
l Zl =

[
02d×n 02d×1

Yl y
(n+1)
l

]
.

Next we analyze MTD(λ)Z⊤
l . From basic matrix algebra we have,

MTD(λ)Z⊤ =




1 0 0 0 · · · 0 0
λ 1 0 0 · · · 0 0
λ2 λ 1 0 · · · 0 0
λ3 λ2 λ 1 · · · 0 0
...

...
...

...
. . .

...
...

λn−1 λn−2 λn−3 λn−4 · · · 1 0
0 0 0 0 · · · 0 0







x(1)
⊤

y(1)

x(2)
⊤

y(2)

x(3)
⊤

y(3)

...
...

x(n)
⊤

y(n)

x(n+1)⊤ 0




=




x(1)
⊤

y
(1)
l

x(2)
⊤
+ λx(1)

⊤
y
(2)
l + λy

(2)
l

...
...∑n

i=1 λ
n−ix⊤i

∑n
i=1 λ

n−iy
(i)
l

01×2d 0



,

=




h(1)
⊤

y
(1)
l

h(2)
⊤

y
(2)
l + λy

(1)
l

...
...

h(n)
⊤ ∑n

i=1 λ
n−iy

(n)
l

01×2d 0




=

[
H⊤ K

(λ)
l

01×2d 0

]
,

where K(λ)
l ∈ Rd is introduced for notation simplicity.

Then, we analyze MTD(λ)Z⊤
l Q

TD
l Zl. Applying the block matrix notations, we get

(
MTD(λ)Z⊤

l

)
QTD

l Zl =

[
H⊤ K

(λ)
l

01×2d 0

][
Al 02d×1

01×2d 0

][
X x(n+1)

Yl y
(n+1)
l

]

=

[
H⊤Al 0n×1

01×2d 0

][
X x(n+1)

Yl y
(n+1)
l

]

=

[
H⊤AlX H⊤Alx

(n+1)

01×2d 0

]
.
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Combining the two, we get

P TD
l Zl

(
MTD(λ)Z⊤

l Q
TD
l Zl

)
=

[
02d×n 02d×1

Yl y
(n+1)
l

][
H⊤AlX H⊤Alx

(n+1)

01×2d 0

]

=

[
02d×n 02d×1

YlH
⊤AlX YlH

⊤Alx
(n+1)

]
.

Hence, according to our update rule in (3), we get

Yl+1 = Yl +
1

n
YlH

⊤AlX

y
(n+1)
l+1 = y

(n+1)
l +

1

n
YlH

⊤Alx
(n+1).

Claim 3.

y
(i)
l+1 = y

(i)
0 +

〈
M1x

(i),
1

n

l∑

i=0

B⊤
i M2XY

⊤
i

〉
,

for i = 1, . . . , n+ 1, where M2 =

[
Id 0d×d

0d×d 0d×d

]
.

Following Claim 2, we can unroll the recursive definition of Yl+1 and express it compactly as,

Yl+1 = Y0 +
1

n

l∑

i=0

YiH
⊤AiX.

Recall that we define Ai = BiM1. Then, we can rewrite Yl+1 as

Yl+1 = Y0 +
1

n

l∑

i=0

YiH
⊤M2BiM1X.

The introduction of M2 here does not break the equivalence because Bi =M2Bi. However, it will
help make our proof steps easier to comprehend later.

With the identical recursive unrolling procedure, we can rewrite y(n+1)
l+1 as

y
(n+1)
l+1 = y

(n+1)
0 +

1

n

l∑

i=0

YiH
⊤M2BiM1x

(n+1).

In light of this, we define ψ0
.
= 0 and for l = 0, . . .

ψl+1
.
=
1

n

l∑

i=0

B⊤
i M2HY

⊤
i ∈ R2d. (35)

Then we can write

y
(i)
l+1 = y

(i)
0 +

〈
M1x

(i), ψl+1

〉
, (36)

for i = 1, . . . , n + 1, which is the claim we made. In particular, since we assume y(n+1)
0 = 0, we

have

y
(n+1)
l+1 =

〈
M1x

(n+1), ψl+1

〉
.

Claim 4. The bottom d elements of ψl are always 0, i.e., there exists a sequence
{
wl ∈ Rd

}
such

that we can express ψl as

ψl =

[
wl

0d×1

]
.
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for all l = 0, 1, . . . , L.

Because we utilize the same definition of Bl as in Theorem 1 when defining ψl+1, the argument
proving Claim 4 in Theorem 1 holds here as well. We omit the steps to avoid redundancy.

Given all the claims above, we can then compute that
〈
ψl+1,M1x

(n+1)
〉

=
〈
ψl,M1x

(n+1)
〉
+

1

n

〈
B⊤

l M2HY
⊤
l ,M1x

(n+1)
〉

(By (35))

=
〈
ψl,M1x

(n+1)
〉
+

1

n

n∑

i=1

〈
B⊤

l M2h
(i)y

(i)
l ,M1x

(n+1)
〉

=
〈
ψl,M1x

(n+1)
〉
+

1

n

n∑

i=1

〈
B⊤

l M2h
(i)
(〈
ψl,M1x

(i)
〉
+ y

(i)
0

)
,M1x

(n+1)
〉

(By (36))

=
〈
ψl,M1x

(n+1)
〉
+

1

n

n∑

i=1

〈
B⊤

l

[(∑i
k=1 λ

i−kν(i)
)

0d×1

](〈
ψl,

[
−ν(i) + ξ(i)

0d×1

]〉
+ y

(i)
0

)
,M1x

(n+1)

〉

=
〈
ψl,M1x

(n+1)
〉
+

1

n

n∑

i=1

〈[
Cl

(∑i
k=1 λ

i−kν(i)
)

0d×1

](
y
(i)
0 + w⊤

l ξ
(i) − w⊤

l ν
(i)
)
,M1x

(n+1)

〉

(By Claim 4)

=
〈
ψl,M1x

(n+1)
〉
+

1

n

n∑

i=1

〈[
Cl

(
y
(i)
0 + w⊤

l ξ
(i) − w⊤

l ν
(i)
)(∑i

k=1 λ
i−kν(i)

)

0d×1

]
,M1x

(n+1)

〉

This means

〈
wl+1, ν

(n+1)
〉
=
〈
wl, ν

(n+1)
〉
+

1

n

n∑

i=1

〈
Cl

(
y
(i)
0 + w⊤

l ξ
(i) − w⊤

l ν
(i)
)( i∑

k=1

λi−kν(i)

)
, ν(n+1)

〉
.

Since the choice of the query ν(n+1) is arbitrary, we get

wl+1 = wl +
1

n

n∑

i=1

Cl

(
y
(i)
0 + w⊤

l ξ
(i) − w⊤

l ν
(i)
)( i∑

k=1

λi−kν(i)

)
.

In particular, when we construct Z0 such that ν(i) = ϕi−1, ξ(i) = γϕi and y(i)0 = Ri, we get

wl+1 = wl +
1

n

n∑

i=1

Cl

(
Ri + γw⊤

l ϕi − w⊤
l ϕi−1

)
ei−1

where

ei =

i∑

k=1

λi−kϕk. ∈ Rd

which is the update rule for pre-conditioned TD(λ). We also have

y
(n+1)
l =

〈
ψl,M1x

(n+1)
〉
= −

〈
wl, ϕ

(n+1)
〉
.

This concludes our proof.
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A.6 PROOF OF THEOREM 3

Proof. We recall from (18) that the embedding evolves according to

Zl+1 = Zl +
1

n
TwoHead(Zl;P

TD,(1)
l , QTD

l ,MTD,(1), P
TD,(2)
l , QTD

l ,MTD,(2),Wl)

= Zl +
1

n
Wl

[
LinAttn(Zl;P

TD,(1)
l , QTD

l ,MTD,(1))

LinAttn(Zl;P
TD,(2)
l , QTD

l ,MTD,(2))

]

In this configuration, we refer to the elements in Zl as
{
(x

(i)
l , y

(i)
l , h

(i)
l )
}
i=1,...,n+1

in the following
way,

Zl =



x
(1)
l . . . x

(n)
l x

(n+1)
l

y
(1)
l . . . y

(n)
l y

(n+1)
l

h
(1)
l . . . h

(n)
l h

(n+1)
l


,

where we recall that Zl ∈ R(2d+2)×(n+1), x
(i)
l ∈ R2d, y

(i)
l ∈ R and h(i)l ∈ R.

Sometimes, it is more convenient to refer to the first half and second half of x(i)l separately, by, e.g.,

ν
(i)
l ∈ Rd, ξ

(i)
l ∈ Rd, i.e., x(i)l =

[
ν
(i)
l

ξ
(i)
l

]
. Then we have

Zl =




ν
(1)
l . . . ν

(n)
l ν

(n+1)
l

ξ
(1)
l . . . ξ

(n)
l ξ

(n+1)
l

y
(1)
l . . . y

(n)
l y

(n+1)
l

h
(1)
l . . . h

(n)
l h

(n+1)
l


.

We further define as shorthands

Xl
.
=
[
x
(1)
l . . . x

(n)
l

]
∈ R2d×n,

Yl
.
=
[
y
(1)
l . . . y

(n)
l

]
∈ R1×n,

Hl
.
=
[
h
(1)
l . . . h

(n)
l

]
∈ R1×n.

Then we can express Zl as

Zl =



Xl x

(n+1)
l

Yl y
(n+1)
l

Hl h
(n+1)
l


.

For the input Z0, we assume ξ(n+1)
0 = 0 and h(i)0 = 0 for i = 1, . . . , n + 1. All other entries of

Z0 are arbitrary. We recall our definition of MTD,(1),MTD,(2) in (17),
{
P

TD,(1)
l , P

TD,(2)
l , QTD

l ,Wl

}

in (15) and (16). We again express QTD
l as

M1
.
=

[
−Id Id
0d×d 0d×d

]
∈ R2d×2d,

Bl
.
=

[
C⊤

l 0d×d

0d×d 0d×d

]
∈ R2d×2d,

Al
.
=BlM1 =

[
−C⊤

l C⊤
l

0d×d 0d×d

]
∈ R2d×2d,

QTD
l

.
=

[
Al 02d×2

02×2d 02×2

]
∈ R(2d+2)×(2d+2).

We now proceed with the following claims that assist in proving our main theorem.
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Claim 1. Xl ≡ X0, x
(n+1)
l ≡ x(n+1)

0 , Yl ≡ Y0, y(n+1)
l = y

(n+1)
0 ,∀l.

We define

V
(1)
l

.
= P

TD,(1)
l ZlM

TD,(1)
(
Z⊤
l Q

TD
l Zl

)
∈ R(2d+2)×(n+1)

V
(2)
l

.
= P

TD,(2)
l ZlM

TD,(2)
(
Z⊤
l Q

TD
l Zl

)
∈ R(2d+2)×(n+1).

Then the evolution of the embedding can be written as

Zl+1 = Zl +
1

n
Wl

[
V

(1)
l

V
(2)
l

]
.

By simple matrix arithmetic, we realize Wl is merely summing up the (2d+ 1)-th row of V (1)
l and

the (2d+ 2)-th row of V (2)
l and putting the result on its bottom row. Thus, we have

Wl

[
V

(1)
l

V
(2)
l

]
=

[
0(2d+1)×(n+1)

V
(1)
l (2d+ 1) + V

(2)
l (2d+ 2)

]
∈ R(2d+2)×(n+1),

where V (1)
l (2d + 1) and V (2)

l (2d + 2) respectively indicate the (2d + 1)-th row of V (1)
l and the

(2d+ 2)-th row of V (2)
l . It clearly holds according to the update rule that

Zl+1(1 : 2d+ 1) = Zl(1 : 2d+ 1)

=⇒ Xl+1 = Xl;

x
(n+1)
l+1 = x

(n+1)
l ;

Yl+1 = Yl;

y
(n+1)
l+1 = y

(n+1)
l .

Then, we can easily arrive at our claim by a simple induction. In light of this, we drop the subscripts
of Xl, x

(i)
l , Yl and y(i)l for all i = 1, . . . , n+ 1 and write Zl as

Zl =



X x(n+1)

Y y(n+1)

Hl h
(n+1)
l


.

Claim 2.

Hl+1 = Hl +
1

n
(Hl + Y − Ȳ )X⊤AlX

h
(n+1)
l+1 = h

(n+1)
l +

1

n
(Hl + Y − Ȳ )X⊤Alx

(n+1),

where ȳ(i) .=
∑i

k=1
y(k)

i and Ȳ .
=
[
ȳ(1), ȳ(2), . . . , ȳ(n)

]
∈ R1×n.

We show how this claim holds by investigating the function of each attention head in our formulation.
The first attention head, corresponding to V (1)

l in claim 1, has the form

P
TD,(1)
l ZlM

TD,(1)
(
Z⊤
l Q

TD
l Zl

)
.

We first analyze P TD,(1)
l ZlM

TD,(1). It should be clear that P TD,(1)Zl selects out the (2d+ 1)-th row
of Zl and gives us

P
TD,(1)
l =



02d×n 02d×1

Y y(n+1)

01×n 0


.

The matrix MTD,(1) is essentially computing Y − Ȳ and filtering out the (n + 1)-th entry when
applied to P TD,(1)

l Zl. We break down the steps here:

P
TD,(1)
l ZlM

TD,(1)
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=P
TD,(1)
l Zl

(
In+1 − Un+1diag

([
1 1

2 . . . 1
n

]))
MTD,(2)

=P
TD,(1)
l ZlM

TD,(2) − P TD,(1)
l ZlUn+1diag

([
1 1

2 . . . 1
n

])
MTD,(2)

=

[
02d×n 02d×1

Y 0
01×n 0

]
−



02d×1 02d×1 · · · 02d×1 02d×1

y(1) 1
2

(
y(1) + y(2)

)
· · · 1

n

∑n
i=1 y

(i) 1
n+1

∑n+1
i=1 y

(i)

0 0 · · · 0 0


MTD,(2)

=

[
02d×n 02d×1

Y 0
01×n 0

]
−



02d×n 02d×1

Ȳ 0
01×n 0




=



02d×n 02d×1

Y − Ȳ 0
01×n 0


.

We then analyze the remaining product Z⊤
l Q

TD
l Zl.

Z⊤
l Q

TD
l Zl

=

[
X⊤ Y ⊤ H⊤

l

x(n+1)⊤ y(n+1)⊤ h
(n+1)⊤

l

][
Al 02d×1 02d×1

01×2d 0 0
01×2d 0 0

]

X x(n+1)

Y y(n+1)

Hl h
(n+1)
l




=

[
X⊤Al 0n×1 0n×1

x(n+1)⊤Al 0 0

]

X x(n+1)

Y y(n+1)

Hl h
(n+1)
l




=

[
X⊤AlX X⊤Alx

(n+1)

x(n+1)⊤AlX x(n+1)⊤Alx
(n+1)

]
.

Putting them together, we get

P
TD,(1)
l ZlM

TD,(1)
(
Z⊤
l Q

TD
l Zl

)
=



02d×n 02d×1

Y − Ȳ 0
01×n 0



[

X⊤AlX X⊤Alx
(n+1)

x(n+1)⊤AlX x(n+1)⊤Alx
(n+1)

]

=




02d×n 02d×1(
Y − Ȳ

)
X⊤AlX

(
Y − Ȳ

)
X⊤Alx

(n+1)

01×n 0


.

The second attention head, corresponding to V (2)
l in claim 1, has the form

P
TD,(2)
l ZlM

TD,(2)
(
Z⊤
l Q

TD
l Zl

)
.

It’s obvious that P TD,(2)
l selects out the (2d+ 2)-th row of Zl as

P
TD,(2)
l Zl =

[
0(2d+1)×n 0(2d+1)×1

Hl h
(n+1)
l

]
.

Applying the mask MTD,(2), we get

P
TD,(2)
l ZlM

TD,(2) =

[
0(2d+1)×n 0(2d+1)×1

Hl 0

]
.

The product Z⊤
l Q

TD
l Zl is identical to the first attention head. Hence, we see the computation of the

second attention head gives us

P
TD,(2)
l ZlM

TD,(2)
(
Z⊤
l Q

TD
l Zl

)

=

[
0(2d+1)×n 0(2d+1)×1

Hl 0

][
X⊤AlX X⊤Alx

(n+1)

x(n+1)⊤AlX x(n+1)⊤Alx
(n+1)

]
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=

[
0(2d+1)×n 0(2d+1)×1

HlX
⊤AlX HlX

⊤Alx
(n+1)

]
.

Lastly, the matrix Wl combines the output from the two heads and gives us

Wl


P

TD,(1)
l ZlM

TD,(1)
(
Z⊤
l Q

TD
l Zl

)

P
TD,(2)
l ZlM

TD,(2)
(
Z⊤
l Q

TD
l Zl

)

 =

[
0(2d+1)×n 0(2d+1)×1(

Hl + Y − Ȳ
)
X⊤AlX

(
Hl + Y − Ȳ

)
X⊤Alx

(n+1)

]
.

Hence, we obtain the update rule for Hl and h(n+1)
l as

Hl+1 = Hl +
1

n
(Hl + Y − Ȳ )X⊤AlX

h
(n+1)
l+1 = h

(n+1)
l +

1

n
(Hl + Y − Ȳ )X⊤Alx

(n+1)

and claim 2 has been verified.

Claim 3.

h
(i)
l+1 =

〈
M1x

(i),
1

n

l∑

j=0

B⊤
i M2X(Hj + Y − Ȳ )⊤

〉
,

for i = 1, . . . , n+ 1, where M2 =

[
Id 0d×d

0d×d 0d×d

]
.

Following claim 2, we unroll Hl+1 as

Hl+1 = Hl +
1

n
(Hl + Y − Ȳ )X⊤AlX

Hl = Hl−1 +
1

n
(Hl−1 + Y − Ȳ )X⊤Al−1X

...

H1 = H0 +
1

n
(H0 + Y − Ȳ )X⊤A0X.

We therefore can express Hl+1 as

Hl+1 = H0 +
1

n

l∑

j=0

(Hj + Y − Ȳ )X⊤AjX.

Recall that we have defined Aj
.
= BjM1 and assumed H0 = 0. Then, we have

Hl+1 =
1

n

l∑

j=0

(Hj + Y − Ȳ )X⊤M2BjM1X.

Note that the introduction of M2 here does not break the equivalence because Bj = M2Bj . We
include it in our expression for the convenience of the main proof later.

With the identical procedure, we can easily rewrite h(n+1)
l+1 as

h
(n+1)
l+1 =

1

n

l∑

j=0

(Hj + Y − Ȳ )X⊤M2BjM1x
(n+1).

In light of this, we define ψ0
.
= 0, and for l = 0, . . .

ψl+1 =
1

n

l∑

j=0

B⊤
j M2X(Hj + Y − Ȳ )⊤ ∈ R2d.
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We then can write

h
(i)
l+1 =

〈
M1x

(i), ψl+1

〉
(37)

for i = 1, . . . , n+ 1, which is the claim we made.

Claim 4. The bottom d elements of ψl are always 0, i.e., there exists a sequence
{
wl ∈ Rd

}
such

that we can express ψl as

ψl =

[
wl

0d×1

]
.

for all l = 0, 1, . . . , L.

Since our Bj here is identical to the proof of Theorem 1 in A.1 for j = 0, 1, . . . , Claim 4 holds for
the same reason. We therefore omit the proof details to avoid repetition.

Given all the claims above, we proceed to prove our main theorem.
〈
ψl+1,M1x

(n+1)
〉

=
〈
ψl,M1x

(n+1)
〉
+

1

n

〈
B⊤

l M2X(Hl + Y − Ȳ )⊤,M1x
(n+1)

〉

=
〈
ψl,M1x

(n+1)
〉
+

1

n

n∑

i=1

〈
B⊤

l M2x
(i)(h

(i)
l + y(i) − ȳ(i)),M1x

(n+1)
〉

=
〈
ψl,M1x

(n+1)
〉
+

1

n

n∑

i=1

〈
B⊤

l M2x
(i)
(〈
ψl,M1x

(i)
〉
+ y(i) − ȳ(i)

)
,M1x

(n+1)
〉

(By (37))

=
〈
ψl,M1x

(n+1)
〉
+

1

n

n∑

i=1

〈
B⊤

l

[
ν(i)

0d×1

](〈
ψl,

[
−ν(i) + ξ(i)

0d×1

]〉
+ y(i) − ȳ(i)

)
,M1x

(n+1)

〉

=
〈
ψl,M1x

(n+1)
〉
+

1

n

n∑

i=1

〈[
Clν

(i)

0d×1

](
y(i) − ȳ(i) + w⊤

l ξ
(i) − w⊤

l ν
(i)
)
,M1x

(n+1)

〉

(By Claim 4)

=
〈
ψl,M1x

(n+1)
〉
+

1

n

n∑

i=1

〈[
Clν

(i)
(
y(i) − ȳ(i) + w⊤

l ξ
(i) − w⊤

l ν
(i)
)

0d×1

]
,M1x

(n+1)

〉

This means
〈
wl+1, ν

(n+1)
〉
=
〈
wl, ν

(n+1)
〉
+

1

n

n∑

i=1

〈
Clν

(i)
(
y(i) − ȳ(i) + w⊤

l ξ
(i) − w⊤

l ν
(i)
)
, ν(n+1)

〉
.

Since the choice of the query ν(n+1) is arbitrary, we get

wl+1 = wl +
1

n

n∑

i=1

Cl

(
y(i) − ȳ(i) + w⊤

l ξ
(i) − w⊤

l ν
(i)
)
ν(i).

In particular, when we construct Z0 such that ν(i) = ϕi−1, ξ
(i) = ϕi and y(i) = Ri, we get

wl+1 = wl +
1

n

n∑

i=1

Cl

(
Ri − r̄i + w⊤

l ϕi − w⊤
l ϕi−1

)
ϕi−1

which is the update rule for pre-conditioned average reward TD learning. We also have

h
(n+1)
l =

〈
ψl,M1x

(n+1)
〉
= −

〈
wl, ϕ

(n+1)
〉
.

This concludes our proof.
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B EXPERIMENTAL DETAILS OF FIGURE 1

We generate Figure 1 with 300 randomly generated policy evaluation tasks. Each task consists of a
randomly generated Markov Decision Process (MDP), a randomly generated policy, and a randomly
generated feature function (See Section 3 for detailed definition). The number of states of the MDP
ranges from 5 to 10, while the features are always in R5. The reward is also randomly generated, but
we make sure the true value function is representable (cf. Algorithm 3). This treatment ensures that
the minimal possible MSVE for each task is always 0. The discount factor is always γ = 0.9.

C BOYAN’S CHAIN EVALUATION TASK GENERATION

To generate the evaluation tasks used to meta-train our transformer in Algorithm 1, we utilize Boyan’s
chain, detailed in Figure 3. Notably, we make some minor adjustments to the original Boyan’s chain
in Boyan (1999) to make it an infinite horizon chain.

Recall that an evaluation task is defined by the tuple (p0, p, r, ϕ). We consider Boyan’s chain MRPs
with m states. To construct p0, we first sample a m-dimensional random vector uniformly in [0, 1]m

and then normalize it to a probability distribution. To construct p, we keep the structure of Boyan’s
chain but randomize the transition probabilities. In particular, the transition function p can be regarded
as a random matrix taking value in Rm×m. To simplify the presentation, we use both p(s, s′) and
p(s′|s) to denote the probability of transitioning to s′ from s. In particular, for i = 1, . . . ,m− 2, we
set p(i, i+ 1) = ϵ and p(i, i+ 2) = 1− ϵ, with ϵ sampled uniformly from (0, 1). For the last two
states, we have p(m|m− 1) = 1 and p(·|m) is a random distribution over all states. Each element
of the vector r ∈ Rm and the matrix ϕ ∈ Rd×m are sampled i.i.d. from a uniform distribution over
[−1, 1]. The overall task generation process is summarized in Algorithm 2. Almost surely, no task
will be generated twice. In our experiments in the main text, we use Boyan Chain MRPs, which
consist of m = 10 states, each with feature dimension d = 4.

1 2 3 m-1 m

Figure 3: Boyan’s Chain of m States

Representable Value Function. With the above sampling procedure, there is no guarantee that the
true value function v is always representable by the features. In other words, there is no guarantee
that there exists a w ∈ Rd satisfying v(s) = ⟨w, ϕ(s)⟩ for all s ∈ S. Most of our experiments use
this setup. It is, however, also beneficial sometimes to work with evaluation tasks where the true value
function is guaranteed to be representable. Algorithm 3 achieves this by randomly generating a w∗
first and compute v(s) .= ⟨w∗, ϕ(s)⟩. The reward is then analytically computed as r .

= (Im − γp)v.
We recall that in the above, we regard p as a matrix in Rm×m.
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Algorithm 2: Boyan Chain MRP and Feature Generation (Non-Representable)
1: Input: state space size m = |S|, feature dimension d
2: for s ∈ S do
3: ϕ(s) ∼ Uniform

[
(−1, 1)d

]
// feature

4: end for
5: p0 ∼ Uniform [(0, 1)m] // initial distribution
6: p0 ← p0/

∑
s p0(s)

7: r ∼ Uniform [(−1, 1)m] // reward function
8: p← 0m×m // transition function
9: for i = 1, . . . ,m− 2 do

10: ϵ ∼ Uniform [(0, 1)]
11: p(i, i+ 1)← ϵ
12: p(i, i+ 2)← 1− ϵ
13: end for
14: p(m− 1,m)← 1
15: z← Uniform [(0, 1)m]
16: z← z/

∑
s z(s)

17: p(m, 1 : m)← z
18: Output: MRP (p0, p, r) and feature map ϕ

Algorithm 3: Boyan Chain MRP and Feature Generation (Representable)
1: Input: state space size m = |S|, feature dimension d, discount factor γ
2: w∗ ∼ Uniform

[
(−1, 1)d

]
// ground-truth weight

3: for s ∈ S do
4: ϕ(s) ∼ Uniform

[
(−1, 1)d

]
// feature

5: v(s)← ⟨w∗, ϕ(s)⟩ // ground-truth value function
6: end for
7: p0 ∼ Uniform [(0, 1)m] // initial distribution
8: p0 ← p0/

∑
s p0(s)

9: p← 0m×m // transition function
10: for i = 1, . . . ,m− 2 do
11: ϵ ∼ Uniform [(0, 1)]
12: p(i, i+ 1)← ϵ
13: p(i, i+ 2)← 1− ϵ
14: end for
15: p(m− 1,m)← 1
16: z← Uniform [(0, 1)m]
17: z← z/

∑
s z(s)

18: p(m, 1 : m)← z
19: r ← (Im − γp)v // reward function
20: Output: MRP (p0, p, r) and feature map ϕ

D ADDITIONAL EXPERIMENTS WITH LINEAR TRANSFORMERS

D.1 EXPERIMENT SETUP

We use Algorithm 2 as dtask for the experiments in the main text with Boyan’s chain of 10 states. In
particular, we consider a context of length n = 30, feature dimension d = 4, and utilize a discount
factor γ = 0.9. In Section 5, we consider a 3-layer transformer (L = 3), but additional analyses on
the sensitivity to the number of transformer layers (L) and results from a larger scale experiment
with d = 8, n = 60, and |S| = 20 are presented in D.2. We also explore non-autoregressive (i.e.,
"sequential") layer configurations in D.3.

When training our transformer, we utilize an Adam optimizer (Kingma and Ba, 2015) with an
initial learning rate of α = 0.001 and weight decay rate of 1 × 10−6. P0 and Q0 are randomly
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initialized using Xavier initialization with a gain of 0.1. We trained our transformer on k = 4000
different evaluation tasks. For each task, we generated a trajectory of length τ = 347, resulting in
τ − n− 2 = 320 transformer parameter updates.

Since the models in these experiments are small (∼ 10 KB), we did not use any GPU during our
experiments. We trained our transformers on a standard Intel i9-12900-HK CPU, and training each
transformer took ∼ 20 minutes.

For implementation6, we used NumPy (Harris et al., 2020) to process the data and construct Boyan’s
chain, PyTorch (Ansel et al., 2024) to define and train our models, and Matplotlib (Hunter, 2007)
plus SciencePlots (Garrett, 2021) to generate our figures.

D.1.1 TRAINED TRANSFORMER ELEMENT-WISE CONVERGENCE METRICS

To visualize the parameters of the linear transformer trained by Algorithm 1, we report element-wise
metrics. For P0, we report the value of its bottom-right entry, which, as noted in (7), should approach
one if the transformer is learning to implement TD. The other entries of P0 should remain close
to zero. Additionally, we report the average absolute value of the elements of P0, excluding the
bottom-right entry, to check if these elements stay near zero during training.

For Q0, we recall from (7) that if the transformer learned to implement normal batch TD, the upper-
left d × d block of the matrix should converge to some −Id, while the upper-right d × d block
(excluding the last column) should converge to Id. To visualize this, we report the trace of the
upper-left d× d block and the trace of the upper-right d× d block (excluding the last column). The
rest of the elements of Q0 should remain close to 0, and to verify this, we report the average absolute
value of the entries of Q0, excluding the entries that were utilized in computing the traces.

Since, P0 and Q0 are in the same product in (1) we sometimes observe during training that P0

converges to −P TD
0 and Q0 converges to −QTD

0 simultaneously. When visualizing the matrices, we
negate both P0 and Q0 when this occurs.

It’s also worth noting that in Theorem 1 we prove a L-layer transformer parameterized as in (7)
with C0 = Id implements L steps of batch TD exactly with a fixed update rate of one. However,
the transformer trained using Algorithm 1 could learn to perform TD with an arbitrary learning rate
(α in (5)). Therefore, even if the final trained P0 and Q0 differ from their constructions in (7) by
some scaling factor, the resulting algorithm implemented by the trained transformer will still be
implementing TD. In light of this, we rescale P0 and Q0 before visualization. In particular, we divide
P0 and Q0 by the maximum of the absolute values of their entries, respectively, such that they both
stay in the range [−1, 1] after rescaling.

D.1.2 TRAINED TRANSFORMER AND BATCH TD COMPARISON METRICS

To compare the transformers with batch TD we report several metrics following Von Oswald et al.
(2023a); Akyürek et al. (2023). Given a context C ∈ R(2d+1)×n and a query ϕ ∈ Rd, we construct
the prompt as

Z(ϕ,C) .=

[
C

[
ϕ

0d×1

0

]]
.

We will suppress the context C in subscript when it does not confuse. We use Z(s) .
= Z(ϕ(s)) as

shorthand. We use dp to denote the stationary distribution of the MRP with transition function p
and assume the context C is constructed based on trajectories sampled from this MRP. Then, we
can define vθ ∈ R|S|, where vθ(s)

.
= TFL(Z

(s)
0 ; θ) for each s ∈ S. Notably, vθ is then the value

function estimation induced by the transformer parameterized by θ .
= {(Pl, Ql)} given the context C.

In the rest of the appendix, we will use θTF as the learned parameter from Algorithm 1. As a result,
vTF

.
= vθTF denotes the learned value function.

We define θTD
.
=
{
(P TD

l , QTD
l )
}
l=0,...,L−1

with Cl = αI (see (7)) and

vTD(s)
.
= TFL(Z

(s)
0 ; θTD).

6The code will be made publicly available upon publication.
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In light of Theorem 1, vTD is then the value function estimation obtained by running the batch TD
algorithm (8) on the context C for L iterations, using a constant learning rate α.

We would like to compare the two functions vTF and vTD to future examine the behavior of the
learned transformers. However, vTD is not well-defined yet because it still has a free parameter α, the
learning rate. Von Oswald et al. (2023a) resolve a similar issue in the in-context regression setting
via using a line search to find the (empirically) optimal α. Inspired by Von Oswald et al. (2023a), we
also aim to find the empirically optimal α for vTD. We recall that vTD is essentially the transformer
TFL(Z

(s)
0 ; θTD) with only 1 single free parameter α. We then train this transformer with Algorithm 1.

We observe that α quickly converges and use the converged α to complete the definition of vTD. We
are now ready to present different metrics to compare vTF and vTD. We recall that both are dependent
on the context C.

Value Difference (VD). First, for a given context C, we compute the Value Difference (VD) to
measure the difference between the value function approximated by the trained transformer and the
value function learned by batch TD, weighted by the stationary distribution. To this end, we define,

VD(vTF, vTD)
.
= ∥vTF − vTD∥2dp

,

We recall that dp ∈ R|S| is the stationary distribution of the MRP, and the weighted ℓ2 norm is defined
as ∥v∥d

.
=
√∑

s v(s)
2d(s).

Implicit Weight Similarity (IWS). We recall that vTD is a linear function, i.e., vTD(s) = ⟨wL, ϕ(s)⟩
with wL defined in Theorem 1. We refer to this wL as wTD for clarity. The learned value function vTF
is, however, not linear even with a linear transformer. Following Akyürek et al. (2023), we compute
the best linear approximation of vTF. In particular, given a context C, we define

wTF
.
= argmin

w
∥Φw − vTF∥dp

.

Here Φ ∈ R|S|×d is the feature matrix, each of which is ϕ(s)⊤. Such a wTF is referred to as implicit
weight in Akyürek et al. (2023). Following Akyürek et al. (2023), we define

IWS(vTF, vTD)
.
= dcos(wTF, wTD)

to measure the similarity between wTF and wTD. Here dcos(·, ·) computes the cos similarity between
two vectors.

Sensitivity Similarity (SS). Recall that vTF(s) = TFL(Z
(s)
0 ; θTF) and vTD(s) = TFL(Z

(s)
0 ; θTD). In

other words, given a context C, both vTF(s) and vTD(s) are functions of ϕ(s). Following Von Oswald
et al. (2023a), we then measure the sensitivity of vTF(s) and vTD(s) w.r.t. ϕ(s). This similarity is
easily captured by gradients. In particular, we define

SS(vTF, vTD)
.
=
∑

s

dp(s)dcos

(
∇ϕTFL(Z

(ϕ)
0 ; θTF)

∣∣∣∣
ϕ=ϕ(s)

, ∇ϕTFL(Z
(ϕ)
0 ; θTD)

∣∣∣∣
ϕ=ϕ(s)

)
.

Notably, it trivially holds that

wTD = ∇ϕTFL(Z
(ϕ)
0 ; θTD)

∣∣∣∣
ϕ=ϕ(s)

.

We note that the element-wise convergence of learned transformer parameters (e.g., Figure 2a) is
the most definite evidence for the emergence of in-context TD. The three metrics defined in this
section are only auxiliary when linear attention is concerned. That being said, the three metrics are
important when nonlinear attention is concerned.

D.2 AUTOREGRESSIVE LINEAR TRANSFORMERS WITH L = 1, 2, 3, 4 LAYERS

In this section, we present the experimental results for autoregressive linear transformers with different
numbers of layers. In Figure 4, we present the element-wise convergence metrics for autoregressive
transformers with L = 1, 2, 4 layers. The plot with L = 3 is in Figure 2 in the main text. We can see
that for the L = 1 case, P0 and Q0 converge to the construction in Corollary 1, which, as proved,
implements TD(0) in the single layer case. For the L = 2, 4 cases, we see that P0 and Q0 converge to
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(e) Learned P0 and Q0 with L = 4
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(f) Element-wise learning progress of P0 and Q0

Figure 4: Visualization of the learned autoregressive transformers and the learning progress. Av-
eraged across 30 seeds and the shaded region denotes the standard errors. See Appendix D.1.1 for
details about normalization of P0 and Q0 before visualization.
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the construction in Theorem 1. We also observe that as the number of transformer layers L increases,
the learned parameters are more aligned with the construction of P TD

0 and QTD
0 with C0 = I .

We also present the comparison of the learned transformer with batch TD according to the metrics
described in Appendix D.1.2. In Figure 5, we present the value difference, implicit weight similarity,
and sensitivity similarity. In Figures 5a – 5d, we present the results for different transformer layer
numbers L = 1, 2, 3, 4. In Figure 5e, we present the metrics for a 3-layer transformer, but we increase
the feature dimension to d = 8 and also the context length to n = 60.

In all instances, we see a strong similarity between the trained linear transformers and batch TD. We
see that the cosine similarities of the sensitivities are near one, as are the implicit weight similarities.
Additionally, the value difference approaches zero during training. This further demonstrates that the
autoregressive linear transformers trained according to Algorithm 1 learn to implement TD(0).
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(d) L = 4
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(e) L = 3 (d = 8, n = 60)

Figure 5: Value difference (VD), implicit weight similarity (IWS), and sensitivity similarity (SS)
between the learned autoregressive transformers and batch TD with different layers. All curves are
averaged over 30 seeds and the shaded regions are the standard errors.

D.3 SEQUENTIAL TRANSFORMERS WITH L = 2, 3, 4 LAYERS

So far, we have been using linear transformers with one parametric attention layer applied repeatedly
for L steps to implement an L-layer transformer. Another natural architecture in contrast with the
autoregressive transformer is a sequential transformer with L distinct attention layers, where the
embedding passes over each layer exactly once during one pass of forward propagation.

In this section, we repeat the same experiments we conduct on the autoregressive transformer with
sequential transformers with L = 2, 3, 4 as their architectures coincide when L = 1. We compare the
sequential transformers with batch TD(0) and report the three metrics in Figure 6. We observe that
the implicit weight similarity and the sensitivity similarity grow drastically to near 1, and the value
difference drops considerably after a few hundred MRPs for all three layer numbers. It suggests that
sequential transformers trained via Algorithm 1 are functionally close to batch TD.

Figure 7 shows the visualization of the converged {Pl, Ql}l=0,1,2 of a 3-layer sequential linear
transformer and their element-wise convergence. Sequential transformers exhibit very special
patterns in their learned weights. We see that the input layer converges to a pattern very close
to our configuration in Theorem (1). However, the deeper the layer, we observe the more the diagonal
of Ql[1 : d, d+ 1 : 2d] fades. The P matrices, on the other hand, follow our configuration closely,
especially for the final layer. We speculate this pattern emerges because sequential transformers have
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more parametric attention layers and thus can assign a slightly different role to each layer but together
implement batch TD(0) as suggested by the black-box functional comparison in Figure 6.
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(c) L = 4

Figure 6: Value difference (VD), implicit weight similarity (IWS), and sensitivity similarity (SS)
between the learned sequential transformers and batch TD with different layers. All curves are
averaged over 30 seeds, and the shaded regions are the standard errors.
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Figure 7: Visualization of the learned L = 3 sequential transformers and the learning progress.
Averaged across 30 seeds and the shaded region denotes the standard errors. See Appendix D.1.1 for
details about normalization of P0 and Q0 before visualization.

E NONLINEAR ATTENTION

Until now, we have focused on only linear attention. In this section, we empirically investigate
original transformers with the softmax function. Given a matrix Z, we recall that self-attention
computes its embedding as

Attn(Z;P,Q) = PZMsoftmax
(
Z⊤QZ

)
.
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Figure 8: Value difference (VD), implicit weight similarity (IWS), and sensitivity similarity (SS)
between the learned softmax transformers and linear batch TD. All curves are averaged over 30 seeds,
and the shaded regions are the standard errors.

Let Zl ∈ R(2d+1)×(n+1) denote the input to the l-th layer, the output of an L-layer transformer with
parameters {(Pl, Ql)}l=0,...,L−1 is then computed as

Zl+1 = Zl +
1
nAttn(Zl;Pl, Ql) = Zl +

1
nPZMsoftmax

(
Z⊤QZ

)
.

Analogous to the linear transformer, we define

T̃FL

(
Z0; {Pl, Ql}l=0,1...,L−1

)
.
= −ZL[2d+ 1, n+ 1].

As a shorthand, we use T̃FL(Z0) to denote the output of the softmax transformers given prompt Z0.
We use the same training procedure (Algorithm 1) to train the softmax transformers. In particular, we
consider a 3-layer autoregressive softmax transformer.

Notably, the three metrics in Appendix D.1.2 apply to softmax transformers as well. We still compare
the learned softmax transformer with the linear batch TD in (8). In other words, the vTD related
quantities are the same, and we only recompute vTF related quantities in Appendix D.1.2. As shown
in Figure 8a, the value difference remains small, and the implicit weight similarity increases. This
suggests that the learned softmax transformer behaves similarly to linear batch TD. The sensitivity
similarity, however, drops. This is expected. The learned softmax transformer T̃FL is unlikely to
be a linear function w.r.t. to the query while vTD is linear w.r.t. the query. So their gradients w.r.t.
the query are unlikely to match. To further investigate this hypothesis, we additionally consider
evaluation tasks where the true value function is guaranteed to be representable (Algorithm 3) and is
thus a linear function w.r.t. the state feature. This provides more incentives for the learned softmax
transformer to behave like a linear function. As shown in Figure 8b, the sensitivity similarity now
increases.

F EXPERIMENTS WITH CARTPOLE ENVIRONMENT

In this section, we present additional experimental results demonstrating that in-context TD emerges
after large-scale pretraining using Algorithm 1 where dtask is derived from the CartPole environment
(Brockman et al., 2016).

F.1 CARTPOLE EVALUATION TASK GENERATION

Recall that in the main text, as well as Appendix D and E, the transformers are pre-trained with
tasks drawn from dtask based on Boyan’s Chain (See Appendix C). Here, we extend the analysis
by introducing dtask based on the CartPole environment. Figure 9 provides an introduction to the
CartPole environment.

Recall that an evaluation task is defined by the tuple (p0, p, r, ϕ). In the canonical CartPole envi-
ronment, the states are a vector s ∈ R4 where the entries are the current position of the cart, the
velocity of the cart, the angle of the pole, and the angular velocity of the pole. In our experiments, the
initial state distribution p0 and environment transition dynamics p(s′|s, a) are given by the standard
CartPole equations (e.g. see OpenAI CartPole Github). These transition dynamics, which we denote
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Figure 9: The OpenAI Gym CartPole environment (Brockman et al., 2016) is a classic RL control
task where the goal is to balance a pole on a cart by applying forces to move the cart left or right.
The state consists of the cart’s position and velocity and the pole’s angle and angular velocity. The
episode ends if the cart moves out of bounds or the pole falls beyond a threshold angle.

as pCartPole(s
′|s, a), implicitly depend on the physical parameters Ψ

.
= (mcart,mpole, g, lpole, τ, f)

representing the mass of the cart and pole, gravitational constant, length of the pole, frame rate,
and the force magnitude. We abuse the notation of pCartPole(s

′|s, a; Ψ) to highlight the transition
dependency on Ψ. The joint distribution over these parameters, denoted by ∆Ψ, defines the the possi-
ble CartPole environments. In our experiments, we sampled mcart,mpole, lpole ∼ Uniform [0.5, 1.5],
g ∼ Uniform [7, 12], τ ∼ Uniform [0.01, 0.05], f ∼ Uniform [5, 15].

Then, the state transition function p(s′|s) which characterizes an MRP is defined using
pCartPole(s

′|s, a), and a fixed random policy πϵ(a|s) parameterized by ϵ ∼ Uniform [(0, 1)]. Un-
der πϵ(a|s), the probability of moving the cart to the right is ϵ and the probability of moving the cart
to the left is 1− ϵ. This means that p(s′|s) =∑a∈{0,1} p(s

′|s, a)πϵ(a|s) where 0 means going left
and 1 means going right. The environment is extended to an infinite horizon. When the pole falls, or
the cart moves out of bounds, the state is reset by sampling a new initial state from p0.

Rather than using the standard CartPole observations and reward structure of +1 per time step until
failure, we provide a diverse set of reward functions and features by sampling r and ϕ randomly.
In CartPole, the state s is continuous, resulting in an infinite state space S. To address this, we
use tile coding (Sutton and Barto, 2018) with a random projection to generate a feature function
ϕ : S → Rd for s ∈ S . Tile coding with random projection maps s to a feature vector sampled from
Uniform

[
(−1, 1)d

]
. Similarly, for the reward function r : S → R, s is mapped to a reward value,

also sampled from Uniform [−1, 1]. The joint distribution over random features and reward functions
is denoted ∆ϕ,r(d). For each CartPole MRP, we sample from ∆ϕ,r to obtain the feature and reward
functions ϕ and r. This approach, detailed in Algorithm 4, enables the transformer to encounter a
variety of tasks during pre-training.

Algorithm 4: CartPole MRP and Feature Generation
1: Input: feature dimension d, action space A = {0, 1}, joint distribution over CartPole

parameters ∆Ψ, joint distribution over features and rewards ∆ϕ,r

2: Ψ ∼ ∆Ψ // sample CartPole parameter
3: p0 ← Uniform

[
(−0.05, 0.05)4

]
// CartPole initial distribution

4: ϕ, r ← ∆ϕ,r(d) // sample features and rewards
5: ϵ ∼ Uniform [(0, 1)] // sample random policy parameter
6: p(s′|s)←∑

a∈A πϵ(a|s)pCartPole(s
′|s, a; Ψ) // CartPole state transition

7: Output: MRP (p0, p, r) and feature map ϕ

F.2 EXPERIMENTAL RESULTS OF PRE-TRAINING WITH CARTPOLE

In our experiments in Figure 10, we pre-train a 3-layer autoregressive transformer using Algorithm 1,
where the task distribution dtask is generated using CartPole MRPs (see Algorithm 4) with a feature
vector of dimension d = 4. We used a significantly larger context window length n = 250. Despite
the increased complexity of the transition dynamics in the CartPole environment compared to Boyan’s
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chain environment used in Figure 2, our results demonstrate that P0 and Q0 still converge to the
construction in Theorem 1 (up to some noise), which we proved exactly implements TD(0).

It is worth noting that our theoretical results (Theorem 2), which prove that the weights implementing
TD are in the invariant set of the updates in Algorithm 1, do not depend on any specific properties of
the environment p. Thus, it is unsurprising that TD(0) emerges naturally even after pre-training on
environments with complicated dynamics.
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Figure 10: Visualization of the learned transformers and the learning progress after pretraining with
the CartPole environment for 10,000 MRPs. Both (a) and (b) are averaged across 30 seeds and the
shaded regions in (b) denote the standard errors.

G INVESTIGATION OF IN-CONTEXT TD WITH RNN

We have focused primarily on the transformer’s capability to implement TD in context. Before
transformers, the canonical architecture to tackle sequence modelling problems is the recurrent neural
network (RNN) (Elman, 1990; Bengio et al., 2017). Thus, it’s worth investigating the algorithmic
capacity of RNN in implementing TD in its forward pass. In particular, we try to answer the following
two questions in this section:

1. Can RNN implement TD in context?
2. Does in-context TD emerge in RNN via multi-task pre-training?

A canonical deep RNN with L layers is parameterized by
{
W

(l)
ax ,W

(l)
aa , b

(l)
a

}
l=0,...,L−1

. Let m

denote the dimension of the raw input tokens and h denote that of the hidden states, respectively.
Then, we have W (0)

ax ∈ Rh×m, W (l)
ax ∈ Rh×h for l = 1, . . . , L− 1, and W (l)

aa ∈ Rh×h, b(l)a ∈ Rh for
l = 0, . . . , L− 1. Let x(l)t denote the input token and a(l)t denote the hidden state for layer l at time
step t. Unlike transformers that process the whole sequence at once, an RNN processes one token
after another sequentially by updating the hidden states. The hidden state evolves according to

a
(l)
t+1 = f

(
W (l)

ax x
(l)
t +W (l)

aa a
(l)
t + b(l)a

)

where f is an activation function. In addition, we have x(l)t = a
(l−1)
t for all t and l = 1, . . . , L− 1.

In other words, the input to the next depth is the hidden state from the previous depth except for the
first layer. The initial hidden states a(l)0 , l = 0, . . . , L − 1 are selected arbitrarily. Popular options
include zero initialization and random normal initialization.

When we apply RNN to policy evaluation, we are interested in predicting a scalar value at the end,
also known as many-to-one prediction. Suppose the input sequence has n tokens one typically
passes aL−1

n , the final hidden state at the last recurrent layer, through a fully connected output layer
Wo ∈ R1×h, such that

v̂ =Woa
L−1
n .

G.1 THEORETICAL ANALYSIS OF LINEAR RNN

We first investigate Question 1 via a theoretical analysis of RNN in the context of TD. Due to the
intractable difficulty of nonlinear activations present in deep neural network analysis, we resort to
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analyzing a single-layer linear RNN, i.e., L = 1 and f is the identity mapping. Hence, we will drop
the superscript indicating the layer index and f in our notation to simplify the presentation. We
shall also remove the bias term ba because it is a constant independent of the context. Under this
formulation, the hidden state evolves according to

at+1 =Waxxt +Waaat.

If we initialize a0 = 0, we then have

a0 = 0

a1 =Waaa0 +Waxx0 =Waxx0

a2 =Waaa1 +Waxx1 =Waxx1 +WaaWaxx0

a3 =Waaa2 +Waxx2 =Waxx2 +WaaWaxx1 +W 2
aaWaxx0

...

Assuming a sequence of n tokens, the final hidden state an is

an =

n−1∑

t=0

Wn−t−1
aa Waxxt.

Applying a linear output layer Wo ∈ R1×h to the hidden state for value prediction, we then get

v̂ =Woan =

n−1∑

t=0

WoW
n−t−1
aa Waxxt =

n−1∑

t=0

w⊤
t xt, (38)

where wt
.
=
(
WoW

n−t−1
aa Wax

)⊤ ∈ Rh is a vector. (38) demonstrates that the predicted value is
the sum of the inner product between each token and some vector for linear RNN. Recall that each
context token xt for in-context TD is defined as

xt
.
=

[
ϕt
γϕ′t
Rt

]
,

corresponding to column t of the prompt Z. Hence, we can write

v̂ =

n−1∑

t=0

w⊤
t

[
ϕt
γϕ′t
Rt

]
.

Under this representation, it is impossible to construct the TD error, not to mention applying the
semi-gradient term. Therefore, it is safe for us to claim that linear RNN is incapable of implementing
TD in its forward pass. This result is easily extendable to the multi-layer case since it is only
performing linear combinations of the tokens, thus reducible to the format of (38). One important
insight gained by comparing the forward pass of an RNN and a transformer under linear activation
is that one at least needs x⊤t Qxt where Q is a square matrix to have any hope to compute the TD
error, which is necessary for TD. Therefore, we speculate that a deep RNN equipped with a common
nonlinear activation such as tanh and ReLU is also unable to implement TD in context. We will leave
the investigation to Question 2. For now, we can confidently give a negative answer to Question 1
concerning linear RNNs.

G.2 MULTI-TASK TD WITH DEEP RNN

We answer Question 2 via an empirical study with a deep RNN. We employ a 3-layer RNN with a
hidden state dimension of h = 4 and tanh as the activation function and train it via multi-task TD
(Algorithm 1) on 4,000 randomly generated Boyan’s chain MRPs with a feature dimension of d = 4.
Since we cannot apply a mask M like in the transformer to distinguish the query from the context,
we instead append a binary flag to each token for the same purpose. Suppose there are n context
columns, the prompt Z has the form

Z =



ϕ1 ϕ2 . . . ϕn ϕn+1

γϕ′1 γϕ′2 . . . γϕ′n 0
R1 R2 . . . Rn 0
0 0 . . . 0 1


 ∈ R(2d+2)×(n+1).
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The forward pass of the deep RNN processes the tokens sequentially in the prompt to update the
hidden states. The final hidden state of the last layer of the RNN is fed into a fully connected layer
to output a scalar value prediction. Figure 11 shows the learning curve of the RNN throughout the
multi-task TD training. The MSVE decreases for the first 1,000 MRPs and stays low for the remainder
of the training. Thus, some learning occurs during the training of RNN. However, it is unclear whether
it is implementing in-context TD. To clarify, we use the last checkpoint of the model and repeat the
same experiment used to generate Figure 1. We gradually increase the context length and verify if the
MSVE drops as observed in the transformers. We run the experiment on the Loop environment used
to generate Figure 1 and the Boyan’s chain environment used for training for 500 instances each to
produce Figure 12. The MSVE increases with context length in both environments for the trained
RNN, exhibiting a trend opposite to the transformer. Furthermore, the standard errors are much
higher than in Figure 1 despite having more runs. Therefore, the prediction does not improve with
more context data for the RNN, indicating the absence of any in-context policy evaluation algorithms.
Consequently, the answer to Question 2 is again negative.
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Figure 11: RNN MSVE against the number of MRPs in multi-task TD training.
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Figure 12: MSVE vs. context length with the trained RNN. The shaded regions are the standard
errors.

H NUMERICAL VERIFICATION OF PROOFS

We provide numerical verification for our proofs by construction (Theorem 1, Corollary 2, Corollary 3,
and Theorem 3) as a sanity check. In particular, we plot log

∣∣−⟨ϕn, wl⟩ − yn+1
l

∣∣ against the number
of layers l. For example, for Theorem 1, we first randomly generate Z0 and {Cl}. Then y(n+1)

l is
computed by unrolling the transformer layer by layer following (3) while wl is computed iteration by
iteration following (8). We use double-precision floats and run for 30 seeds, each with a new prompt.
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As shown in Figure 13, even after 40 layers/iterations, the difference is still in the order of 10−10. It
is not strictly 0 because of numerical errors. It sometimes increases because of the accumulation of
numerical errors.
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Figure 13: Differences between transformer output and batch TD output. Curves are averaged over
30 random seeds with the (invisible) shaded region showing the standard errors.
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