
A Supplementary Material578

The supplementary materials consist of:579

1. Code of AE2.580

2. Supplementary video with qualitative examples of AE2.581

3. Experimental setup: This includes detailed descriptions of the datasets, the evaluation582

protocol, and complete implementation details.583

4. Further results and visualizations: Due to space constraints in the main paper, we provide584

a more detailed breakdown of the results reported in the main paper, along with more585

qualitative examples.586

A.1 Supplementary Video587

In our supplementary video, we show qualitative examples of one practical application enabled by our588

learned ego-exo view-invariant representations—synchronous playback of egocentric and exocentric589

videos. We randomly select ego-exo video pairs from the test set, and use the frozen encoder �590

to extract frame-wise embeddings. We then match each frame of one video (the reference) to its591

closest counterpart in the other video using nearest neighbor. As demonstrated across all datasets592

with several examples, AE2 effectively aligns two videos depicting the same action, overcoming593

substantial viewpoint and background differences. The supplementary video also includes examples594

of synchronizing two egocentric or two exocentric videos and explores AE2’s failure cases.595

A.2 Experimental Setup596

A.2.1 Datasets597

Since existing video datasets for fine-grained video understanding (e.g., PennAction [82], Fine-598

Gym [65], IKEA ASM [3]) are solely composed of third-person videos, we curate video clips from599

five public datasets: CMU-MMAC [13], H2O [32], EPIC-Kitchens [11], HMDB51 [31] and Penn600

Action [82] and collect a egocentric Tennis Forehand dataset. Our data selection criteria is to find601

videos that depict the same action from distinct egocentric and exocentric viewpoints. Consequently,602

TCN pouring [63] is excluded due to its small scale and significant similarity between the egocentric603

and exocentric views; Assembly101 [62] is not selected since there there are large variations within a604

single atomic action and the egocentric video is monochromatic.605

In all, our dataset compilation from five public data sources, along with our collected egocentric606

tennis videos, results in four distinct ego-exo datasets, each describing specific atomic actions:607

(A) CMU-MMAC [13]. The dataset contains 44 subjects cooking five different recipes (brown-608

ies, pizza, sandwich, salad, and scrambled eggs), captured from one egocentric and four609

exocentric views simultaneously. We use the temporal keystep boundaries provided in [2]610

to extract clips corresponding to the action of breaking eggs from all videos. Among the611

four exocentric viewpoints, we adopt videos from the right-handed view, as this viewpoint612

captures the action being performed most clearly. We randomly split the data into training613

and validation sets across subjects, with 35 subjects (118 videos) for training and 9 subjects614

(30 videos) for validation and test. There is strict synchronization between egocentric and615

exocentric video pairs in this dataset.616

Table 3: Dataset summary.

Dataset # Train # Val # Test Fixed
exo view?

Ego-exo
time-sync?ego exo ego exo ego exo

(A) CMU-MMAC 61 57 5 5 10 10 3 3
(B) H2O 29 48 4 8 7 16 3 7
(C) Pour Liquid 70 67 10 9 19 18 7 7
(D) Tennis Forehand 94 79 25 24 50 50 7 7
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(B) H2O [32]. The dataset features 10 subjects interacting with a milk carton using both hands,617

captured by one egocentric camera and four static exocentric cameras. We utilize the keystep618

annotations provided in [33] to extract clips corresponding to the pouring milk action. All619

four exocentric views are included, as they clearly capture the action. We follow the data620

split in [33], with 7 subjects (77 videos) in the training set and 3 subjects (35 videos) in the621

validation and test set. A portion of this dataset (the first 3 subjects) contains synchronized622

egocentric-exocentric video pairs, while the remaining part does not.623

(C) Pour Liquid. To evaluate our methods on in-the-wild data, we assemble a Pour Liquid624

dataset by extracting clips from one egocentric dataset, EPIC-Kitchens [11] and one exocen-625

tric dataset, HMDB51 [31]. We utilize clips from the “pour water” class in EPIC-Kitchens626

and “pour” category in HMDB51. Following the data split in the original datasets, we obtain627

137 videos for training and 56 videos for validation and test. It is important to note that628

the egocentric and exocentric videos are neither synchronized nor collected in the same629

environment, providing a challenging testbed.630

(D) Tennis Forehand. To include physical activities in our study, we leverage exocentric video631

sequences of the tennis forehand action from Penn Action [82] and collect an egocentric632

dataset featuring the same action performed by 12 subjects using Go Pro HERO8. We adopt633

the data split from [15] for Penn Action, and divide our egocentric tennis forehand dataset634

by subject: 8 for training and 4 for validation and testing. This results in a total of 173 clips635

for training, and 149 clips for validation and testing. The egocentric and exocentric videos,636

gathered from a range of real-world scenarios, are naturally unpaired.637

Table 3 provides a summary of these four datasets. In addition, we recognize that the original638

datasets lack frame-wise labels and provide dense frame-level annotations to enable a comprehensive639

evaluation of the learned representations. See Table 4 for a complete list of all the key events we640

annotate and Fig. 5 for illustrative examples.641

Table 4: Number of actions phases and list of key events for each dataset.

Dataset # phases List of key events

(A) CMU-MMAC 4 hit egg, visible crack on the eggshell; egg contents released into bowl
(B) H2O 3 liquid starts exiting, pouring complete
(C) Pour Liquid 3 liquid starts exiting, pouring complete
(D) Tennis Forehand 2 racket touches ball

A.2.2 Evaluation642

We provide a detailed description of the four downstream tasks below and their corresponding643

evaluation metrics:644

1. Action Phase Classification. We train an SVM classifier on top of the embeddings to645

predict the action phase labels for each frame and report F1 score on test data. Besides the646

regular setting, we investigate (1) few-shot; and (2) cross-view zero-shot settings.647

(1) Few-shot. We assume that only a limited number of training videos have annotations648

and can be used for training the SVM classifier.649

(2) Cross-view zero-shot. We assume that per-frame labels of training data are only650

available on one view for training the SVM classifier, and report the test performance651

on the other view. We use the terms “exo2ego” to describe the case where we use652

exocentric data for training the SVM classifier and test its performance on egocentric653

data, while “ego2exo” represents the reverse case.654

2. Phase Progression. We train a linear regressor on the frozen embeddings to predict the655

phase progression values, defined as the difference in time-stamps between any given frame656

and each key event, normalized by the number of frames in that video [15]. Average R-657

square measure on test data is reported. This metric evaluates how well the progress of an658

action is captured by the embeddings, with the maximum value being 1.659

3. Frame Retrieval. We report the mean average precision (mAP)@K (K=5,10 ,15). For each660

query, average precision is computed by determining how many frames among the retrieved661
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Figure 5: Example labels for all datasets. Key events are displayed in boxes below sequences, with
the phase label assigned to each frame between two key events.

K frames have the same action phase labels as the query frame, divided by K. Furthermore,662

to evaluate view-invariance, we propose the cross-view frame retrieval task (i.e., ego2exo663

and exo2ego frame retrieval). For each query in one view, the goal is to retrieve K frames664

from another view. No additional training is required for this task.665

4. Kendall’s Tau. This metric is calculated for every pair of test videos by sampling two666

frames in the first video and retrieving the corresponding nearest frames in the second video,667

then checking whether their orders are shuffled. It measures how well-aligned two sequences668

are in time. No additional training or frame-wise labels are necessary for this evaluation.669

It is important to note that (1) due to label imbalance in these datasets, we opt for using the F1 score670

instead of accuracy for action phase classification to better account for the imbalance and provide a671

more meaningful performance evaluation. (2) Phase progression assumes a high level of consistency672

in actions, with noisy frames diminishing the performance greatly. Due to the challenging nature of673

Pour Liquid data, we observe a negative progression value for all approaches. Thus, we augment the674

resulting embeddings with a temporal dimension, as 0.001 times the time segment as the input so675

that the regression model can distinguish repetitive (or very similar) frames that differ in time. We676

report modified progression value for all baselines and our approach on this dataset. (3) Kendall’s677

Tau assumes that there are no repetitive frames in a video. Since we adopt in-the-wild videos where678

strict monoticity is not guaranteed, this metric may not faithfully reflect the quality of representations.679

Nonetheless, we report them for completeness.680

3



Table 5: Hyperparameters summary. ‘Lr’ stands for learning rate, and ‘Wd’ denotes weight decay.

Datasets Optimizer Transformer Encoder Regularization
Lr Wd Hidden Dim. # Layers # Frames # Pos. Frames Ratio �

(A) CMU-MMAC 5e-5 1e-5 256 1 32 32 1
(B) H2O 1e-4 1e-5 256 1 32 8 2
(C) Pour Liquid 5e-5 1e-5 128 3 32 16 2
(D) Tennis Forehand 5e-5 1e-5 128 1 20 10 4

Table 6: Results of few-shot action phase classification (F1 score) and frame retrieval (mAP@5,10,15).

Dataset Method Few-shot Cls. Frame Retrieval
10% 50% 100% mAP@5 mAP@10 mAP@15

(A)

Random Features 19.18 19.18 19.18 48.26 47.13 45.75
ImageNet Features 46.15 48.80 50.24 49.98 50.49 50.08
ActorObserverNet [66] 31.40 35.63 36.14 50.92 50.47 49.72
single-view TCN [63] 52.30 54.90 56.90 52.82 53.42 53.60
multi-view TCN [63] 56.88 59.25 59.91 59.11 58.83 58.44
multi-view TCN (unpaired) [63] 56.13 56.65 56.79 58.18 57.78 57.21
CARL [10] 39.18 41.92 43.43 47.14 46.04 44.99
TCC [15] 57.54 59.18 59.84 59.33 58.75 57.99
GTA [22] 56.89 56.77 56.86 62.79 61.55 60.38
AE2 (ours) 63.95 64.86 66.23 66.86 65.85 64.73

(B)

Random Features 36.84 36.84 36.84 52.94 52.48 51.59
ImageNet Features 39.29 40.83 41.59 53.32 54.09 54.06
single-view TCN [63] 43.60 46.83 47.39 56.98 57.00 56.46
CARL [10] 48.73 48.78 48.79 55.59 55.01 54.23
TCC [15] 78.69 77.97 77.91 81.22 80.97 80.46
GTA [22] 79.82 80.96 81.11 80.65 80.12 79.68
AE2 (ours) 85.17 85.12 85.17 85.25 84.90 84.55

(C)

Random Features 45.26 45.26 45.26 49.69 49.83 49.18
ImageNet Features 55.53 54.43 53.13 50.52 51.49 51.89
single-view TCN [63] 54.62 55.08 54.02 48.50 48.83 49.03
CARL [10] 51.68 55.67 56.98 55.03 55.29 54.93
TCC [15] 52.37 51.70 52.53 62.93 62.33 61.44
GTA [22] 55.91 56.87 56.92 62.83 62.79 62.12
AE2 (ours) 65.88 66.53 66.56 66.55 65.54 64.66

(D)

Random Features 31.54 30.31 30.31 69.57 66.47 64.34
ImageNet Features 65.48 68.03 69.15 78.11 76.96 75.84
single-view TCN [63] 65.78 69.19 68.87 74.05 73.76 73.10
CARL [10] 58.89 59.38 59.69 72.94 69.43 67.14
TCC [15] 67.71 77.07 78.41 82.78 80.24 78.59
GTA [22] 80.31 83.04 83.63 86.59 85.20 84.33
AE2 (ours) 85.24 85.72 85.87 87.94 86.83 86.05

A.2.3 Implementation681

For all video sequences, frames are resized to 224 × 224. During training, we randomly extract 32682

frames from each video to construct a video sequence. We train the models for a total number of683

300 epochs with a batch size of 4, using the Adam optimizer. The model checkpoint demonstrating684

the best performance on validation data is selected, and its performance on test data is reported. In685

terms of the encoder network, global features are taken from the output of Conv4c layer in �base.686

Following [15], we stack the features of any given frame and its context frames along the dimension687

of time, followed by 3D convolutions for aggregating temporal information and 3D max pooling. In688

all experiments, the number and stride of context frames are set as 1 and 15, respectively. For local689

features, we take output of the Conv1 layer in �base and apply 3D max pooling to aggregate temporal690

information from the given frame and its context frame. The features are then fed as input of ROI691

Align.692
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Table 7: Results of cross-view frame retrieval (mAP@5,10,15).

Dataset Method Ego2exo Frame Retrieval Exo2ego Frame Retrieval
mAP@5 mAP@10 mAP@15 mAP@5 mAP@10 mAP@15

(A)

Random Features 42.51 41.74 40.51 38.08 38.19 37.10
ImageNet Features 33.32 33.09 32.78 38.99 37.80 36.71
ActorObserverNet [66] 43.57 42.70 41.56 42.00 41.29 40.48
single-view TCN [63] 31.12 32.63 33.73 34.67 34.91 35.31
multi-view TCN [63] 46.38 47.04 46.96 52.50 52.68 52.43
multi-view TCN (unpaired) [63] 55.34 54.64 53.75 58.79 57.87 57.07
CARL [10] 37.89 37.38 36.57 40.37 39.94 39.38
TCC [15] 62.11 61.11 60.33 62.39 62.03 61.25
GTA [22] 57.11 56.25 55.10 54.47 53.93 53.22
AE2 (ours) 65.70 64.59 63.76 62.48 62.15 61.80

(B)

Random Features 51.46 50.56 48.93 52.78 51.98 50.82
ImageNet Features 25.72 27.31 28.57 41.50 43.21 43.06
single-view TCN [63] 47.00 46.48 45.42 47.94 47.20 46.59
CARL [10] 54.35 52.99 51.99 51.14 51.51 51.00
TCC [15] 75.54 75.30 75.02 80.44 80.27 80.18
GTA [22] 72.55 72.78 72.96 75.16 75.40 75.48
AE2 (ours) 78.21 78.48 78.78 83.88 83.41 83.05

(C)

Random Features 55.78 55.44 54.77 56.31 55.75 54.56
ImageNet Features 51.44 52.17 52.38 30.18 30.44 30.40
single-view TCN [63] 53.60 55.28 55.46 29.16 31.15 31.95
CARL [10] 59.59 59.37 59.19 34.73 36.80 38.10
TCC [15] 55.98 56.08 56.13 58.11 57.89 57.15
GTA [22] 57.03 58.52 59.00 51.71 53.32 53.54
AE2 (ours) 66.23 65.79 65.00 57.42 57.35 57.03

(D)

Random Features 61.24 58.98 56.94 63.42 59.87 57.57
ImageNet Features 69.34 66.90 64.95 61.61 60.31 58.55
single-view TCN [63] 54.12 55.08 55.05 56.70 56.65 55.84
CARL [10] 52.18 54.83 55.39 65.94 63.19 60.83
TCC [15] 57.87 55.84 53.81 48.62 47.27 46.11
GTA [22] 78.93 78.00 77.01 79.95 79.14 78.52
AE2 (ours) 82.58 81.46 80.75 82.82 82.07 81.69

During evaluation, we freeze the encoder � and use it to extract 128-dimensional embeddings693

for each frame. These representations are then assessed across a variety of downstream tasks (Sec. 4).694

Detailed hyperparameters specific to each dataset are provided in Table 5. Noteworthy adjustments695

include: (1) In the case of Tennis Forehand, we utilize a single object proposal, as the active object is696

only the tennis racket (the tennis ball is too small to be detected reliably). Furthermore, given the697

shorter video lengths, we sample 20 frames from each video as opposed to the usual 32. (2) For698

datasets featuring non-monotonic actions (i.e., H2O and Pour Liquid), we construct the negative699

sequence by randomly reversing either the first or the last half of the sequence, rather than the whole700

sequence. This is due to the cyclic nature of the pouring action present in some videos within these701

datasets. All experiments are conducted using PyTorch [52] on 2 Nvidia V100 GPUs.702

A.3 Further Results and Visualizations703

Results Supplementing Table 1 in the main paper, Tables 6 and 7 present comprehensive results704

of AE2 and baseline models on few-shot action phase classification and frame retrieval tasks. For705

few-shot classification, we train the SVM classifier with 10% (or 50%) of the training data, averaging706

results over 10 runs. AE2 demonstrates superior performance in learning fine-grained, view-invariant707

ego-exo features when compared with ego-exo [66, 63], frame-wise contrastive learning [10], and708

alignment-based [15, 22] approaches.709

On CMU-MMAC, AE2 greatly outperforms the multi-view TCN [63], which utilizes perfect ego-exo710

synchronization as a supervision signal. We hypothesize that the strict supervision requirement of711

TCN might be limiting, as it can not utilize as many ego-exo pairs as AE2 due to its reliance on712
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Figure 6: Few-shot action phase classification results. AE2 achieves superior performance across
a wide range of labeled training videos, particularly under the most challenging conditions where
less than 10 videos are labeled. Results are averaged over 50 runs, and confidence bars represent one
standard deviation.

Table 8: Ablation Study of AE2.

Dataset Method Classification (F1 score) Frame Retrieval (mAP@10) Phase Kendall’s
regular ego2exo exo2ego regular ego2exo exo2ego Progression Tau

Base DTW 58.53 57.78 54.23 58.36 55.36 58.95 0.1920 0.5641
(A) + object 62.86 60.88 58.52 62.66 61.26 60.69 0.4235 0.5484

+ object + contrast 66.23 57.41 71.72 65.85 64.59 62.15 0.5109 0.6316

Base DTW 82.91 81.82 81.83 81.49 74.63 80.21 0.7525 0.8199
(B) + object 84.04 84.20 84.23 83.03 81.42 81.57 0.7646 0.8886

+ object + contrast 85.17 84.73 82.77 84.90 78.48 83.41 0.7634 0.9062

Base DTW 59.66 55.48 59.49 52.57 54.12 52.23 0.0553 0.0609
(C) + object 63.28 57.60 62.42 63.40 67.15 63.05 0.2231 0.1339

+ object + contrast 66.56 57.15 65.60 65.54 65.79 57.35 0.1380 0.0934

Base DTW 79.56 81.38 72.54 82.65 75.36 76.74 0.4022 0.4312
(D) + object 84.14 85.36 83.32 88.22 79.07 82.61 0.5431 0.6477

+ object + contrast 85.87 84.71 85.68 86.83 81.46 82.07 0.5060 0.6171

ego-exo synchronization. In contrast, AE2 capitalizes on a broader set of unpaired ego-exo data.713

Even when we modify multi-view TCN to consider all potential ego-exo pairs as synchronously714

perfect (termed as multi-view TCN (unpaired) in the tables), it does not outperform its regular version,715

indicating a lack of robustness towards non-synchronized ego-exo pairs. Consequently, it appears716

that multi-view TCN is ill-equipped to learn desired view-invariant representations from unpaired,717

real-world ego-exo videos.718

Few-shot Learning Besides the few-shot results in Table 6, we vary the number of labeled training719

videos, ranging from extremely sparse (a single labeled video) to the case where all training videos720

are labeled. Note that each labeled video equates to multiple labeled frames. AE2 is compared with721

top-performing baselines, TCC [15] and GTA [22], across all four datasets in Fig. 6. The results are722

averaged over 50 runs and include a +- one standard deviation error bar. As shown, AE2 excels in723

low-label scenarios. For instance, on H2O, a single labeled video yields an action phase classification724

F1 score over 80%. This suggests that AE2 effectively aligns representations across all training725

videos, enabling a robust SVM classifier for the downstream task, even with minimal labeling.726

Ablation Table 8 presents an ablation of AE2 on all four datasets, which is a comprehensive version727

of Table 2 in the main paper. From the results, we can see that object-centric representations are728

instrumental in bridging the ego-exo gap, leading to substantial performance improvements. For729

instance, frame retrieval mAP@10 improves by +10.83% on Pour Liquid and +5.57% on Tennis730

Forehand. Furthermore, incorporating contrastive regularization provides additional performance731

boosts for several downstream tasks such as regular action phase classification. These results732

demonstrate the integral contributions of both components of AE2 to achieve optimal performance.733

Visualizations In addition to the cross-view frame retrieval results for Pour Liquid and Tennis734

Forehand presented in the main paper (Fig. 4), we showcase results for the other two datasets735

(i.e., CMU-MMAC and H2O) in Fig. 7. For any given query frame from one view, the retrieved736
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Query (ego) Retrieved Nearest Neighbors (exo)

Pre-pour: milk carton at a distance from the cup, upright 

Imminent pour: milk carton closer to the cup, tilted

Active pour: milk carton touching the cup, nearly vertical

Query (exo) Retrieved Nearest Neighbors (ego)

Pre-crack: egg tapped on bowl's edge

Mid-crack: preparing to open, egg remains whole

Post-crack: eggshell cracked, contents released

Figure 7: Cross-view frame retrieval results on H2O (rows 1-3) and CMU-MMAC (rows 4-6). AE2
leads to representations that encapsulate the fine-grained state of an action and are invariant to the
ego-exo viewpoints.

nearest neighbors closely match the action stage of the query, regardless of substantial differences in737

viewpoints. These results underline AE2’s efficacy in learning fine-grained action representations738

that transcend ego-exo viewpoint differences.739

7



References340

[1] Shervin Ardeshir and Ali Borji. An exocentric look at egocentric actions and vice versa. Computer Vision341

and Image Understanding, 171:61–68, 2018.342

[2] Siddhant Bansal, Chetan Arora, and CV Jawahar. My view is the best view: Procedure learning from343

egocentric videos. In Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October344

23–27, 2022, Proceedings, Part XIII, pages 657–675. Springer, 2022.345

[3] Yizhak Ben-Shabat, Xin Yu, Fatemeh Saleh, Dylan Campbell, Cristian Rodriguez-Opazo, Hongdong Li,346

and Stephen Gould. The ikea asm dataset: Understanding people assembling furniture through actions,347

objects and pose. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision,348

pages 847–859, 2021.349

[4] Donald J Berndt and James Clifford. Using dynamic time warping to find patterns in time series. In KDD350

workshop, volume 10, pages 359–370. Seattle, WA, USA:, 1994.351

[5] Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is space-time attention all you need for video352

understanding? In ICML, volume 2, page 4, 2021.353

[6] Kaidi Cao, Jingwei Ji, Zhangjie Cao, Chien-Yi Chang, and Juan Carlos Niebles. Few-shot video classifica-354

tion via temporal alignment. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern355

Recognition, pages 10618–10627, 2020.356

[7] Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the kinetics dataset.357

In proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 6299–6308,358

2017.359

[8] Chien-Yi Chang, De-An Huang, Yanan Sui, Li Fei-Fei, and Juan Carlos Niebles. D3tw: Discriminative360

differentiable dynamic time warping for weakly supervised action alignment and segmentation. In361

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3546–3555,362

2019.363

[9] Chao-Yeh Chen and Kristen Grauman. Inferring unseen views of people. In Proceedings of the IEEE364

conference on computer vision and pattern recognition, pages 2003–2010, 2014.365

[10] Minghao Chen, Fangyun Wei, Chong Li, and Deng Cai. Frame-wise action representations for long videos366

via sequence contrastive learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and367

Pattern Recognition, pages 13801–13810, 2022.368

[11] Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Sanja Fidler, Antonino Furnari, Evangelos369

Kazakos, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, et al. Scaling egocentric vision:370

The epic-kitchens dataset. In Proceedings of the European Conference on Computer Vision (ECCV), pages371

720–736, 2018.372

[12] Ahmad Darkhalil, Dandan Shan, Bin Zhu, Jian Ma, Amlan Kar, Richard Higgins, Sanja Fidler, David373

Fouhey, and Dima Damen. Epic-kitchens visor benchmark: Video segmentations and object relations.374

Advances in Neural Information Processing Systems, 35:13745–13758, 2022.375

[13] Fernando De la Torre, Jessica Hodgins, Adam Bargteil, Xavier Martin, Justin Macey, Alex Collado, and376

Pep Beltran. Guide to the carnegie mellon university multimodal activity (cmu-mmac) database.377

[14] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical378

image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255.379

Ieee, 2009.380

[15] Debidatta Dwibedi, Yusuf Aytar, Jonathan Tompson, Pierre Sermanet, and Andrew Zisserman. Temporal381

cycle-consistency learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern382

recognition, pages 1801–1810, 2019.383

[16] Bernard Ghanem Fabian Caba Heilbron, Victor Escorcia and Juan Carlos Niebles. Activitynet: A large-384

scale video benchmark for human activity understanding. In Proceedings of the IEEE Conference on385

Computer Vision and Pattern Recognition, pages 961–970, 2015.386

[17] Ali Farhadi and Mostafa Kamali Tabrizi. Learning to recognize activities from the wrong view point. In387

Computer Vision–ECCV 2008: 10th European Conference on Computer Vision, Marseille, France, October388

12-18, 2008, Proceedings, Part I 10, pages 154–166. Springer, 2008.389

8



[18] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. Slowfast networks for video390

recognition. In Proceedings of the IEEE/CVF international conference on computer vision, pages 6202–391

6211, 2019.392

[19] Basura Fernando, Hakan Bilen, Efstratios Gavves, and Stephen Gould. Self-supervised video representation393

learning with odd-one-out networks. 2017.394

[20] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzynska, Susanne Westphal,395

Heuna Kim, Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz Mueller-Freitag, et al. The" something396

something" video database for learning and evaluating visual common sense. In Proceedings of the IEEE397

international conference on computer vision, pages 5842–5850, 2017.398

[21] Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Rohit Girdhar,399

Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, et al. Ego4d: Around the world in 3,000 hours400

of egocentric video. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern401

Recognition, pages 18995–19012, 2022.402

[22] Isma Hadji, Konstantinos G Derpanis, and Allan D Jepson. Representation learning via global temporal403

alignment and cycle-consistency. In Proceedings of the IEEE/CVF Conference on Computer Vision and404

Pattern Recognition, pages 11068–11077, 2021.405

[23] Sanjay Haresh, Sateesh Kumar, Huseyin Coskun, Shahram N Syed, Andrey Konin, Zeeshan Zia, and406

Quoc-Huy Tran. Learning by aligning videos in time. In Proceedings of the IEEE/CVF Conference on407

Computer Vision and Pattern Recognition, pages 5548–5558, 2021.408

[24] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of the IEEE409

international conference on computer vision, pages 2961–2969, 2017.410

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.411

In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.412

[26] Aapo Hyvarinen and Hiroshi Morioka. Unsupervised feature extraction by time-contrastive learning and413

nonlinear ica. In NeurIPS, 2016.414

[27] Alexandros Iosifidis, Anastasios Tefas, and Ioannis Pitas. View-invariant action recognition based on415

artificial neural networks. IEEE transactions on neural networks and learning systems, 23(3):412–424,416

2012.417

[28] D. Jayaraman and K. Grauman. Slow and steady feature analysis: Higher order temporal coherence in418

video. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.419

[29] Bruno Korbar, Du Tran, and Lorenzo Torresani. Co-training of audio and video representations from420

self-supervised temporal synchronization. In NeurIPS, 2018.421

[30] Hilde Kuehne, Ali Arslan, and Thomas Serre. The language of actions: Recovering the syntax and422

semantics of goal-directed human activities. In Proceedings of the IEEE conference on computer vision423

and pattern recognition, pages 780–787, 2014.424

[31] Hildegard Kuehne, Hueihan Jhuang, Estíbaliz Garrote, Tomaso Poggio, and Thomas Serre. Hmdb: a large425

video database for human motion recognition. In 2011 International conference on computer vision, pages426

2556–2563. IEEE, 2011.427

[32] Taein Kwon, Bugra Tekin, Jan Stühmer, Federica Bogo, and Marc Pollefeys. H2o: Two hands manipulating428

objects for first person interaction recognition. In Proceedings of the IEEE/CVF International Conference429

on Computer Vision, pages 10138–10148, 2021.430

[33] Taein Kwon, Bugra Tekin, Siyu Tang, and Marc Pollefeys. Context-aware sequence alignment using 4d431

skeletal augmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern432

Recognition, pages 8172–8182, 2022.433

[34] Mandy Lange, Dietlind Zühlke, Olaf Holz, Thomas Villmann, and Saxonia-Germany Mittweida. Appli-434

cations of lp-norms and their smooth approximations for gradient based learning vector quantization. In435

ESANN, pages 271–276. Citeseer, 2014.436

[35] Jun Li and Sinisa Todorovic. Action shuffle alternating learning for unsupervised action segmentation.437

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12628–438

12636, 2021.439

9



[36] Yanghao Li, Tushar Nagarajan, Bo Xiong, and Kristen Grauman. Ego-exo: Transferring visual representa-440

tions from third-person to first-person videos. In Proceedings of the IEEE/CVF Conference on Computer441

Vision and Pattern Recognition, pages 6943–6953, 2021.442

[37] Kevin Qinghong Lin, Jinpeng Wang, Mattia Soldan, Michael Wray, Rui Yan, Eric Z XU, Difei Gao,443

Rong-Cheng Tu, Wenzhe Zhao, Weijie Kong, et al. Egocentric video-language pretraining. Advances in444

Neural Information Processing Systems, 35:7575–7586, 2022.445

[38] Xudong Lin, Fabio Petroni, Gedas Bertasius, Marcus Rohrbach, Shih-Fu Chang, and Lorenzo Torresani.446

Learning to recognize procedural activities with distant supervision. In Proceedings of the IEEE/CVF447

Conference on Computer Vision and Pattern Recognition, pages 13853–13863, 2022.448

[39] Jingen Liu, Mubarak Shah, Benjamin Kuipers, and Silvio Savarese. Cross-view action recognition via449

view knowledge transfer. In CVPR 2011, pages 3209–3216. IEEE, 2011.450

[40] Shaowei Liu, Subarna Tripathi, Somdeb Majumdar, and Xiaolong Wang. Joint hand motion and interaction451

hotspots prediction from egocentric videos. In Proceedings of the IEEE/CVF Conference on Computer452

Vision and Pattern Recognition, pages 3282–3292, 2022.453

[41] Weizhe Liu, Bugra Tekin, Huseyin Coskun, Vibhav Vineet, Pascal Fua, and Marc Pollefeys. Learning to454

align sequential actions in the wild. In Proceedings of the IEEE/CVF Conference on Computer Vision and455

Pattern Recognition, pages 2181–2191, 2022.456

[42] YuXuan Liu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Imitation from observation: Learning457

to imitate behaviors from raw video via context translation. In 2018 IEEE International Conference on458

Robotics and Automation (ICRA), pages 1118–1125. IEEE, 2018.459

[43] Jian Ma and Dima Damen. Hand-object interaction reasoning. In 2022 18th IEEE International Conference460

on Advanced Video and Signal Based Surveillance (AVSS), pages 1–8. IEEE, 2022.461

[44] Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, and Amy Zhang.462

Towards universal visual reward and representation via value-implicit pre-training. In ICLR, 2023.463

[45] Behrooz Mahasseni and Sinisa Todorovic. Latent multitask learning for view-invariant action recognition.464

In Proceedings of the IEEE International Conference on Computer Vision, pages 3128–3135, 2013.465

[46] Antoine Miech, Jean-Baptiste Alayrac, Lucas Smaira, Ivan Laptev, Josef Sivic, and Andrew Zisserman.466

End-to-end learning of visual representations from uncurated instructional videos. In Proceedings of the467

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9879–9889, 2020.468

[47] Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac, Makarand Tapaswi, Ivan Laptev, and Josef Sivic.469

Howto100m: Learning a text-video embedding by watching hundred million narrated video clips. In470

Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 2630–2640, 2019.471

[48] Ishan Misra, C Lawrence Zitnick, and Martial Hebert. Shuffle and learn: unsupervised learning using472

temporal order verification. In ECCV, 2016.473

[49] Pedro Morgado, Yi Li, and Nuno Nvasconcelos. Learning representations from audio-visual spatial474

alignment. In NeurIPS, 2020.475

[50] Tushar Nagarajan and Kristen Grauman. Shaping embodied agent behavior with activity-context priors476

from egocentric video. Advances in Neural Information Processing Systems, 34:29794–29805, 2021.477

[51] Andrew Owens and Alexei A Efros. Audio-visual scene analysis with self-supervised multisensory features.478

In ECCV, 2018.479

[52] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,480

Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep481

learning library. Advances in neural information processing systems, 32, 2019.482

[53] AJ Piergiovanni and Michael S Ryoo. Recognizing actions in videos from unseen viewpoints. In483

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4124–4132,484

2021.485

[54] Senthil Purushwalkam, Tian Ye, Saurabh Gupta, and Abhinav Gupta. Aligning videos in space and486

time. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,487

Proceedings, Part XXVI 16, pages 262–278. Springer, 2020.488

10



[55] Hossein Rahmani and Ajmal Mian. Learning a non-linear knowledge transfer model for cross-view action489

recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages490

2458–2466, 2015.491

[56] Hossein Rahmani and Ajmal Mian. 3d action recognition from novel viewpoints. In Proceedings of the492

IEEE Conference on Computer Vision and Pattern Recognition, pages 1506–1515, 2016.493

[57] Cen Rao and Mubarak Shah. View-invariance in action recognition. In Proceedings of the 2001 IEEE494

Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, volume 2, pages495

II–II. IEEE, 2001.496

[58] Cen Rao, Alper Yilmaz, and Mubarak Shah. View-invariant representation and recognition of actions.497

International Journal of Computer Vision, 50(2):203, 2002.498

[59] Marcus Rohrbach, Anna Rohrbach, Michaela Regneri, Sikandar Amin, Mykhaylo Andriluka, Manfred499

Pinkal, and Bernt Schiele. Recognizing fine-grained and composite activities using hand-centric features500

and script data. International Journal of Computer Vision, 119:346–373, 2016.501

[60] Hiroaki Sakoe and Seibi Chiba. Dynamic programming algorithm optimization for spoken word recognition.502

IEEE transactions on acoustics, speech, and signal processing, 26(1):43–49, 1978.503

[61] Madeline C. Schiappa, Yogesh S. Rawat, and Mubarak Shah. Self-supervised learning for videos: A survey.504

arXiv:2207.00419, 2022.505

[62] Fadime Sener, Dibyadip Chatterjee, Daniel Shelepov, Kun He, Dipika Singhania, Robert Wang, and Angela506

Yao. Assembly101: A large-scale multi-view video dataset for understanding procedural activities. In507

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 21096–508

21106, 2022.509

[63] Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, Stefan Schaal, Sergey Levine,510

and Google Brain. Time-contrastive networks: Self-supervised learning from video. In 2018 IEEE511

international conference on robotics and automation (ICRA), pages 1134–1141. IEEE, 2018.512

[64] Dandan Shan, Jiaqi Geng, Michelle Shu, and David F Fouhey. Understanding human hands in contact at513

internet scale. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,514

pages 9869–9878, 2020.515

[65] Dian Shao, Yue Zhao, Bo Dai, and Dahua Lin. Finegym: A hierarchical video dataset for fine-grained action516

understanding. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,517

pages 2616–2625, 2020.518

[66] Gunnar A Sigurdsson, Abhinav Gupta, Cordelia Schmid, Ali Farhadi, and Karteek Alahari. Actor and519

observer: Joint modeling of first and third-person videos. In proceedings of the IEEE conference on520

computer vision and pattern recognition, pages 7396–7404, 2018.521

[67] Gunnar A Sigurdsson, Abhinav Gupta, Cordelia Schmid, Ali Farhadi, and Karteek Alahari. Charades-ego:522

A large-scale dataset of paired third and first person videos. arXiv preprint arXiv:1804.09626, 2018.523

[68] Gunnar A Sigurdsson, Gül Varol, Xiaolong Wang, Ali Farhadi, Ivan Laptev, and Abhinav Gupta. Hollywood524

in homes: Crowdsourcing data collection for activity understanding. In Computer Vision–ECCV 2016:525

14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14,526

pages 510–526. Springer, 2016.527

[69] Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks for action recognition in528

videos. Advances in neural information processing systems, 27, 2014.529

[70] Bilge Soran, Ali Farhadi, and Linda Shapiro. Action recognition in the presence of one egocentric and530

multiple static cameras. In Computer Vision–ACCV 2014: 12th Asian Conference on Computer Vision,531

Singapore, Singapore, November 1-5, 2014, Revised Selected Papers, Part V 12, pages 178–193. Springer,532

2015.533

[71] Jennifer J Sun, Jiaping Zhao, Liang-Chieh Chen, Florian Schroff, Hartwig Adam, and Ting Liu. View-534

invariant probabilistic embedding for human pose. In Computer Vision–ECCV 2020: 16th European535

Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part V 16, pages 53–70. Springer, 2020.536

[72] Reuben Tan, Bryan Plummer, Kate Saenko, Hailin Jin, and Bryan Russell. Look at what i’m doing:537

Self-supervised spatial grounding of narrations in instructional videos. Advances in Neural Information538

Processing Systems, 34:14476–14487, 2021.539

11



[73] Yansong Tang, Dajun Ding, Yongming Rao, Yu Zheng, Danyang Zhang, Lili Zhao, Jiwen Lu, and Jie540

Zhou. Coin: A large-scale dataset for comprehensive instructional video analysis. In Proceedings of the541

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1207–1216, 2019.542

[74] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri. Learning spatiotemporal543

features with 3d convolutional networks. In Proceedings of the IEEE international conference on computer544

vision, pages 4489–4497, 2015.545

[75] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz546

Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems,547

30, 2017.548

[76] Daniel Weinland, Mustafa Özuysal, and Pascal Fua. Making action recognition robust to occlusions and549

viewpoint changes. In European Conference on Computer Vision, 2010.550

[77] Daniel Weinland, Remi Ronfard, and Edmond Boyer. Free viewpoint action recognition using motion551

history volumes. Computer Vision and Image Understanding (CVIU), 2006.552

[78] Xinxiao Wu, Han Wang, Cuiwei Liu, and Yunde Jia. Cross-view action recognition over heterogeneous553

feature spaces. In Proceedings of the IEEE International Conference on Computer Vision, pages 609–616,554

2013.555

[79] Yuncong Yang, Jiawei Ma, Shiyuan Huang, Long Chen, Xudong Lin, Guangxing Han, and Shih-Fu Chang.556

Tempclr: Temporal alignment representation with contrastive learning. arXiv preprint arXiv:2212.13738,557

2022.558

[80] Huangyue Yu, Minjie Cai, Yunfei Liu, and Feng Lu. What i see is what you see: Joint attention learning559

for first and third person video co-analysis. ACM MM, 2019.560

[81] Pengfei Zhang, Cuiling Lan, Junliang Xing, Wenjun Zeng, Jianru Xue, and Nanning Zheng. View561

adaptive recurrent neural networks for high performance human action recognition from skeleton data. In562

Proceedings of the IEEE international conference on computer vision, pages 2117–2126, 2017.563

[82] Weiyu Zhang, Menglong Zhu, and Konstantinos G Derpanis. From actemes to action: A strongly-564

supervised representation for detailed action understanding. In Proceedings of the IEEE international565

conference on computer vision, pages 2248–2255, 2013.566

[83] Zhong Zhang, Chunheng Wang, Baihua Xiao, Wen Zhou, Shuang Liu, and Cunzhao Shi. Cross-view567

action recognition via a continuous virtual path. In Proceedings of the IEEE Conference on Computer568

Vision and Pattern Recognition, pages 2690–2697, 2013.569

[84] Honglu Zhou, Roberto Martín-Martín, Mubbasir Kapadia, Silvio Savarese, and Juan Carlos Niebles.570

Procedure-aware pretraining for instructional video understanding. arXiv preprint arXiv:2303.18230,571

2023.572

[85] Yifeng Zhu, Abhishek Joshi, Peter Stone, and Yuke Zhu. Viola: Imitation learning for vision-based573

manipulation with object proposal priors. arXiv preprint arXiv:2210.11339, 2022.574

[86] Dimitri Zhukov, Jean-Baptiste Alayrac, Ramazan Gokberk Cinbis, David Fouhey, Ivan Laptev, and Josef575

Sivic. Cross-task weakly supervised learning from instructional videos. In Proceedings of the IEEE/CVF576

Conference on Computer Vision and Pattern Recognition, pages 3537–3545, 2019.577

12


