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Figure 1: We present UniVLA, a unified vision-language-action model. Unlike prior VLA
approaches that typically rely on an extra vision encoder to extract image features and generate
only action outputs, UniVLA represents vision, language, and action as discrete tokens within a
unified autoregressive framework. This unified modeling paradigm enables multi-modal outputs and
supports a wide range of tasks—such as text-supervised perception grounding, vision-supervised
world modeling, and action-supervised policy learning—within a single architecture. The unified
token-based design further allows UniVLA to effectively leverage large-scale multimodal data,
particularly video, for scalable and generalizable learning. UniVLA achieves new state-of-the-art
results on CALVIN, LIBERO, and SimplerEnv-Bridge, significantly surpassing existing methods.

ABSTRACT

Vision-language-action models (VLAs) have garnered significant attention for
their potential in advancing robotic manipulation. However, previous approaches
predominantly rely on the general comprehension capabilities of vision-language
models (VLMs) to generate action signals, often overlooking the rich temporal
and causal structure embedded in visual observations. In this paper, we present
UniVLA, a unified and native multimodal VLA model that autoregressively models
vision, language, and action signals as discrete token sequences. This tokenized
formulation naturally supports flexible multimodal task learning, particularly from
large-scale video data, and further demonstrates that generative vision supervision
can significantly enhance visual understanding. By incorporating world modeling
during post-training, UniVLA captures causal dynamics from videos, facilitating
effective transfer to downstream policy learning—especially for long-horizon tasks.
Our approach sets new state-of-the-art results across several widely used simulation
benchmarks, including CALVIN, LIBERO, and Simplenv-Bridge, substantially
outperforming prior methods. For example, UniVLA achieves 95.5% average
success rate on LIBERO benchmark, surpassing π0-FAST’s 85.5%. We further
demonstrate its broad applicability through experiments on real-world ALOHA
manipulation tasks and autonomous driving scenarios.
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1 INTRODUCTION

Developing agents capable of perceiving, reasoning, and acting in the physical world has long
been a central objective of artificial intelligence. Recent advances in vision-language-action (VLA)
models Brohan et al. (2023); Octo Model Team et al. (2024); Kim et al. (2024); Black et al. (2024),
grounded in the powerful generalization capabilities of vision-language models (VLMs) Peng et al.
(2023); Jaech et al. (2024); Beyer et al. (2024); Wang et al. (2024a); Guo et al. (2025), have
demonstrated impressive performance across a wide range of robotic manipulation tasks, and are
increasingly being adapted to generalist humanoid robots Bjorck et al. (2025); Ding et al. (2025)
that demand broader embodied intelligence. However, most existing VLA approaches Kim et al.
(2024); Black et al. (2024) follow a language-centric paradigm: visual observations are first projected
into a semantic space, and action policies are subsequently derived based on these representations.
This late-fusion strategy, while beneficial for semantic understanding and generalization, limits the
formation of deeply coupled cross-modal representations and impedes the learning of temporal and
causal dependencies across the perception-action loop. This raises a central question: Can vision,
language, and action be jointly modeled within a unified representation space to facilitate tighter
cross-modal integration and more effective policy learning?

While appealing in theory, unified modeling presents two key challenges. First, vision, language,
and action are inherently heterogeneous modalities: vision comprises high-dimensional, continuous
spatial signals; language conveys abstract, discrete semantics; and actions involve temporally ordered
sequences with causal dependencies. Second, the perception-to-action pipeline is inherently dynamic
and causal, yet existing VLA models Brohan et al. (2023); Kim et al. (2024); Black et al. (2024)
often adopt static, language-centric paradigms that merely learn the mapping from static image to
action. These models fail to capture the dynamic nature of real-world interactions, thereby limiting
their ability to leverage the rich temporal information from videos for training.

To address the above challenges, we introduce UniVLA, a novel framework for unified vi-
sion–language–action learning. As illustrated in Figure 1, we propose a unified framework that
supports both multimodal and multi-task learning. At the modality level, vision, language, and
action signals are all transformed into discrete tokens and modeled using a shared vocabulary. This
unified token representation allows for joint learning across modalities, fostering deeper cross-modal
understanding and integration. Building upon the unified framework, we adopt an autoregressive,
Markov chain-based sequence modeling approach, where observations and actions are interleaved.
This structure naturally incorporates causal dependencies, enabling the model to reason over temporal
dynamics rather than treating perception and action as isolated tasks. By integrating the world model
paradigm during training, we leverage large-scale robotics videos for self-supervised learning, allow-
ing the model to capture environment dynamics in a temporally consistent and causally grounded
manner. Remarkably, we find that post-training with world models significantly enhances policy
learning, particularly for long-horizon and out-of-distribution tasks.

Experiments across multiple simulation benchmarks, including CALVIN Mees et al. (2022b),
LIBERO Liu et al. (2023), and SimplerEnv Li et al. (2024d), demonstrating clear performance
improvements over existing methods. Our model incorporates world model learning during post-
training, enabling it to effectively capture visual dynamics from large-scale videos. This strategy
significantly enhances both data efficiency and training efficiency in downstream policy learning,
and allows for rapid adaptation to novel robotic tasks. Beyond policy learning, we demonstrate the
model’s multimodal output capabilities, including spatial reasoning and visual prediction, highlight-
ing its versatility. Furthermore, we extend our approach to autonomous driving scenarios for broader
applicability. These results underscore the potential of our unified VLA model as an alternative and
promising direction for generalist embodied intelligence.

Our contributions are summarized as follows:

• We propose UniVLA, the first unified vision–language–action (VLA) model that encodes
vision, language, and action as discrete tokens within a shared vocabulary, jointly modeling
them through autoregressive sequence learning. This approach offers a novel architecture
alternative to the existing VLA paradigm, facilitating more integrated cross-modal modeling
and enabling large-scale video-based training.
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• Our unified sequence modeling framework supports a broad range of multimodal tasks.
Through extensive experiments with various post-training strategies, we show that world
models can effectively capture temporal dynamics from video data, substantially boost-
ing performance and improving both data and training efficiency in downstream policy
learning—spanning simulation benchmarks, real-world robotic platforms, and even driving
domains, where world model post-training consistently benefits policy learning.

• Our model achieves state-of-the-art performance on several simulated benchmarks (CALVIN,
LIBERO, and SimplerEnv-Bridge) and introduces an open-source VLA method supporting
large-scale video training. We further explore its capabilities across various modalities,
including spatial reasoning and video prediction, and demonstrate its effective transfer to
driving scenarios, highlighting its potential for generalist embodied intelligence.

2 RELATED WORKS

2.1 VISION-LANGUAGE-ACTION MODELS

Recent vision-language-action (VLA) models have demonstrated strong task performance across
diverse robots and tasks Brohan et al. (2023); Vuong et al. (2023); Driess et al. (2023); Kim et al.
(2024); Zhen et al. (2024); Cheang et al. (2024); Black et al. (2024); Zheng et al. (2024); Liu
et al. (2025); Kim et al. (2025); Intelligence et al. (2025). These models leverage pre-trained
vision-language models (VLMs) to enhance understanding and generalization, further fine-tuned on
large-scale robotic datasets for low-level control. Currently, VLA models can be categorized into two
paradigms based on their output space: pure action prediction and visual-guided action prediction.

Pure action prediction. Recent efforts have extended vision-language models (VLMs) to incorporate
action modalities, enabling direct action prediction from visual and language inputs. A prominent
example is RT-2Brohan et al. (2023), which learns from both internet-scale and robotic data to
generate discrete actions autoregressively, showcasing strong generalization and semantic grounding.
Building upon this, RT-HBelkhale et al. (2024) introduces hierarchical actions to facilitate data sharing
across tasks. OpenVLAKim et al. (2024) scales this paradigm with a 7B-parameter open-source
model trained on 970k real-world demonstrations spanning diverse datasets. To enhance spatial
reasoning, SpatialVLAQu et al. (2025) integrates spatial representations into the action modeling
process. Beyond architecture scaling, new action modeling techniques have also emerged. π0 Black
et al. (2024) incorporates flow matching to improve action learning efficiency, while FAST Pertsch
et al. (2025) introduces a unified frequency-domain formulation for discretizing actions.

Visual-guided action prediction. These studies leverage the power of visual pretraining, typically
based on a policy-as-video formulation, by predicting future visual signals and subsequently decoding
them into actions. SuSIE Black et al. (2023) predicts key future frames and derives actions through
inverse dynamics. UniPi Du et al. (2023) generates videos from text instructions, extracting actions
from the frames. GR series Wu et al. (2024); Cheang et al. (2024); Li et al. (2025a) leverages video
pretraining for general policy learning. PAD Guo et al. (2024) uses diffusion models to simultaneously
learn future images and actions. LAPA Ye et al. (2025) proposes to learn latent actions between
images with VQ-VAE from action-free internet-scale videos. Track2Act Bharadhwaj et al. (2024)
extracts point tracks from diverse web videos to guide the learning of interaction plans.

Both approaches have their strengths and weaknesses. The first, focused on action prediction,
integrates well with Vision-Language Models (VLMs) but lacks spatial understanding and visual
prediction capabilities. The second, incorporating visual generation, requires separating generative
and action prediction models, limiting the full potential of VLMs. Our work unifies these approaches,
combining video generation pretraining with the strengths of VLMs to propose a native multimodal
model with significant future potential.

2.2 WORLD MODELS FOR ROBOTICS

World models Ha & Schmidhuber (2018); Hafner et al. (2019a); LeCun (2022) have gained
widespread attention for their ability to capture and reason about the dynamics of the physical
world. They have emerged as a cornerstone in a range of domains, including interactive video
generation Bruce et al. (2024); Che et al. (2024), autonomous driving Hu et al. (2023a); Wang et al.

3
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Figure 2: Overview of the UniVLA framework. Our model unifies information from different
modalities into a discrete interleaved sequence, which is modeled using an autoregressive Transformer.
To enable unified modeling, images are discretized using vector-quantized (VQ) encoders, while
actions are transformed into the frequency domain and discretized via Discrete Cosine Transform
(DCT) encoding. This causal multimodal sequence naturally preserves the temporal dynamics and
causality required for real-world tasks. The model builds upon a pretrained vision-language model
and follows a two-stage training strategy: (1) a post-training phase that adopts world-model training
on large-scale datasets without requiring actions, and (2) a fine-tuning phase that interleaves actions
into the sequence, enabling policy learning on downstream tasks.

(2024d;b); Gao et al. (2024), and robotics Du et al. (2023); Wu et al. (2023); Yang et al. (2023).
Recent advances in robotics increasingly focus on general-purpose controllable video generation
to simulate realistic and diverse robot-environment interactions. Visual Foresight Finn & Levine
(2017) leverages action-conditioned video prediction with model-predictive control, enabling robots
to plan manipulation tasks by forecasting future visual observations. UniSim Yang et al. (2023)
builds a “universal simulator” trained on diverse visual datasets, capable of visualizing the effects
of both high-level instructions (e.g., “open the drawer”) and low-level controls in novel scenes.
RoboDreamer Zhou et al. (2024) learns a compositional world model by factorizing video generation,
facilitating the synthesis of novel action sequences. DREMA Barcellona et al. (2024) replicates
scene dynamics and structure by integrating Gaussian Splatting with physics simulation. VLP Du
et al. (2024) enables long-horizon visual planning by combining text-to-video generation with vision-
language models as heuristic evaluators. DayDreamer Wu et al. (2023) extends Dreamer Hafner et al.
(2019b) to real-world robotic platforms, while UVA Li et al. (2025b) proposes a joint video-action
latent space to decouple video and action generation, achieving high accuracy and efficiency in policy
inference. AdaWorld Gao et al. (2025) extracts latent actions from videos in a self-supervised manner
and builds an autoregressive world model conditioned on these latent actions.

3 UNIFIED VISION-LANGUAGE-ACTION MODEL

In this section, we present the design of UniVLA, as illustrated in Figure 2. Unlike previous VLA
models Kim et al. (2024); Black et al. (2024) that rely on ViT Dosovitskiy et al. (2021) for image
encoding, our approach adopts an encoder-free architecture, converting all modalities into discrete
tokens and learning them autoregressively. The overall design is simple yet effective, demonstrating
strong scalability.

Our unified paradigm has two key aspects: first, it unifies the learning of multiple modalities,
integrating various modality tokens into a shared representation space and employing a transformer
for autoregressive learning; Second, it unifies sequence modeling across tasks through the natural
interleaving of modalities, facilitating the seamless combination of tasks such as video generation,
visual grounding, and action learning. In the following sections, we will introduce the method from
the perspectives of Unified Multimodal Model and Unified Multimodal Sequence Modeling.

4
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3.1 UNIFIED MULTIMODAL MODEL

As illustrated in Figure 2, our method unifies language, vision, and action modalities by converting
each into discrete tokens and concatenating them into a single multimodal sequence L. Specifically,
Lt, Lv , and La denote the discrete token sequences for language, vision, and action, respectively, all
drawn from a shared vocabulary. The superscript indicates the temporal step, with tokens interleaved
across modalities to preserve temporal alignment.

For example, in the robotic manipulation task, a textual instruction is provided only at the beginning,
followed by a naturally interleaved sequence of visual observations and actions. The language
and vision tokenizers adopt the same design as Emu3 Wang et al. (2024c); visual observations are
discretized using a VQ tokenizer Zheng et al. (2022), while actions are encoded using FAST Pertsch
et al. (2025). To clearly demarcate modality boundaries, we employ special tokens—boi (begin of
image), eoi (end of image), boa (begin of action), and eoa (end of action)—to encapsulate image
and action tokens, respectively.

Action Modeling We follow FAST Pertsch et al. (2025) and apply the Discrete Cosine Transform
(DCT) to convert continuous action sequences into discrete action tokens. Specifically, given an
action sequence within a time window, we define La at a given time step as a sequence of action
tokens [T1, . . . , Tn]. The raw action sequence A1:H = {a1, a2, . . . , aH} spans a window of size H ,
where each action at is a d-dimensional vector. The FAST action tokenizer encodes A1:H into a
discrete token sequence [T1, . . . , Tn], with n tokens drawn from a vocabulary of size |V |. Similar to
natural language processing, action sequences can vary in token length, resulting in a variable-length
(n) discrete representation.

Training Objective Since all modality signals are transformed into discrete tokens, the training
objective is simplified to a standard next-token prediction task using cross-entropy loss. To accommo-
date different task formats, we selectively include specific tokens in the loss computation, ensuring
compatibility and flexibility across diverse tasks.

3.2 UNIFIED MULTIMODAL SEQUENCE MODELING

As shown in Figure 2, our multimodal sequence representation naturally captures the temporal
dynamics and causal structure inherent in task execution. The embodied planning problem can be
formulated as a Markov Decision Process (MDP), a general mathematical framework for decision-
making in partially stochastic environments. For example, in the task of picking a carrot, the
instruction and current observation inform the action; this action alters the environment, leading to a
new observation that subsequently guides the next action. Building on this interleaved Markovian
formulation, we unify a variety of tasks within a shared sequence modeling framework, and present
the task-specific modeling strategies in the following.

World Model (Post-train) Within the MDP framework, a world model aims to learn the dynamics
of the environment by modeling the transition function P (st+1|st,at). The learned world model
enables agents to simulate future trajectories, plan actions, and reason about consequences without
direct interaction with the environment. Specifically, in the context of robotic tasks, we treat the
language instructiom as a general form of action. Given the current observation L1

v and the instruction
L1
t , the world model need to predict future visual content. In this setting, we use the loss computed

solely from the vision tokens as the supervisory signal, enabling the model to generate visual
predictions conditioned on the given instruction and observed state. Sequence Sv formulation is as
follows:

Sv = {L1
t , L

1
v, L

2
v, ..., L

t
v} (1)

Policy Learning (Fine-tune) Policy learning enables the agent to determine optimal actions based
on both current observations and prior states, thereby effectively guiding task execution. In this setting,
we employ a loss function computed solely from the action tokens. The sequence Sa representing the
interactions over time is formulated as:

Sa = {L1
t , L

1
v, L

1
a, L

2
v, L

2
a, . . . , L

t
v, L

t
a} (2)

As illustrated in Figure 2, in this interleaved format, we adopt a two-stage training paradigm for
robotic tasks. The model is initialized with a vision-language (VL) aligned checkpoint, endowing it

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

with basic vision-language capabilities. The post-training stage leverages a world model objective to
capture video dynamics, treating world modeling as a general visual learning task. Building upon the
learned world model, the fine-tuning stage focuses on action learning to refine task-specific behaviors.
We observe that incorporating the world model significantly enhances the efficiency and effectiveness
of policy learning.

4 EXPERIMENTS

4.1 DATASET

CALVIN. CALVIN Mees et al. (2022b) is a simulated benchmark tailored for evaluating long-
horizon, language-conditioned robotic manipulation. It comprises four simulated environments
(A, B, C, and D), each containing demonstration trajectories collected via human teleoperation.
The benchmark encompasses 34 distinct manipulation tasks with a total of 1,000 unique language
instructions. Performance is measured by the average number of successfully completed sub-tasks
within a sequence. Standard evaluation protocols include the ABC→D and ABCD→D settings, which
test a model’s ability to generalize to unseen environments and compositions of long-horizon tasks.

LIBERO. The LIBERO benchmark Liu et al. (2023) is a comprehensive suite for lifelong robotic
manipulation, comprising four task suites with 10 tasks and 50 human demonstrations each. These
suites are designed to evaluate different generalization abilities: LIBERO-Spatial tests spatial rea-
soning by varying layouts with fixed objects; LIBERO-Object assesses object-level generalization
with varying objects in a fixed scene; LIBERO-Goal targets goal-conditioned behavior by varying
task goals; and LIBERO-Long (LIBERO-10) features long-horizon, compositional tasks with diverse
objects, layouts, and goals, challenging temporal and compositional reasoning.

SimplerEnv. SimplerEnv Li et al. (2024d) serves as a simulation benchmark designed to evaluate
the transferability and generalization capabilities of models trained on real-world video data. It
incorporates diverse manipulation tasks on WidowX and Google Robot platforms with variations in
lighting, object textures, colors, and camera viewpoints.

4.2 IMPLEMENTATION DETAILS

The model is a purely autoregressive Transformer with 8.5B parameters, identical to Emu3 Wang
et al. (2024c). Images are tokenized via a VQ-based encoder with 8× spatial compression. Actions
are encoded as frame-to-frame differences, normalized by the 1st/99th percentiles, and tokenized
with FAST Pertsch et al. (2025), whose 1024-token vocabulary replaces the last 1024 IDs of the
language tokenizer.

Post-training Stage. In the post-training stage, we leverage large-scale robot-centric video datasets
to study the effects of various post-training strategies on downstream policy learning. The model is
initialized with pre-trained weights from the first stage of Emu3 Wang et al. (2024c). We curate a
total of 622K videos from existing robotics datasets (details provided in the appendix), and identify
the world model as the most effective post-training approach. During training, supervision is applied
solely on the vision tokens. The model is trained for 30K steps with a batch size of 64.

Fine-tuning Stage. During fine-tuning, the model is initialized with weights from the post-training
stage and trained using a two-frame interleaved vision-action sequence with an action chunk size
of 10. A cosine annealing learning rate schedule is applied, starting at 8 × 10−5, and the loss is
computed solely over action tokens. For the CALVIN benchmark, RGB observations from both
third-person (200× 200) and wrist-view (80× 80) cameras are used. Training is conducted on A100
GPUs with a batch size of 192 for 8k steps. For the LIBERO benchmark, third-person and wrist-view
RGB images (both at 200×200) are used to train a unified model with a batch size of 192 for 8k steps.
A single model is evaluated across four task suites. For the SimplerEnv benchmark, single-view RGB
observations are used with input resized to 256× 256. Training is conducted on the Bridge-WidowX
setup using a batch size of 128 for 20k steps, with an action chunk size of 5.

Inference. Our method adopts an interleaved vision–action training scheme, requiring supervision
from future frames only during training. During inference, the model generates only action tokens

6
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without predicting future frames, conditioning on the current observed images. The action generation
stops once the model predicts the eoa (end of action) token.

Additional implementation details on the post-training strategy, real-robot fine-tuning procedures,
and autonomous driving experiments are provided in the appendix.

Table 1: Long-horizon robotic manipulation evaluation on the CALVIN benchmark.

Method Task Tasks Completed in a Row Avg. Len ↑
1 2 3 4 5

MCIL Lynch & Sermanet (2020) ABCD→D 0.373 0.027 0.002 0.000 0.000 0.40
RT-1 Brohan et al. (2022) ABCD→D 0.844 0.617 0.438 0.323 0.227 2.45
Robo-Flamingo Li et al. (2024c) ABCD→D 0.964 0.896 0.824 0.740 0.660 4.09
GR-1 Wu et al. (2024) ABCD→D 0.949 0.896 0.844 0.789 0.731 4.21
UP-VLA Zhang et al. (2025) ABCD→D 0.962 0.921 0.879 0.842 0.812 4.42
RoboVLMs Li et al. (2024b) ABCD→D 0.967 0.930 0.899 0.865 0.826 4.49
UniVLA ABCD→D 0.985 0.961 0.931 0.899 0.851 4.63
MCIL Lynch & Sermanet (2020) ABC→D 0.304 0.013 0.002 0.000 0.000 0.31
Robo-Flamingo Li et al. (2024c) ABC→D 0.824 0.619 0.466 0.331 0.235 2.47
SuSIE Black et al. (2023) ABC→D 0.870 0.690 0.490 0.380 0.260 2.69
GR-1 Wu et al. (2024) ABC→D 0.854 0.712 0.596 0.497 0.401 3.06
UP-VLA Zhang et al. (2025) ABC→D 0.928 0.865 0.815 0.769 0.699 4.08
RoboVLMs Li et al. (2024b) ABC→D 0.980 0.936 0.854 0.778 0.704 4.25
Seer-Large Tian et al. (2024) ABC→D 0.963 0.916 0.861 0.803 0.740 4.28
UniVLA ABC→D 0.989 0.948 0.890 0.828 0.751 4.41

4.3 MAIN RESULTS

In this section, we evaluate our method on three simulation benchmarks: CALVIN (long-horizon
tasks), LIBERO (diverse generalization), and SimplerEnv (real-to-sim manipulation). Our approach
consistently achieves state-of-the-art performance across all settings.

CALVIN Simulation Evaluation. Table 1 presents the experimental results in the CALVIN
benchmark. Our method achieves the highest performance on both the ABC→D and ABCD→D
tasks, significantly outperforming previous approaches and demonstrating strong capabilities in
multi-task learning and long-horizon planning.

LIBERO Simulation Evaluation. Following Zhao et al. (2025), we report the average success
rate over 500 episodes for each task suite (Spatial, Object, Goal, Long). As shown in Table 2,
UniVLA achieves the best overall performance across all LIBERO benchmark suites, with particularly
significant gains on long-horizon tasks—raising the previous best from 69.0% to 94.0%. Compared
to π0 Pertsch et al. (2025), our method demonstrates superior performance on long-horizon tasks.

Table 2: Comparison of different methods on the LIBERO benchmark.

Method SPATIAL OBJECT GOAL LONG Average
DP* Chi et al. (2023) 78.3% 92.5% 68.3% 50.5% 72.4%
Octo Team et al. (2024) 78.9% 85.7% 84.6% 51.1% 75.1%
OpenVLA Kim et al. (2024) 84.9% 88.4% 79.2% 53.7% 76.5%
SpatialVLA Qu et al. (2025) 88.2% 89.9% 78.6% 55.5% 78.1%
CoT-VLA Zhao et al. (2025) 87.5% 91.6% 87.6% 69.0% 81.1%
π0-FAST Pertsch et al. (2025) 96.4% 96.8% 88.6% 60.2% 85.5%
UniVLA 95.4% 98.8% 93.6% 94.0% 95.5%

SimplerEnv Simulation Evaluation. Table 3 summarizes the performance across various manipu-
lation policies on the Bridge-WidowX setup. Our approach demonstrates a significant improvement
over prior methods, raising the average success rate from 42.7% to 69.8%. In particular, it shows
marked improvements on previously difficult tasks, including stack block, put carrot and put spoon.

4.4 IN-DEPTH ANALYSIS

In this section, we provide an in-depth analysis within our unified framework, which may offer
key insights for the design of future VLA models. We first analyze how post-training enhances

7
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Table 3: Evaluation on SimplerEnv-WidowX across various manipulation tasks.

Model Put Spoon on Towel Put Carrot on Plate Stack Green on Yellow Block Put Eggplant in Yellow Basket Overall
Grasp Success Grasp Success Grasp Success Grasp Success Success

RT-1-X Brohan et al. (2023) 16.7% 0.0% 20.8% 4.2% 8.3% 0.0% 0.0% 0.0% 1.1%
Octo-Base Octo Model Team et al. (2024) 34.7% 12.5% 52.8% 8.3% 31.9% 0.0% 66.7% 43.1% 16.0%
Octo-Small Octo Model Team et al. (2024) 77.8% 47.2% 27.8% 9.7% 40.3% 4.2% 87.5% 56.9% 29.5%
OpenVLA Kim et al. (2024) 4.1% 0.0% 33.3% 0.0% 12.5% 0.0% 8.3% 4.1% 1.0%
RoboVLMs Li et al. (2024b) 70.8% 45.8% 33.3% 20.8% 54.2% 4.2% 91.7% 79.2 37.5%
SpatialVLA Qu et al. (2025) 20.8% 16.7% 29.2% 25.0% 62.5% 29.2% 100% 100% 42.7%
CogACT Li et al. (2024a) - 71.1% - 50.8% - 15.0% - 67.5% 51.3%
UniVLA 83.3% 83.3% 74.0% 66.7% 95.8% 33.3% 100.0% 95.8% 69.8%

Table 4: Effectiveness of World Model Post-Training. We compare different post-training strategies
by fine-tuning only with action prediction on the downstream benchmarks.

Post-training Stage Generalization Long-horizon
Strategy Sequence Supervision LIBERO SimplerEnv-WidowX LIBERO-Long CALVIN

48.5 0.0 17.4 1.46
action prediction T, I, A action 43.9 (-4.6) 0.0 10.6 (-6.8) 0.52(-0.94)

text-to-image T, I vision 69.8 (+21.3) 6.3 (+6.3) 55.8 (+38.4) 3.79 (+2.33)
video prediction I1, ..., It vision 78.9 (+30.4) 17.7 (+17.7) 80.8 (+63.4) 3.59 (+2.13)

world model T, I1, ..., It vision 94.2 (+45.7) 64.6 (+64.6) 89.2 (+71.8) 4.61 (+3.15)

downstream policy learning in terms of both performance (Table 4) and training efficiency (Table 5),
highlighting the potential of world models as a general post-training strategy for robotics. We then
investigate that even without post-training stage, incorporating visual prediction loss (Table 6a) and
historical context (Table 6b) still contributes positively to policy learning.

Effectiveness of World Model Post-Training. Table 4 investigates the effects of different post-
training strategies on downstream policy learning across various simulation benchmarks. The results
reveal that, due to inconsistencies in the action space across tasks, action-only learning exhibits
low transferability, leading to a negative impact on performance. In contrast, most post-training
approaches significantly enhance policy learning, highlighting the crucial role of visual learning in
transferability. Among these, the world model post-training approach yields the most substantial
gains, enhancing both generalization and long-horizon planning capabilities. A comparison with
text-to-image (T2I) training emphasizes the importance of modeling temporal dynamics in video
data, while contrasting with video-only training highlights the essential role of textual guidance in
state transitions. Notably, this world model training requires no action annotations, enabling scalable
learning from large-scale video data and providing a promising direction for future VLA research.

Data and Training Efficiency. Table 5 shows that post-training substantially enhances downstream
policy learning efficiency. On the CALVIN benchmark (Table 5a), our method achieves higher success
rates using only 10% of the fine-tuning data, outperforming prior approaches such as GR-1 Wu et al.
(2024) and RoboVLMs Li et al. (2024b). In addition, Table 5b highlights improved training efficiency,
as the model rapidly converges with fewer fine-tuning iterations. The Simpler-Env results further
demonstrate the effectiveness of world-model-based post-training for efficient policy adaptation
across diverse robotic setups. While similar effects are observed in latent-action methods Ye et al.
(2025); Chen et al. (2024b); Gao et al. (2025), our world model offers a simpler paradigm without
latent actions, achieving better transferability.

Table 5: Post-training enables data-efficient and training-efficient downstream policy learning.

(a) Data efficiency comparison.

Method Data CALVIN
RT-1 Brohan et al. (2022) 10% 0.34
MT-R3M Nair et al. (2022) 10% 0.61
HULC Mees et al. (2022a) 10% 1.11
GR-1 Wu et al. (2024) 10% 2.00
RoboVLMS Li et al. (2024b) 10% 2.52

UniVLA (w/o post-train) 10% 0.15
UniVLA 10% 3.19

(b) Training efficiency comparison.

Fast convergence (CALVIN)
Training Iters 2k 4k 8k

w/o post-train 0.37 0.82 1.46
w/ post-train 4.21 4.56 4.61

Fast adaptation (SimplerEnv-Bridge)
Method Batch size Iters Success

RoboVLMs Li et al. (2024b) 128 50k 37.5
UniVLA 128 12k 64.6

Effectiveness of Visual Prediction. While post-training proves effective, it is also crucial that the
model demonstrates strong performance without relying on it. As shown in Table 6a, our findings
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Table 6: Ablation study on the visual prediction and historical context in policy learning.

(a) Effectiveness of visual prediction.

Post-train Visual prediction CALVIN LIBERO
✓ 4.61 94.2

✓ 4.42 88.7
1.46 48.5

(b) Effectiveness of history context.

Observations Avg. Len ↑
History Window Current + History

0 1 + 0 4.26
10 1 + 1 4.61
10 1 + 2 4.43
20 1 + 2 4.47

indicate that, even without post-training, fine-tuning with visual loss supervision—leveraging the
autoregressive nature of the model—naturally integrates world model learning into the policy learning
process. This approach leads to a significant improvement in the model’s performance.

Effectiveness of History Context. History context—comprising past observations and ac-
tions—provides valuable guidance for robot planning. In this section, we investigate the appropriate
length of the history window during the fine-tuning stage. As shown in Table 6b, our ablation study
on the CALVIN benchmark examines the impact of varying history window lengths. Incorporating
a history window significantly improves performance (from 4.26 to 4.61). However, extending the
window beyond a certain length yields diminishing returns, suggesting that recent observations carry
the most predictive value, consistent with the Markov property in sequential planning.

4.5 BROADER APPLICATIONS

Real-world ALOHA Tasks. We further validate the effectiveness of our approach on the real-world
ALOHA platform through two tasks: pouring water and folding clothes. Our model relies exclusively
on visual observations, without access to any state information. Additional details and demonstration
videos are provided in the appendix.

End-to-end Learning for Autonomous Driving. To further explore the potential of our method,
we perform a preliminary transfer to the autonomous driving domain by finetuning the model on the
NAVSIM benchmark. Notably, our method is a pure autoregressive, token-based framework, modeling
the driving task as causal sequence prediction over discretized multimodal tokens. Despite using
only front-view camera inputs—without relying on BEV representations or multi-sensor fusion—our
model achieves powerful performance on the NAVSIM test set. Notably, world model post-training is
also effective in the driving domain and can lead to significant performance improvements. These
results highlight the strong potential of our method for broader real-world applications.

Table 7: Broader applications of UniVLA for end-to-end autonomous driving on the NAVSIM.
MC: Multi Camera. L: LiDAR. FC: Front Camera.

Method Model Input NC↑ DAC↑ EP↑ TTC↑ C↑ PDMS↑
Human – – 100.0 100.0 87.5 100.0 99.9 94.8

Ego Status MLP – Ego State 93.0 77.3 62.8 83.6 100.0 65.6
VADv2 Chen et al. (2024a) BEV-based MC 97.9 91.7 77.6 92.9 100.0 83.0
UniAD Hu et al. (2023b) BEV-based MC 97.8 91.9 78.8 92.9 100.0 83.4
Transfuser Chitta et al. (2022) BEV-based MC&L 97.7 92.8 79.2 92.8 100.0 84.0

UniVLA Auto-regressive FC 96.9 91.1 76.8 91.7 96.7 81.7
UniVLA (w world model post-train) Auto-regressive FC 98.3 93.8 80.0 94.2 100.0 85.6

5 CONCLUSION

In this paper, we present UniVLA, a unified framework for vision–language–action modeling that
bridges heterogeneous modalities through a shared token space and models them autoregressively.
The proposed unified design facilitates deeper cross-modal integration and inherently supports flexible
multimodal tasks. By leveraging a world model trained to capture dynamics and causality from videos,
we observe significant improvements in downstream policy learning, both in terms of performance and
efficiency. Extensive simulation experiments further demonstrate the model’s strong generalization
ability, efficient policy learning, and broad applicability across diverse domains. These findings
highlight the great potential of our method as a new paradigm for vision–language–action modeling.
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APPENDIX

A IMPLEMENTATION DETAILS

Post-training Stage We began by selecting several high-quality robotics datasets for post-training,
as summarized in Table 8. To account for differences in data collection frequencies across datasets, we
applied dataset-specific frame sampling intervals to ensure that the temporal gap between keyframes
is approximately one second. We further filtered out video sequences containing fewer than six
frames, as well as those lacking corresponding text instructions. Due to the large number of videos
from the Kuka Kalashnikov et al. (2018) dataset, we randomly retained 100k videos to prevent it
from dominating the overall training data.

Table 8: Post-training datasets.

Dataset Source Data Type Raw Videos Used Videos Interval

RT-1 Brohan et al. (2022) Real Text, Video, Action 87212 84084 3
BridgeV2 Walke et al. (2023) Real Text, Video, Action 60064 28083 5
DROID Khazatsky et al. (2024) Real Text, Video, Action 275997 145641 15
Kuka Kalashnikov et al. (2018) Real Text, Video, Action 580392 100000 3
TOTO Zhou et al. (2023) Real Text, Video, Action 902 899 20
Taco Play Rosete-Beas et al. (2023) Real Text, Video, Action 3242 3242 5
FMB Luo et al. (2023) Real Text, Video, Action 8611 7876 5
Berkeley autolab ur5 Chen et al. Real Text, Video, Action 896 896 5
VIOLA Zhu et al. (2023) Real Text, Video, Action 135 135 15
Cmu Play Fusion Chen et al. (2023) Real Text, Video, Action 576 576 10
Utaustin Mutex Shah et al. (2023) Real Text, Video, Action 1500 1500 10

CALVIN Mees et al. (2022b) Sim Text, Video, Action 22966 22966 5
LIBERO Liu et al. (2023) Sim Text, Video, Action 3386 3386 10
ManiSkill2 Gu et al. (2023) Sim Text, Video, Action 30213 193273 10

SSV2 Goyal et al. (2017) Real Text, Video 220847 220847 1

For the experiments in Table 4, to ensure a fair comparison of different post-training strategies,
all models are trained on the same dataset (excluding SSV2 Goyal et al. (2017), which does not
contain action annotations), with only the post-training strategy varied. For the action prediction task,
we organize the input as (T, I, A), where T denotes the text instruction, I the image observations,
and A the action sequence. During training, only the action tokens A are supervised in the loss
computation. For the text-to-image task, the input is organized as (T, I), where T denotes the input
text and I denotes the target image. During training, the loss is only computed on the vision tokens
corresponding to I . For the video prediction task, the input is organized as (I1, ..., It), where I
denotes the video frame. During training, the loss is computed on the vision tokens. For the world
model task, the input is organized as (T, I1, ..., It), where T denotes the input text, I denotes the
video frame. During training, the loss is computed on the vision tokens.

During training, the observations are resized to 256×256, using six frames as input, with the maximum
sequence length set to 6400. We perform full-parameter training for 50k steps using 32 A100 GPUs
(40GB), which takes approximately 4–5 days.

Simulation Finetuning The training setup is described in the main paper. We adopt full-parameter
training, and for evaluation, we follow the testing protocols of OpenVLA Kim et al. (2024) and
RoboVLMs Li et al. (2024b) across various benchmarks. By default, our model is trained using
video-format sequences; however, it also supports fine-tuning with image-format sequences. In the
ablation study evaluating the effect of visual prediction, when post-training is not applied, the visual
token weight is set to 0.5 while the action token weight is set to 1.0, in order to maintain balance
between the two modalities.

Real-robot Finetuning For real-world evaluation, we conduct experiments on the ALOHA plat-
form, using images captured from three perspectives: cam high, wrist left, and wrist
right. The real-robot is controlled using end-effector (EE) pose. All input images are resized to a
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resolution of 128×128. The model outputs a 14-dimensional action vector. The action chunk size
is set to 20. For each task, we train for 8k steps with a batch size of 256. The learning rate is set to
5 × 10−5, and all other settings remain consistent with the above. We also leverage world model
pretraining, using video-based post-training on a collected real-aloha dataset (Table 9). Interestingly,
this post-training provides substantial benefits even when transferring to real-robot execution.

B REAL-ROBOT EXPERIMENTS

Wrist left Wrist rightCamera high

Figure 3: Real-world setup of the AgileX Cobot Magic dual-arm robot. The system is equipped
with three Orbbec RGB cameras for visual observation: one mounted on the left wrist, one on the
right wrist, and one positioned above for a high-angle view.

B.1 ALOHA EXPERIMENTAL SETUP

The robotic platform used in this paper is AgileX Cobot Magic V2.0, a dual-arm robot. As shown in
Figure 3, the robot is equipped with two arms and three camera views, enabling it to perform a variety
of manipulation tasks. For example, Figure 4 illustrates a range of manipulation tasks collected from
real-world scenarios.

Figure 4: Real-world task examples. These include diverse tasks such as wiping a whiteboard,
organizing tableware, making a burger, and plugging in a connector.

Real-World Task Collection Table 9 provides a summary of the real-world data collected from the
physical robot, recorded at an actual frequency of 30 Hz. A total of 8 tasks were included, with each
task collecting approximately 500 trajectories on average. During preprocessing, static frames at the
beginning and end of each trajectory were filtered out.

Table 9: Real-world task trajectories.

Fold
Clothes

Clear
Desk

Store
Glasses

Food
Packing

Pour
Water

Clean
Blackboard

Insert
Plug

Make
Hamburger

528 500 500 500 496 500 500 640

Data Processing To reduce redundancy and improve training efficiency, we select keyframes based
on thresholding the changes in recorded action joint values. For each selected sequence, the action
chunk is normalized by subtracting the joint values of the first frame.
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B.2 ALOHA EXPERIMENTS

For real-world experiments, we perform world model post-training using video data collected from
the ALOHA platform, consisting of about 1,000 videos (Pouring water and fold clothes).

Pouring Water As shown in Table 10, we decompose the pouring task into three sequential
subtasks: right-hand grasping the bottle, left-hand grasping the cup, and pouring. We evaluate
success rates under varying spatial configurations on the table over 8 trials. Interestingly, we observe
that world model post-training yields a substantial performance improvement even in real-world
experiments.

Table 10: Success rate (%) on the pouring water task.

Setting Right-hand Grasp Bottle Left-hand Grasp Cup Pour Water Overall

UniVLA w/o World Model 12.5 0.0 0.0 0.0
UniVLA w/ World Model 87.5 62.5 37.5 37.5

Folding Clothes As shown in Figure 5, despite the precision loss from discrete tokens, our method
is still able to perform fine-grained tasks such as folding clothes.

Figure 5: Visualizations of the folding clothes task performed by our method.

Real-world Latency For real-world experiments, model inference is conducted remotely via
network communication on an NVIDIA A100 GPU (40GB). The dual-arm robotic platform (AgileX
Cobot Magic) receives three image observations, each at a resolution of 128×128 pixels. Actions
are predicted in discrete chunks of 20 steps, corresponding to approximately a 3.3-second motion
window. Each inference step on the model requires roughly 2 seconds, and when accounting for
communication and data I/O overhead, the total system latency amounts to approximately 3 seconds.
Consequently, the system generates 20 action steps every 3 seconds. These predicted actions are
then executed sequentially over the 20 timesteps, with each step interpolated five times to achieve
smoother and more precise control.

C AUTONOMOUS DRIVING EXPERIMENTS

NAVSIM Setup The NAVSIM dataset Dauner et al. (2024), resampled from OpenScene to empha-
size challenging scenarios, is currently one of the most established end-to-end evaluation benchmarks
in the autonomous driving domain. The dataset is divided into two parts: Navtrain and Navtest,
comprising 1,192 scenarios for training and validation, and 136 scenarios for testing.

For model training, the input images are resized to a resolution of 512×288. We follow the standard
training setup, using the current image frame and ego status to predict trajectories for the next 8
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Visual Prediction: Pick up the can on the table

Put the yellow and white mug in the microwave and close it

Spatial Grounding: Locate the [objects]

Turn on the stove and put the moka pot on it

Figure 6: Multimodal capabilities of UniVLA. Top: Action outputs for executing long-horizon
tasks in the LIBERO benchmark. Bottom: Visual predictions and spatial grounding demonstrating
the model’s spatiotemporal understanding. The red box marks the current observation; green boxes
indicate predicted object detections.

frames. Both the action and ego status are encoded using the fast tokenizer. For post-training of the
world model, we leverage six consecutive vision–action pairs, jointly supervising both vision and
action outputs.

D MULTIMODAL CAPABILITY

As illustrated in Figure 6, we qualitatively showcase the model’s ability to interleave multiple
modalities—action, language, and vision—within a unified framework. This design enables policy
learning for embodied control, spatial reasoning through language output, and future state prediction
via visual output, highlighting the model’s capacity for generalizable multimodal understanding.

E LIMITATIONS AND FUTURE WORK

Due to limited computational resources, our investigation into post-training scalability is still in its
early stages. Nonetheless, initial results are promising and indicate potential for scaling to larger
video datasets. Furthermore, while the unified multimodal framework exhibits strong capabilities
in cross-modal learning, further research is needed to fully integrate it with reinforcement learning
paradigms, enabling more robust and adaptive policy learning.

F USE OF LLMS

Large Language Models (LLMs) are used for polishing writing in this manuscript.
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