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Open-Vocabulary Audio-Visual Semantic Segmentation
Anonymous Authors

ABSTRACT
Audio-visual semantic segmentation (AVSS) aims to segment and
classify sounding objects in videos with acoustic cues. However,
most approaches operate on the close-set assumption and only
identify pre-defined categories from training data, lacking the gen-
eralization ability to detect novel categories in practical applica-
tions. In this paper, we introduce a new task: open-vocabulary
audio-visual semantic segmentation, extending AVSS task to
open-world scenarios beyond the annotated label space. This is
a more challenging task that requires recognizing all categories,
even those that have never been seen nor heard during training.
Moreover, we propose the first open-vocabulary AVSS framework,
OV-AVSS, which mainly consists of two parts: 1) a universal sound
source localization module to perform audio-visual fusion and lo-
cate all potential sounding objects and 2) an open-vocabulary clas-
sification module to predict categories with the help of the prior
knowledge from large-scale pre-trained vision-language models.
To properly evaluate the open-vocabulary AVSS, we split zero-
shot training and testing subsets based on the AVSBench-semantic
benchmark, namelyAVSBench-OV. Extensive experiments demon-
strate the strong segmentation and zero-shot generalization ability
of our model on all categories. On the AVSBench-OV dataset, OV-
AVSS achieves 55.43% mIoU on base categories and 29.14% mIoU on
novel categories, exceeding the state-of-the-art zero-shot method
by 41.88%/20.61% and open-vocabulary method by 10.2%/11.6%.

CCS CONCEPTS
• Computing methodologies→ Video segmentation.

KEYWORDS
Open-Vocabulary Learning, Audio-Visual Semantic Segmentation,
Vision-Language Model, Transformer, Multi-Modal Fusion

1 INTRODUCTION
Generally speaking, objects can be characterized jointly by their
appearance and the sounds they make. By incorporating visual
and acoustic information in a collaborative manner, it is benefi-
cial for a better perception and understanding of the concepts of
objects. Recently, a novel audio-visual learning task, i.e., audio-
visual segmentation (AVS), has been proposed in [37]. The goal
of AVS is to output pixel-level maps of sound-emitting objects
within video frames. This requires aligning two different modal-
ities and serving audio as prompt to localize and segment visual
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| woman, piano  | seen classes | car           | seen classes

| woman, pipa   | seen classes | woman, pipa   | seen&unseen classes

Figure 1: An illustration of open-vocabulary audio-visual
semantic segmentation. (a) Traditional AVSS models trained
on closed-set classes (woman, piano, and car) fail to seg-
ment novel class (pipa). (b) Our open-vocabulary model cor-
rectly localizes sounding objects and recognizes arbitrary
categories, e.g., pipa, without using any annotations.

objects. Different from AVS being tasked with binary foreground
segmentation, audio-visual semantic segmentation (AVSS) is to clas-
sify sound sources and generate semantic maps associating one
category with each pixel. To accomplish the above tasks, many
works adopt convolutional- or Transformer-based encoder-decoder
architectures to establish audio-visual relationships and segment
sounding objects. Despite promising results, these approaches only
recognize pre-defined categories in the training set, resulting in
poor generalization capacity to novel concepts. In real-world ap-
plications, this closed-set paradigm lacks practical value, since it
often encounters objects from novel categories during training.

If the model has never seen an object and heard its sound, could it
still accurately localize sound source in audible videos? Wang et al.
[28] present a prompt-based model, GAVS, which attempts to pin-
point sounding objects real-world videos, including novel categories
unseen during training. Specifically, they insert Adapter [14] into
the large-scale pre-trained segment-anything model (SAM) [15] to
construct audio-visual correlations and learn downstream tasks.
With the help of the adapter-based fine-tunning technique, GAVS
adapts the visual foundational model, i.e., SAM, to the AVS task,
and generalize the prior knowledge to unseen objects and different
datasets. However, GAVS is designed for binary segmentation, that
is, it can only localize visual position of sounding objects without
predicting their categories. In addition, GAVS takes only an image
along with one-second audio as input and fuse multi-modal in spa-
tial domains, leading to the inability to capture frame-by-frame

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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relationships in temporal domains. Yu et al. [33] explore the feasi-
bility of promoting visual foundational models for the AVS task in a
zero-shot setting. They use CLAP [30], a large-scale audio-language
pre-trained model, to classify the input audio from open-set cat-
egories. Then, the predicted class names are fed into Grounding
DINO [20] to obtain box predictions, and these boxes prompt SAM
[15] to generate the corresponding masks. Nevertheless, only using
audio information to predict the category of sounding objects is
weak and inadequate in complex scenarios. For example, humans
can imitate cat meows, and cars and airplanes can produce similar
engine sounds. Moreover, due to the lack of visual appearances and
motion cues, this model tends to segment all objects belonging to
the predicted class instead of those sounding objects.

In this paper, we propose a novel multi-modal task, i.e., open-
vocabulary audio-visual semantic segmentation, which aims at
segmenting and classifying sound-emitting objects in videos from
open-set categories, as illustrated in Fig. 1. Unlike the above zero-
shot AVS methods that generate binary masks, we focus on the
semantic segmentation and require the network to assign semantic
labels to each pixel in given video frames. Open-vocabulary audio-
visual semantic segmentation is a more challenging task, facing
the following problems: ❶ Audio is a 1D signal that exhibits high
information density, meaning that multiple objects could make
sound simultaneously and their audio could entangle at any times-
tamp. Thus, it is not easy to build correct spatial alignment from
mixed-source audio to visual content. ❷ Video is continuous and
only using a single image-audio pair is not optimal. Temporal in-
formation and motion cues play an indispensable role in sound
source localization and classification. So how to effectively inte-
grate audio and visual features in the temporal dimension? ❸ In the
open-vocabulary setting, the model is trained on a closed set and
then localizes while identifying sounding objects within categories
beyond the annotated label space. This calls for the model to possess
strong generalization abilities: not only localizing sounding objects,
but also suppressing silent objects and background disturbances,
such as noise or sounds from objects outside the frame.

To address the above problems, we design the following modules.
For problem ❶, an audio-visual early fusion module is introduced
to align audio signals with image features in the spatial dimension.
It takes an image feature map from the visual backbone and the cor-
responding audio embedding from the pre-trained audio encoder as
inputs, and then computes bi-directional cross-attention between
them. On the one hand, the audio embedding as the query can be en-
hanced by correlating with image pixels of those semantic-relevant
objects. On the other hand, the image feature as the query can be
supplemented and activated with audio information. For problem
❷, we present an audio-conditioned Transformer decoder to estab-
lish frame-by-frame relationships and capture audio-visual depen-
dencies in the temporal dimension. Specifically, a set of learnable
object queries is first fed into the decoder and performs the cross-
and self-attention sequentially to obtain object-centric representa-
tions, following Mask2Former [2]. Then, these queries extract audio
temporal information via a cross-attention layer, where the key
elements are the all audio embeddings from the audio-visual early
fusion module. For problem ❸, to localize sounding objects from
all categories, we discard the class head but added an sound head
which acts as a binary classifier only responsible for determining

whether the object is making sound in the current frame. This en-
ables our model to not be constrained by the close-set classification
annotations. Additionally, we employ the large-scale pre-trained
vision-language model, CLIP [26], to predict the categories of the
above sounding objects.

On the whole, we propose an open-vocabulary audio-visual se-
mantic segmentation model, termed OV-AVSS, which consists of
two main components: universal sound source localization module
(USSLM; detailed in Section 3.3) and open-vocabulary classification
module (OVCM; detailed in Section 3.4). Equipped with the audio-
visual early fusion module and audio-conditioned Transformer
decoder, USSLM integrates audio and visual features in spatial
and temporal domains, separately, and then outputs class-agnostic
sounding objects. With the aid of the rich knowledge from CLIP,
OVCM classifies these potential sounding objects without limiting
to closed-label space. To assess the model’s generalization capa-
bility on unseen and unheard objects, we build a open-vocabulary
audible video dataset based on AVSBench-Semantic benchmark
[36]. Experimental results demonstrate that OV-AVSS achieves su-
perior generalizable segmentation performance (55.43% mIoU on
base categories and 29.14% mIoU on novel categories).

To sum up, our contributions are threefold:
(1) We propose a new multi-modal task, open-vocabulary audio-

visual semantic segmentation, which aims at segmenting and clas-
sifying sounding objects of arbitrary open-set categories in videos.

(2) A strong baselinemodel is developed to generate class-agnostic
masks for sounding objects and predict their categories by leverag-
ing the prior knowledge of large-scale vision-language models.

(3) Extensive experiments indicate that our model can achieve
state-of-the-art results in terms of performance and generalization.
It has been ready-to-use for open-vocabulary audio-visual semantic
segmentation in the real-world applications.

2 RELATEDWORKS
2.1 Audio-Visual Segmentation
Audio-visual segmentation (AVS) aims to segment the objects that
emit sound within each video frame. Recent AVS research primarily
focuses on supervised learning on the sparsely annotated AVSBench
dataset, which can be divided into FCN-based and Transformer-
based approaches. For FCN-based methods, Zhou et al. [37] propose
temporal pixel-wise audio-visual interaction (TPAVI), which is a
non-local block with cross-modal attention to locate the sound
source. ECMVAE [24] employs three latent encoders to achieve la-
tent space factorization, yielding both modality-shared and specific
representations to model audio-visual contributions explicitly. In
addition, Transformer-based methods accomplish audio-visual fu-
sion and mask decoding with vision Transformer [6]. For example,
AVSegFormer [7] uses audio-based channel attention to dynami-
cally adjust visual features, and adopts a DETR-like architecture
[1] to segment sounding objects. Liu et al. [19] associate the au-
dio signals with visual information by aligning predicted audio
class labels with instance segmentation masks, thereby highlight-
ing sounding objects while suppressing silent ones. Audio-visual
semantic segmentation (AVSS) extends the AVS task by additionally
predicting the category of each sound source. Due to the seman-
tic entanglement in audio, tackling multi-source AVSS presents a
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greater challenge. Zhou et al. [36] follow the TPAVI module [37]
to perform audio-visual fusion, and then attach a class head for
semantic predictions. CATR [17] separately carries out audio-visual
interactions in a decoupledmanner. Additionally, audio-constrained
queries are introduced to select sounding objects during decoding.

2.2 Zero-Shot Audio-Viusal Segmentation
Current AVS approaches mainly focus on in-domain and close-set
situations. When faced with unseen classes in real-world scenarios,
these approaches will no longer be applicable, owing to the limited
training data. To overcome the drawback, Wang et al. [28] design an
encoder-prompt-decoder framework to improve the generalization
of the AVS model by leveraging the prior knowledge of the visual
foundation model. Specifically, they use the adapter technique [14]
to fine-tune the pre-trained segment-anything model (SAM) [15]
and generalize knowledge learned from the training set to unseen
objects. Yu et al. [33] employ the large-scale audio-language model,
CLAP [30], to predict the category to which the audio belongs.
For the single-source and multi-source audio, they select the class
names with the highest and the top two highest scores, respectively.
The predicted class names are input into Grounding DINO [20]
and SAM [15] to sequentially generate box predictions and the
corresponding masks. Unlike the above zero-shot methods applied
to the binary segmentation, this work focuses on the audio-visual
semantic segmentation and exploits the large-scale pre-trained
CLIP model [26] to classify sounding objects from novel categories.

2.3 Open-Vocabulary Segmentation
Compared with traditional segmentation methods [11, 35] that only
identify pre-defined categories in the training set, open-vocabulary
segmentation seeks to locate and recognize categories beyond the
annotated label space. The main difference between zero-shot learn-
ing and open-vocabulary learning is that the latter is capable of
leveraging visual-related language vocabulary data [29]. For exam-
ple, LSeg [16] aligns the image embeddings with the text embed-
dings of category labels from CLIP text encoder. This allows LSeg to
use the knowledge of vision-language models and segment objects
that are not pre-defined but depend on the input texts. ZegFormer
[5] decouples the problem into a class-agnostic segmentation task
and a zero-shot classification task. It uses the CLIP image encoder
to obtain pixel embeddings of masked images and then utilizes
label embeddings from CLIP text encoder to classify the proposal
masks. Recently, more works focus on video instance segmenta-
tion and attempt to build an open-vocabulary tracker based on
close-set training data. Wang et al. [27] collect a large-scale video
dataset, and propose an end-to-end approach, called OV2Seg, for
open-vocabulary video instance segmentation. OV2Seg adopts a
momentum-updated module to track objects and a CLIP-based clas-
sifier for recognizing novel categories. OpenVIS [10] adapts the
pre-trained CLIP with instance guidance attention and generates
object proposals and the corresponding classes. Moreover, a rollout
association mechanism is designed to associate instances of any cat-
egories across frames thereby improving tracking performance. In
this paper, we extend open-vocabulary learning to audio-visual se-
mantic segmentation: segmenting and classifying sound-producing
objects of arbitrary open-set categories simultaneously.

3 METHOD
In this section, we present an open-vocabulary audio-visual seman-
tic segmentation framework, namely OV-AVSS, as shown in Fig. 2.
In the first stage, the universal sound source localization module
(Section 3.3) is applied to predict class-agnostic masks of sound-
ing objects covering all possible classes. In the second stage, the
open-vocabulary classifier (Section 3.4) empowered by CLIP [26],
is employed to identify the category of each sounding object mask.

3.1 Problem Definition
Let 𝐷𝑡𝑟𝑎𝑖𝑛 be a training dataset containing pixel-level annotations
for a set of base categories 𝐶𝑏𝑎𝑠𝑒 , open-vocabulary audio-visual se-
mantic segmentation aims to train amodel 𝑓𝜃 (·) on𝐷𝑡𝑟𝑎𝑖𝑛 , and then
test on 𝐷𝑡𝑒𝑠𝑡 for both base categories 𝐶𝑏𝑎𝑠𝑒 and novel categories
𝐶𝑛𝑜𝑣𝑒𝑙 with the help of large language vocabulary knowledge 𝐶𝑣𝑜𝑐 .
Note that 𝐶𝑣𝑜𝑐 is not strictly required to contain 𝐶𝑏𝑎𝑠𝑒 or 𝐶𝑛𝑜𝑣𝑒𝑙 ,
as the language vocabulary may not cover all the class names in
the vision or audio data. Given a test video clip V ∈ R𝑇×𝐻×𝑊 ×3

and the corresponding audio A ∈ R𝑇 , 𝑓𝜃 (·) is supposed to predict
the segmentation mask {mi}𝑇𝑖=1 ∈ R𝑇×𝐻×𝑊 and the category label
c ∈ (𝐶𝑏𝑎𝑠𝑒 ∪𝐶𝑛𝑜𝑣𝑒𝑙 ) for each sounding object of all the frames:

{{m1,m2, . . . ,mT} , c}𝑃𝑝 = 𝑓𝜃 (V,A) ,

where 𝑃 is the total number of categories of the sounding objects.
In the experiments, we designate the categories used for training as
“base categories". Categories that fall outside the established base
categories are referred to as novel categories.

3.2 Multi-modal Representation
Given an input video sequence containing both visual and audio
tracks, we divide it into𝑇 non-overlapping audio and visual snippet
pairs {V,A} = {vi, ai}𝑇𝑖 , where each snippet is 1-second long and T
denotes the number of snippets as well as the video duration.

Audio Representation. For each audio snippet ai, we use the
pre-trained VGGish [8] model to extract the audio feature as fAi ∈
R𝐶 , where 𝐶 = 128 is the feature dimension. The VGGish model,
a VGG-like 2D convolutional neural network, is pre-trained on
AudioSet dataset [8]. Due to the input being 2D audio spectorgram,
we first convert the audio A into a mono-waveform at a sampling
rate of 16kHz and apply short-time Fourier transform to obtain
the mel spectrograms. Then, they are fed into VGGish model and
the audio features are extracted as FA = {fA1 , f

A
2 , ..., f

A
T }. Note that

the audio representation is extracted offine and the parameters of
VGGish model are frozen during the training process.

Visual Representation. For each visual snippet vi, we extract
image-level hierarchical features using the convolutional-based
ResNet-50 [13] or Transformer-based Swin-B [22] backbones. We
represent the features as fVi,k ∈ R𝐻𝑘×𝑊𝑘×𝐷𝑘 , where (𝐻𝑘 ,𝑊𝑘 ) =

(𝐻,𝑊 )/2𝑘+1, 𝑘 = 1, 2, 3, 4, (𝐻,𝑊 ) is the resolution of each visual
snippet vi and 𝑘 is the number of backbone levels. The final visual
representation can be formulated as FV = {fV1 , f

V
2 , ..., f

V
T }.

3.3 Universal Sound Source Localization
To enhance the audio features FA with the image contexts and
embed audio information into image features FV simultaneously,
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Figure 2: Overview of the proposed OV-AVSS. (a) Universal Sound Source Localization: Given the image and audio features, the
audio-visual early fusionmodule takes them as input and aligns them in spatial domain. Then, the fused features are passed into
the pixel decoder and audio-conditioned Transformer decoder, which captures audio-visual dependencies in temporal domain
and generates the class-agnostic mask for each sounding object. (b) Open-Vocabulary Classification: After localizing sounding
objects and obtaining their masks, we crop the input frames with masks and feed into CLIP image encoder to generate image
embeddings. They are then dot-producted with text embeddings generated by CLIP text encoder to obtain object categories.

an audio-visual early fusion module is adopted, allowing modality
interaction at the early stage (before feature decoding). Specifically,
the audio feature fAi and multi-level image features {fVi,2, f

V
i,3, f

V
i,4}

are linearly projected to the same dimension𝐶𝑎𝑣 via pointwise con-
volution and group normalization. Then, we flatten image features
and concatenate them into a 1D sequence sVi . Finally, a bi-directional
cross-attention module (𝐵𝐶𝐴→𝑉 and 𝐵𝐶𝑉→𝐴) is applied to estab-
lish audio-visual spatial dependence and obtain cross-modal feature
embeddings fAVi , fVAi . This process can be formulated as:

fAVi = 𝐵𝐶𝐴→𝑉 (fAi , s
V
i ) = Softmax

(
fAi W

Q ·
(
sVi W

K)T√︁
𝑑𝑘

)
· sVi W

V + fAi (1)

fVAi = 𝐵𝐶𝑉→𝐴 (sVi , f
A
i ) = Softmax

(
sVi W

Q ·
(
fAi W

K)T√︁
𝑑𝑘

)
· fAi W

V + sVi (2)

where WQ,WK,WV ∈ R𝐶𝑎𝑣×𝑑𝑘 are learnable parameter matri-
ces. In 𝐵𝐶𝐴→𝑉 , it serves audio feature fAi as query and 1D image
feature sVi as key/value, and then perform multi-head attention
between them. Owing to the image feature sVi being multi-level and
processed only once, the audio-visual early fusion module can effi-
ciently leverage both strong semantics and fine-grained details. In
𝐵𝐶𝑉→𝐴 , query is sVi and key/value is fAi . It treats the audio signals
as auxiliary information, and the embedded semantical consistency
is used to highlight the corresponding spatial regions.

Given the processed image features fVAi , we feed them into the
pixel decoder, a multi-scale deformable attention Transformer [40],
to output the enhanced feature oVAi and high-resolution per-pixel
embeddings pi. Considering sound source localization requires

learning more accurate audio-object matching relationship, we pro-
pose the audio-conditioned Transformer decoder (AudioMaskDec)
to incorporate audio information and decode the masks for sound-
emitting objects. As shown in Fig. 3, AudioMaskDec consists of five
key components: a spatio-temporal cross-attention layer, an audio
self-attention layer, an object self-attention layer, an audio-aware
cross-attention layer, and a feedforward neural network.

To be specific, we first initialize a set of learnable object queries
q ∈ R𝑁×𝐶𝑜 supplemented with positional encodings, where 𝑁
is the number of object queries. Then, the spatio-temporal cross-
attention layer computes cross-attention between object queries
and all frames’ features. This empowers object queries q′ with
visual semantics and associates them with all potential objects, fol-
lowing previous works [2, 3]. After that, the object queries q′ and
audio embeddings {fAVi }𝑇

𝑖=1 are fed into the object self-attention
layer and audio self-attention layer, separately. With the help of
two separated self-attention layers, it isolates q′ and {fAVi }𝑇

𝑖=1 in-
stead of concatenating together as inputs, so as to facilitate object
interactions across spatial domains and audio interactions across
time domains, respectively. We denote the processed object queries
as q∗ and audio embedding as {f∗i }

𝑇
𝑖=1. To better judge when objects

emit sound, we introduce an audio-aware cross-attention layer that
performs cross-attention between q∗ and {f∗i }

𝑇
𝑖=1, where the former

is query and the latter is key/value. In this way, T-second audio is
embedded into object queries to guide sound source localization
temporally. Inspired by [18], the audio-aware cross-attention layer
is placed behind spatio-temporal cross-attention layer to avoid
forgetting audio information as the decoder layer goes deep.
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Figure 3: The architecture of our proposed audio-conditioned
Transformer decoder. 𝑁 class-independent object queries
learn semantics from image features and capture audio-
visual temporal dependencies from audio embeddings.

To detect the sounding objects from all categories while ignoring
other non-sounding objects, a sound head is attached to the Au-
dioMaskDec, which predicts the binary sounding scores S ∈ R𝑁×1,
indicating if a query represents an sounding object:

S = Softmax(MLPsound (AudioMaskDec(q))) (3)

Due to the utilization of the sound head instead of a class head,
object queries are class-agnostic, enabling our model to detect ob-
jects from all categories. This universal object proposal has been
widely proved in previous open-vocabulary works [27, 34]. For the
mask prediction, the class-agnostic object queries are passed into a
mask head and then dot-producted with the per-pixel embeddings
pi, yielding the final masks {Mi}𝑇𝑖=1.

Mi = MLPmask (AudioMaskDec(q)) ⊛ pi,∀𝑖 ∈ [1,𝑇 ] (4)

3.4 Open-Vocabulary Classification
Once sounding object candidates are localized, we employ the
frozen pre-trained vision-language model, i.e., CLIP [26], to clas-
sify each candidate. Concretely, the category names with prompt
templates are input into the CLIP text encoder CLIPtext to generate
the text embeddings offline, such as:

Etext = CLIPtext (“This is a photo of a {violin}”) (5)

where the category names contain both base and novel classes.
Since CLIP model is trained on full sentences, we ensemble multiple
prompt templates to improve classification accuracy. Our list of
prompt templates is shown in Appendix.

In addition, we crop sounding image regions with the proposed
masksMn

i and feed into the CLIP image encoder CLIPimage to com-
pute image embeddings Eimage, where 𝑛 represents the number of
sounding objects. Inspired by [9, 10], we first overlay the mask Mn

i
onto the original image, resulting in the masked images. Then, we
compute the object’s center coordinate and the length of its longer
side. Next, the masked images are cropped into a square-shaped
images Ini . Lastly, we resize Ini to 224 × 224 resolution required

by the CLIP image encoder, such as ViT-B [6]. Compared with no
cropping or simple cropping in [32], this square cropping strategy
can avoid objects occupying too small an area of the image and
ensure Ini without distortion.

After acquiring the text embeddings Etext ∈ R𝑐𝑙𝑠×𝐷𝑐 and image
embeddings Eimage ∈ R𝑛×𝐷𝑐 , we compute the similarity matching
map 𝑆𝑖𝑚 ∈ R𝑛×𝑐𝑙𝑠 between them as:

𝑆𝑖𝑚(𝑖, 𝑗) = softmax(Eimage
𝑖 · (Etext 𝑗 )𝑇 · 𝜖) (6)

where 𝑐𝑙𝑠 is the number of all categories, including base and novel
classes. 𝜖 is the temperature hyper-parameter. The class label of
each class-agnostic mask can be obtained by the argmax operation.

3.5 Training and Loss
In the training phase, suppose there are 𝐾 sounding objects in an
image, we select 𝐾 (𝐾 < 𝑁 ) object queries that best refers to the
sounding objects via a bipartite matching strategy. Technologically,
we use the sounding scores and mask predictions to compute the
assignment cost metrics. The cost metrics is composed of two parts:
one for segmentation that includes binary focal loss and dice loss,
and the other is binary classification for sounding objects presence.
Then the 𝐾 best matched object queries {q̂k}𝐾𝑘=1 are applied for
model training. Given the above matching, each prediction is su-
pervised with a sound score loss and a mask loss. The former is
binary cross-entropy loss and the latter consists of a focal loss and
a dice loss. The total loss function between the query {q̂k}𝐾𝑘=1 and
ground-truth {y𝑘 }𝐾𝑘=1 can be written as:

L(q̂k, y𝑘 ) = 𝜆𝑐𝑒L𝑐𝑒 + 𝜆𝑓 𝑜𝑐𝑎𝑙L𝑓 𝑜𝑐𝑎𝑙 + 𝜆𝑑𝑖𝑐𝑒L𝑑𝑖𝑐𝑒 (7)

where 𝜆𝑐𝑒 = 2.0, 𝜆𝑓 𝑜𝑐𝑎𝑙 = 5.0, and 𝜆𝑑𝑖𝑐𝑒 = 5.0 are the weights to
balance the loss function.

4 EXPERIMENTS
4.1 Datasets and Evaluation Metrics
To facilitate a comprehensive evaluation of OV-AVSS, we partition
a novel dataset called AVSBench-OV, derived from AVSBench-
Semantic [36], an extension of the initial AVSBench-object dataset
[37] for semantic segmentation. AVSBench-Semantic encompasses
70 categories, incorporating both single and multiple sound source
scenarios. Each video within AVSBench-Semantic is truncated to
either 5 or 10 seconds in duration, with one frame extracted per
second. Following the partitions in LVIS [12], we split the categories
within AVSBench-OV into 40 base categories representing those
seen during training and inherited from frequent and common
categories, and 30 novel (unseen and unheard) categories disjoint
from the base categories. To ensure consistency, we eliminated
sample videos from the training subset whenever a novel category
appeared in annotations, thereby restricting the training data exclu-
sively to base categories. The dataset statistics of AVSBench-OV are
reported as follows: the training set encompasses 5,184 real-world
videos comprising 40,095 frames across 40 base categories, while
the validation and test sets consist of 1,240 and 1,490 videos across
all 70 categories. For specific category names and corresponding
video counts per category, please refer to the Appendix.

Following the previous open-vocabulary semantic segmentation
task [25, 31], we adopt the mean intersection-over-union (𝑚𝐼𝑜𝑈 )
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Figure 4: Qualitative results of our novel OV-AVSS framework on diverse audio-visual scenarios. Categories of predictions are
shown in the title. Green text represents base categories, while red text denotes novel categories. (a) and (b) are multi-source
scenarios containing both base and novel categories. (c)-(e) present single-source scenarios with one novel category. (f) is
multi-source scenario with one novel category. Best view in color.

to evaluate the open-vocabulary AVSS performance. We compute
overall mIoU, Base mIoU for seen categories, Novel mIoU for unseen
categories, along with their harmonic mean (Harmonic). Harmonic
is defined as follows:

Harmonic =
2 ∗ Base ∗ Novel
Base + Novel

(8)

4.2 Implementation Details
We use both ResNet-50 [13] and Swin-B [22] as the image encoders
and VGGish [8] as the audio encoder. Parameters in the audio
encoder, CLIP image encoder and CLIP text encoder are frozen
during the training. For each video clip, we set the total number of
video frames 𝑇 to 5 by default. The number of object queries is set
to 100 for all experiments. We train our model on the AVSBench-OV
dataset for 82,000 iterations (about 10 epochs) with a batch size of
1. We use the AdamW optimizer [23] and the step learning rate
schedule. The initial learning rate is 1e-4 and scaled by a decay
factor of 0.1 at the 72,171 iterations. If no other specification, the
shorter side of frames are resized to 240, 360 or 480 during training.
The experiments are conducted on an NVIDIA Quadro 6000 GPU.

4.3 Comparison to State-of-the-art Methods

Table 1: Comparison with other zero-shot audio-visual seg-
mentation methods on AVSBench-OV dataset. The “Base”,
“Novel”, and “Harmonic” are mIoU of base classes, novel
classes, and their harmonic mean. “AVBS” and “AVSS” denote
audio-visual binary and semantic segmentation, respectively.

Model Task Base Novel Harmonic mIoU
GAVS [28] AVBS - - - -

Sam4AVS [33] AVSS 13.55 8.53 10.47 12.47
OV-AVSS AVSS 55.43 29.14 38.20 44.81

Zero-Shot Audio-Visual Segmentation. Given that our pro-
posed open-vocabulary AVSS task employs a new division of base
and novel categories, there are no baselines with identical training
settings for an entirely fair comparison. Therefore, we use baselines
from a similar but not identical tasks, specifically, the zero-shot AVS
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Table 2: Comparison of AVSS performance on AVSBench-OV between closed-set and open-vocabulary methods.

Type Model Pub. & Year Audio Vision
Backbone

Text
Encoder Base Novel Harmonic mIoU

Closed-Set
TPAVI [37] ECCV 22 ResNet-50 none 28.45 0.00 0.00 18.08
TPAVI [37] ECCV 22 PVT-v2 none 33.25 0.00 0.00 22.02
CATR [17] MM 23 ResNet-50 none 30.64 0.00 0.00 19.73

Open-Vocabulary

Detic[38]-XMem[4] ECCV 22 ResNet-50 CLIP 22.37 8.30 14.10 22.88
OV2Seg [27] ICCV 23 ResNet-50 CLIP 36.26 12.49 18.58 26.93
OpenVIS [10] ArXiv 23 ResNet-50 CLIP-ViT-B/32 45.23 17.54 25.31 34.40
CLIP-VIS [39] ArXiv 24 ResNet-50 CLIP 40.35 15.00 21.87 30.31
OV-AVSS - ResNet-50 CLIP-ViT-B/16 49.77 22.20 30.71 38.91
OV-AVSS - Swin-base CLIP-ViT-L/14 55.43 29.14 38.20 44.81

task. First, we consider GAVS [28], which introduces an encoder-
prompt-decoder paradigm to enhance the generalization of the AVS
model by leveraging the prior knowledge of SAM [15]. However,
due to the absence of CLIP or alternative foundation models, GAVS
is limited to generate binary masks and cannot be applied to AVSS.
Additionally, we compare with Sam4AVS [33], which first employs
CLAP [30] to predict categories of the input audio, and then feed
into Grounding DINO [21] and SAM for mask prediction. A signifi-
cant constraint of Sam4AVS stems from its dependency on the CLAP
for class identification, which neglects the visual cues. This exclu-
sion can result in inaccuracy classification for sounding objects.
Also, Sam4AVS segments all instances of the predicted category,
lacking the ability to identify specific sounding source. The original
Sam4AVS is used for binary segmentation. We reproduce it and
make it suitable for the open-vocabulary AVSS task. As shown in
Table 1, our OV-AVSS model surpasses Sam4AVS in all metrics by a
significant margin (+41.88% mIoU in base categories, +20.61% mIoU
in novel categories, +27.73% harmonic mIoU and +32.34% overall
mIoU). These substantial improvements can be attributed to our
designed universal sound source localization and open-vocabulary
classification modules, which effectively leverages both audio and
visual information for accurate segmentation and categorization of
both seen and unseen sounding objects.

Open-Vocabulary Audio-Visual Semantic Segmentation.
As shown in Table 2, we first compare OV-AVSS with two closed-
set trained methods, namely TPAVI [37] and CATR [17]. These
methods adhere to the traditional paradigm based on the close-set
assumption, which can only predict pre-defined categories that are
present in the training set. Consequently, their performance on
the novel set yields zero across all metrics. To provide a thorough
comparison, we evaluate TPAVI with different backbones, including
ResNet-50 and PVT-v2. The results demonstrate that even on the
base categories, the performance of these closed-set methods falls
short of our approach. Furthermore, we compare OV-AVSS to sev-
eral state-of-the-art open-vocabulary video instance segmentation
methods. These methods do not incorporate audio cues, making it
challenging to localize sounding objects in frames. Our proposed
OV-AVSS significantly outperforms the best-performing method,
CLIP-VIS [39], by +9.772% in base categories, +7.2% in novel cate-
gories, +8.84% in harmonic mIoU, and +8.6% in overall mIoU. These
results highlight the effectiveness of our approach in leveraging

both visual and audio information to achieve superior performance
in open-vocabulary audio-visual semantic segmentation.

Qualitative Results. In Fig. 4, we present qualitative seman-
tic segmentation results of the proposed OV-AVSS model on both
base and novel categories. The diverse range of scenarios presented
in Fig. 5, including machines, musical instruments, and animals,
demonstrates the broad applicability of OV-AVSS. Our model can
precisely localize the sounding object within each frame, e.g. emer-
gency car in Fig. 4 (d), while effectively omitting similar objects
(vehicles) that do not emit sound. The multi-source scenarios de-
picted in Fig. 4 (a) and (b) show our method’s remarkable ability to
accurately segment sounding objects not only from base categories
but also from unseen categories, i.e. “accordion” and “violin”. This
highlights the effectiveness of our approach in handling complex
scenes containing a mix of seen and unseen sound sources. Despite
the prevalence of “human” as the most easily confused sounding
object in the training set, our method also accurately isolates silent
humans, as evidenced by the examples shown in Fig. 4 (a), (b), and
(e). Moreover, in the single-source scenario depicted in Fig. 4 (e),
our segmentation for the novel category “ukulele” exhibit higher
precision than the ground truth, i.e. fingers in 1𝑠𝑡 & 4𝑡ℎ frame. This
underscores our framework’s capacity to leverage audio-visual cues
for accurate semantic segmentation, even surpassing human an-
notations in certain cases. Fig. 4 (f) illustrates OV-AVSS’s ability
to segment multiple instances of the same novel category, "wolf,"
within a single scene. This showcases the robustness of our frame-
work in handling multi-sounding objects of the same category.

4.4 Ablation Study

Table 3: Impact of Audio-Visual Early Fusion Strategy.

Fusion
Method Multi-level Base Novel Harmonic mIoU

None 47.38 20.69 28.80 36.89
Add 48.94 21.73 30.10 38.24

Bi-Attn 49.22 21.89 30.30 38.46
Bi-Attn 49.77 22.20 30.71 38.91

Impact of Audio-Visual Early Fusion Strategy. The setting
on the first row of Table 3 serves as a baseline, where no early
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fusion is applied. While this baseline approach can generate reason-
ably good results for both base and novel categories, there is still
room for improvement. The audio embeddings and processed im-
age features, when used independently, may not capture sufficient
semantic information to guide the localization process effectively.
To address this limitation, we introduce an early fusion mechanism
that allows us to acquire audio-aligned visual features and visual-
enriched audio embeddings. The second row in Table 3 presents
a straightforward fusion approach, where audio embeddings are
broadcast and added to the visual features in a pixel-wise man-
ner. However, it is important to note that this fusion strategy is a
one-way process, where the audio embeddings are used to enhance
the visual features, but the audio embeddings themselves do not
receive any visual priors to aid in sound source localization. To fur-
ther improve the fusion mechanism, we introduce a bi-directional
cross-attention mechanism, where each audio embedding can ac-
quire corresponding semantic information from the visual features.
Moreover, the cross-attention operation is much stronger than that
of simple one-way summation, as it can adaptively focus on rele-
vant regions in the visual features based on the audio embeddings.
This brings extra performance increase as shown in the 4𝑡ℎ row
of Table 3, with improvements of +0.83% in base, +0.47% in novel,
+0.61% harmonic mean, and +0.73% overall mIoU. This process is
performed at multiple levels, allowing the model to incorporate
audio information at different scales.

Table 4: Impact of Audio Prompt Method.

Audio Prompt Method Base Novel Harmonic mIoU
None 46.77 19.98 27.99 36.23

Concat+Add 48.02 20.38 28.62 37.12
Cross-Attn 49.19 20.79 29.22 37.95

AudioMaskDec 49.77 22.20 30.71 38.91

Impact of Audio Prompt Method. For the baseline, we di-
rectly feed the object queries into the decoder, disregarding the
audio embeddings obtained through our audio-visual early fusion.
Due to the pixel-wise audio information incorporated into the im-
age features through early fusion, this approach achieves promising
results. However, it fails to fully utilize the temporal audio informa-
tion, limiting its potential for enhancing performance. To overcome
this obstacle, we concatenate the audio embeddings in the temporal
dimension and add them to the object queries, similar to positional
encoding. While this method yields modest improvements across
all categories (+1.25% in base, +0.4% in novel, +0.63% harmonic, and
+0.89% mIoU), it does not fully capture the rich time-dependent cor-
respondence present in the audio modality. We further examine the
impact of performing a single cross-attention operation between
the object queries and audio embeddings before feeding them into
the decoder. This approach yields further improvements in per-
formance, highlighting the importance of effectively integrating
audio and visual information. However, compared to our proposed
AudioMaskDec, this audio prompting method may suffer from in-
formation loss as the decoder depth increases, limiting its ability to
fully exploit the audio-visual synergy. In contrast, AudioMaskDec

places an audio-aware cross-attention layer behind each spatio-
temporal cross-attention layer in the decoder. This design enables
the model to iteratively refine the integration of audio and visual
features throughout the decoding process. By facilitating the inter-
action between object queries and audio embeddings at multiple
layers, AudioMaskDec ensures that pertinent audio information is
retained and effectively utilized before the sound head and mask
head. As shown by the results in row 4 of Table 4, this approach
further enhances the model’s performance by +0.58% Base, +1.41%
Novel, +1.49% Harmonic, and +0.96% overall mIoU.

Table 5: Impact of Image Crop Strategy.

Crop
Strategy

CLIP
Encoder Base Novel Harmonic mIoU

None ViT-B 46.23 18.43 26.36 35.32
CropResize ViT-B 47.61 20.92 29.06 37.14
SquareCrop Res-50 50.15 21.80 30.39 38.71
SquareCrop ViT-B 49.77 22.20 30.71 38.91

Impact of Image Crop Strategy. Previous work on zero-shot
semantic segmentation [31] has shown that cropping an object’s
masked region by using its bounding box and resizing to a fixed
size (e.g. 224 × 224) provides a more suitable input representation
for CLIP compared to the full image. However, naively resizing
the masked region can introduce significant aspect ratio distortion
relative to the object’s natural proportions. This unnatural stretch-
ing may degrade CLIP’s zero-shot classification performance. We
instead compute the center coordinate and longer side length of the
object’s bounding box, and extract a square crop around the object
center, yielding a distortion-free representation. As shown in Table
5 row 2 and 4, SquareCrop approach outperforms the CropResize
by a sizeable margin across all metrics, including a +2.16% gain on
base classes, +1.28% on novel classes, +1.65% on harmonic mean,
and +1.77% on mIoU. Furthermore, we investigate the impact of
using different visual encoders of CLIP. As shown in the 3𝑟𝑑 row
of Table 5, changing the visual encoder does not yield further im-
provements in performance. This suggests that the classification
effect of CLIP is largely dependent on the segmentation quality of
the universal module and the input image quality, rather than the
choice of different visual encoder.

5 CONCLUSION
This paper introduces a new task of open-vocabulary AVSS with
the goal of segmenting and classifying sounding objects of arbitrary
categories in a given video. Furthermore, we present the first open-
vocabulary AVSS framework, termed OV-AVSS, generalizing from
annotated (seen) object classes to other (unseen) categories with
the knowledge of CLIP. Quantitative and qualitative experiments
on AVSBench-OV dataset show strong zero-shot generalization
ability on novel categories unseen during training.We hope that our
proposed OV-AVSS model can further promote the generalization
study of audio-visual segmentation in zero-shot, open-vocabulary
and real-world scenarios. In the future, we will consider using extra
video caption data to guide segmentation, and extend the model to
class-aware audio-visual detection.
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