
AI4X 2025, Singapore, 8–11 July 2025

Efficient preconditioning for iterative methods with graph neural networks

Vladislav Trifonova, Alexander Rudikovb, Oleg Ilievc, Yuri M. Laevskyd, Ivan Oseledetsb,
Ekaterina Muravlevaa

a Sberbank of Russia, AI4S Center, Moscow, Russian Federation
Skolkovo Institute of Science and Technology, Moscow, Russia
vladislav.trifonov@skoltech.ru, e.muravleva@skoltech.ru
b Artificial Intelligence Research Institute (AIRI), Moscow, Russia
Skolkovo Institute of Science and Technology, Moscow, Russia
rudikov@airi.net, oseledets@airi.net
c Fraunhofer Institute for Industrial Mathematics ITWM, Kaiserslautern, Germany
oleg.iliev@itwm.fraunhofer.de
d Institute of Computational Mathematics and Mathematical Geophysics SB RAS, Novosibirsk, Russia
laev@labchem.sscc.ru

1. Abstract
In this paper we present a novel GNN-based ap-

proach to construct preconditioners for the iterative
methods of solving large sparse linear systems of al-
gebraic equations - the PreCorrector. ThePreCorrec-
tor is based on the idea that classical preconditioners
of the ILU family provide reliable preconditioners
for the CGmethod. Although the algorithm for their
construction is known, they are not unique and one
can try to train aneural network to construct precon-
ditioners of the same sparsity pattern with a better
effect on the spectrum. This canbe shownby inplace
updating of IC(0) factors with gradient descent for a
single matrix (Figure 1).

2. Introduction
Modern problems in computational science and

engineering are often based on parametric partial
differential equations (PDEs). Researchers are re-
quired to use numerical methods to solve PDEs that
result in a system of linear algebraic equationsAx =
b, A ∈ Rn×n, x ∈ Rn and b ∈ Rn. These systems are
usually sparse, i.e. the number of non-zero elements
is≪ n2.
To solve such systems, the Krylov subspace itera-

tive methods are used, which search for the solution
inKr(A, b) = span{b, Ab, A2b, . . . , Ar−1}. Typically,
the application of parametric PDEs produces large
linear systems, often with entries of varying scale,
resulting in ill-conditioned matrices with large con-
dition numbers κ(A), which complicates the solu-
tion process. A well-designed preconditioner P that
κ(P−1A) ≪ κ(A) is a crucial element in solving large
linear systems.
Recently, GNNs have been shown to be capable of

designing preconditioners for iterative methods [1,
2]. However, preconditioners designed with these
approaches cannot outperform ones designed with
classical methods in terms of the effect on the spec-
trum and hence the number of iterations in CG.
We present PreCorrector (short for Precondi-

Fig. 1: Inplace updating of IC(0) factor allows to ob-
tain better preconditioner.

tioner Corrector), an approach that combines graph
neural network and classical linear algebra to con-
struct efficient preconditioners. The precondition-
ers constructedwith PreCorrector reduce κ(A)more
significantly than classical preconditioners, leading
to faster convergence of iterative methods.

3. Neural design of preconditioner
3.1 Problem statement
We consider systems of linear algebraic equa-

tions from thediscretizationof differential operators
formed with a symmetric positive definite (SPD)ma-
trix A ≻ 0. The conjugate gradient (CG) method is
used to solve large sparse systems with SPD matri-
ces [3, 4]. The convergence rate of CG is determined
by

√
κ(A), whichmakes it crucial to obtain a precon-

ditioner P such that the preconditioned linear sys-
tem P−1Ax = P−1b has a lower condition number
than the initial system. If one knows the sparsity
pattern of A, then possible options are incomplete
Cholesky decomposition (IC) [3]. Additional infor-
mation about these preconditioners can be found in
the Appendix A.

mailto:vladislav.trifonov@skoltech.ru
mailto:e.muravleva@skoltech.ru
mailto:rudikov@airi.net
mailto:oseledets@airi.net
mailto:oleg.iliev@itwm.fraunhofer.de
mailto:laev@labchem.sscc.ru


AI4X 2025, Singapore, 8–11 July 2025

Table 1: Comparison of the classical algorithms, IC(0) and ICt(1), and PreCorrectorwith a corresponding initial
factorization, PreCor

[
IC(0)

]
and PreCor

[
ICt(1)

]
. The size of a linear system is 6.6 · 104. Lower is better, the

best results are in bold. Pre-time stands for precomputation time.

Time (iters) Time (iters) Time (iters) Time (iters)
Method Pre-time to 10−3 to 10−6 to 10−9 to 10−12

IC(0) 1.8 · 10−3 ± 6.0 · 10−5 8.638± 2.000 10.635± 2.355 12.249± 2.654 13.608± 2.905
(345± 13.5) (425± 14.9) (490± 14.9) (544± 14.4)

PreCor
[
IC(0)

]
3.3 · 10−3 ± 6.1 · 10−4 3.388± 0.544 4.199± 0.663 4.943± 0.775 5.637± 0.875

(144± 12.6) (179± 15.5) (211± 17.7) (241± 19.6)

ICt(1) 1.2 · 10−2 ± 1.8 · 10−4 5.278± 0.593 6.515± 0.709 7.511± 0.809 8.340± 0.890
(209± 8.4) (259± 9.0) (298± 9.1) (332± 8.8)

PreCor
[
ICt(1)

]
1.4 · 10−2 ± 6.8 · 10−4 2.719± 0.381 3.378± 0.462 3.976± 0.539 4.534± 0.608

(105± 8.3) (131± 9.8) (154± 11.2) (176± 12.4)

The duality between sparse matrices and graphs
is used to obtain vertices and edges, such as Ax =
b → G = (V, E), where ai,j = ei,j ∈ E , bi = vi ∈ V.
Then the message-passing architecture [5] can be
used to update the edges of the matrix A preserving
the sparsity pattern andoutput theupdated lower tri-
angular part L(θ). Finally, one can form precondi-
tioner in the form of a Cholesky decomposition [6]
P (θ) = L(θ)L(θ)⊤.

3.2 Related work
Several previous papers proposed to use convolu-

tional neural networks with sparse convolutions [7,
8] and graph neural networks [1, 2]. The latter ap-
proaches use shallow GNNs and typically require a
single inference before the iteration process. GNNs
take the initial left hand side matrix A and right
hand side vector b as input and construct precon-
ditioners in the form of a Cholesky decomposition
L(θ) = GNN(θ,A, b). We propose to learn correc-
tions to classical preconditioner to obtain a better ef-
fect on the spectrum than classical preconditioners
while maintaining the same sparsity.

3.3 PreCorrector
Instead of passing the left hand side matrix A as

input to GNN, we propose: (i) to pass L from the IC
decomposition to the GNN and (ii) to train GNN to
predict a correction for this decomposition:

L(θ) = L+ α · GNN(θ, L) . (1)

The correction coefficient α is also a learning pa-
rameter that is updated during training. At the be-
ginning of training, we set α = 0 to ensure that the
first gradient updates come from pure IC factoriza-
tion. Moreover, GNN in (1) takes as input the lower-
triangular matrix L from IC instead of A, so we are
not anchored to a single specific sparse pattern of
A and we can: (i) omit half of the graph and speed
up the training process and (ii) use different sparsity
patterns to obtain even better preconditioners. One
can find details on PreCorrector architecture in Ap-

pendix B.

4. Results and Discussion
The main comparison of preconditioners de-

signed with different algorithms is made by com-
paring total time, including the preconditioner con-
struction time, and the number of CG iterations
to achieve a given tolerance. One can find details
on how to compare different preconditioner in Ap-
pendix C.
We test PreCorrector on SPDmatrices obtained by

discretization of elliptic equations. We consider a 2D
diffusion equation:

−∇ ·
(
k(x)∇u(x)

)
= f(x), in Ω

u(x)
∣∣∣
x∈∂Ω

= 0
, (2)

Preconditioners constructed with PreCorrector
outperform classical algorithms with the same spar-
sity pattern in both total time and effect on the spec-
trum, i.e. CG iterations (Table 1). The difference
between the inference of the PreCorrector and the
construction of the IC is negligible and, most impor-
tantly, contributes little to the final time-to-solution.
The CG with PreCor

[
IC(0)

]
requires fewer iterations

to achieve the required tolerance and thus has a bet-
ter effect on the spectrum of A than IC(0).
Since PreCorrector takesL from any classical pre-

conditioner, one can obtain even better precondi-
tioners with more advanced starting precondition-
ers. The proposed approach based on the ICt(1) pre-
conditioner, PreCor

[
ICt(1)

]
, also has a better effect

on the spectrum of the initial A than the classical
ICt(1).
Compared to the CG with PreCorrector, the CG

with GNN from the previous work [1] cannot con-
verge to the required tolerance. We observe that
training a GNN from scratch can be unstable, result-
ing in preconditioners that have a weaker effect on
the spectrum than their classical analogues. Learn-
ing corrections to classical methods mitigates this
problem.



AI4X 2025, Singapore, 8–11 July 2025

References
[1] Yichen Li, Peter Yichen Chen, Tao Du, and Wo-

jciech Matusik. Learning preconditioners for
conjugate gradient pde solvers. In International
Conference on Machine Learning, pages 19425–
19439. PMLR, 2023.

[2] Paul Häusner, Ozan Öktem, and Jens Sjölund.
Neural incomplete factorization: learning pre-
conditioners for the conjugate gradient method.
arXiv preprint arXiv:2305.16368, 2023.

[3] Yousef Saad. Iterative methods for sparse linear sys-
tems. SIAM, 2003.

[4] Owe Axelsson. Iterative solution methods. Cam-
bridge university press, 1996.

[5] Justin Gilmer, Samuel S Schoenholz, Patrick FRi-
ley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In In-
ternational conference on machine learning, pages
1263–1272. PMLR, 2017.

[6] Lloyd N Trefethen and David Bau. Numerical lin-
ear algebra. SIAM, 2022.

[7] Johannes Sappl, Laurent Seiler, Matthias Hard-
ers, and Wolfgang Rauch. Deep learning of pre-
conditioners for conjugate gradient solvers in
urban water related problems. arXiv preprint
arXiv:1906.06925, 2019.

[8] SalvatoreCalì, Daniel CHackett, YinLin, Phiala E
Shanahan, and Brian Xiao. Neural-network
preconditioners for solving the dirac equation
in lattice gauge theory. Physical Review D,
107(3):034508, 2023.

Appendix A. ILU preconditioner

Full LU decomposition [6] for a square non-singular
matrix defined as the product of the lower and upper
triangular matrices B = LBUB. In general, these
matrices have no restriction on the position and
number of elements within their triangular struc-
ture and can even be dense for a sparse matrix B.
On the other hand, an ILU is an approximate LU fac-
torization:

A ≈ LU, (A1)

where LU −A satisfies certain constraints.
Zero fill-in ILU, denoted ILU(0), is an approximate

LU factorization A ≈ L0U0 in such a way that L0 has
exactly the same sparsity pattern as the lower part of
A andU0 has exactly the same sparsity pattern as the
upper part of A. For the ILU(p) decomposition the
level of fill-in is defined hierarchically. The product
of the factors of the ILU(0) decomposition produces
a newmatrixB with a larger number of non-zero el-
ements. The factors of the ILU(1) factorization have

the same sparsity patterns as lower and upper parts
of the sparsity pattern of the matrix B. With this re-
cursion one gets a pattern of the ILU(p) factorization
with p-level of fill-in. ILU(0) is a typical choice to pre-
condition iterative solvers and relies only on the lev-
els of fill-in, e.g. sparsity patterns [3]. One can obtain
better approximation with ILU by using incomplete
factorizations with thresholding.
One such technique is the ILU factorization with

thresholding (ILUt(p)). The parameter p defines the
number of additional non-zeros allowed per column
in the resulting factorization. For the ILUt(p) de-
composition, the algorithm is more complex and
involves both dropping values by some predefined
threshold and controlling the number of possible
non-zero values in the factorization. In the case of
ILUt(p), the value p represents additional non-zero
values allowed in the factorization per row. The
thresholding algorithm provides amore flexible and
effective way to approximate the inverse of a matrix,
especially for realistic problems where the numeri-
cal values of the matrix elements are important.
The complexity of solving sparse linear systems

with matrices in the form of the Cholesky decompo-
sition defined by the number of non-zero elements
O(nnz). This value also defines the storage complex-
ity and the complexity of preconditioner construc-
tion.
In this paper we focus on the SPD matrices so in-

stead of ILU, ILU(p) and ILUt(p) we use the incom-
plete Cholesky factorization IC, IC(p) and ICt(p).

Appendix B. PreCorrector architecture

Weuse ubiquitous encode-process-decode [? ] archi-
tecture for the GNN, where multilayer perceptrons
are used for encoders and decoders. Process-block
consists of message-passing layer that increase re-
ceptive field of the GNN with multiple rounds. Be-
fore encoder and after decoder we apply normaliza-
tion and renormalization for the edges respectively.
Note that in (1) we omit the right-hand side vec-

tor b and do not use it as input for GNN. In our ex-
periments, we observe that GNNwith the right-hand
side as node input does not effect resulting precon-
ditioner quality, while it suffers from sensitivity to
the right-hand side vector. Although we can either
use a different representation of the node features
(e.g., as in [2]) or use diagonal elements of the ma-
trix. Instead we set vector 1 = [1, . . . , 1]T as the node
input to the message passing layer, which allowed
us to reduce the number of parameters by a factor
of 2.3 while maintaining the quality of the resulting
preconditioner.
By using 1 as an input nodes to the processor

block, we discard the node encoder MLP. We also
notice that node model in processor does not con-
tribute when there are no explicit nodes. We dis-
card it either to use simple aggregation as the node



AI4X 2025, Singapore, 8–11 July 2025

update model and to further reduce number of pa-
rameters. Moreover, we make our approach con-
sistent with classical methods by passing only the
left-sidematrixA to the preconditioner construction
routine. We use the max aggregation function, al-
though our experiments showed that the resulting
preconditioner quality does not depend on the type
of aggregation function.
We also investigate which protocol to follow to in-

crease the receptive field. It is possible to follow
the original message passing paper [5] and perform
T rounds of message passing with shared learnable
functions during each round. Another option is to
follow classic GNN’s multi-block protocol and com-
binemultiplemessage-passing layers to increase the
receptivefieldwith independentweights. During the
PreCorrecotr ablation study we observed no differ-
ence in resulting preconditioner between the proto-
cols, so we usemessage-passing with shared layer to
further simplify the model.

Appendix C. Preconditioner comparison

For construction time, we report averaged values
over 200 runs of preconditioner construction and for
CG time and iterations we report averaged values
over the test set aswell as standard deviations for the
average values. Construction time for PreCorrector
is reported including construction time of classical
preconditioners.
The GNNs is chosen to construct precondition-

ers because it allows preserve the sparsity pattern.
Therefore, the algorithmic complexity of using pre-
conditioners (matrix-vector product) is the same
when using preconditioners with the same sparsity
pattern. This allows a fair evaluation of the qual-
ity of neural preconditioners with the same sparsity
pattern only in terms of the number of CG itera-
tions. Furthermore, all approaches to IC decompo-
sition with the same sparsity pattern, including the
classical ones, compete with each other in terms of
construction time, effect on the spectrum (i.e., num-
ber of CG iterations) and generalization ability.


	Abstract
	Introduction
	Neural design of preconditioner
	Problem statement
	Related work
	PreCorrector

	Results and Discussion
	Appendices
	Appendix ILU preconditioner
	Appendix PreCorrector architecture
	Appendix Preconditioner comparison

