
Appendix A Assessing Conditional Independence/Dependence in
CIFAR-10H and Imagenet-16H Datasets

We investigate the degree to which our conditional independence assumption is satisfied empirically in
the datasets used in the paper. Specifically, of interest is the assumption of conditional independence
of m(x) and h(x), given y. Assessing conditional independence is not straightforward given that
m(x) is a K-dimensional real-valued vector and h(x) and y each take one of K categorical values,
with K = 10 for CIFAR-10H and K = 16 for ImageNet-16H. While there exist statistical tests for
assessing conditional independence for categorical random variables, with real-valued variables the
situation is less straightforward and there are multiple options such as different non-parametric tests
involving different tradeoffs [Runge, 2018, Marx and Vreeken, 2019, Mukherjee et al., 2020, Berrett
et al., 2020].

Given these issues we investigate the degree of conditional dependence using two relatively simple
approaches. The first approach looks at the conditional mutual information (CMI) between the
predicted label from the model and the predicted label from the human, conditioned on the true label.
While this is indirect, in that it does not use the real-valued scores, it does allow us to measure CMI in
a straightforward manner given that all the variables involved are categorical. The CMI is defined as

CMI(M ;H|Y ) =
∑
y

p(y)
∑
m,h

p(m,h|y) log
p(m,h|y)

p(m|y)p(h|y)

where M,H, Y are the K-ary random variables for the model, human, and true labels respectively
(taking values m,h, y). The inner sum over m,h is the mutual information between M and H
conditioned on a particular value of Y = y. All probabilities were estimated using relative frequencies
(maximum likelihood) from the evaluation sets for each dataset.

Table 3 shows the results for the 4 different models for CIFAR-10H and the 2× 4 different combina-
tions of models and noise for ImageNet-16H. To put the CMI numbers on an interpretable scale, we
also compute the (unconditional) mutual information between M and H in each case. If M and H
are truly independent conditioned on Y , then the true CMI values should be 0.

The broad conclusion from Table 3 is that for the CIFAR-10H there appears to be little to no
conditional dependence (of model labels and human labels, given true labels) given that the CMI
values are very close to 0. For the ImageNet-16H data the CMI values are higher, suggesting evidence
for weak conditional dependence in this dataset, particularly at high noise levels where neither the
human or the model are very accurate.

Figures 4, 5, 6 show the results of another assessment, now using model probabilities, for the 4 models
for the CIFAR-10H data, for VGG-19 on ImageNet-16H, and for GoogLeNet on ImageNet-16H,
respectively. The x-axis in each plot is the mean probability from the model for the true label y,
conditioned on Y = y. The y-axis shows the mean probability (in red) from the model for the true

Table 3: Conditional and unconditional mutual information for various datasets and models.

Dataset Model Noise CMI(M ;H|Y ) MI(M ;H)

CIFAR-10H DenseNet 0.030 2.829
CIFAR-10H PreResNet-164 0.043 2.770
CIFAR-10H ResNet-110 0.037 2.404
CIFAR-10H ResNet-164 0.038 2.707

ImageNet-16H VGG-19 80 0.119 2.954
ImageNet-16H VGG-19 95 0.174 2.816
ImageNet-16H VGG-19 110 0.230 2.277
ImageNet-16H VGG-19 125 0.314 1.527
ImageNet-16H GoogLeNet 80 0.121 2.825
ImageNet-16H GoogLeNet 90 0.161 2.643
ImageNet-16H GoogLeNet 110 0.260 2.182
ImageNet-16H GoogLeNet 125 0.364 1.421
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label y, conditioned now on both Y = y and H = y, i.e., conditioned on the event that the human
also predicts the true label.

If the model’s probabilities for the true labels are independent ofH = y, then the x and y values should
be the same (i.e., on the diagonal). The degree to which these points (in red) are not on the diagonal is
an indication of some conditional dependence of the model’s probabilities on the human labels h. The
red points are generally close to the diagonal, or slightly above (indicating, not surprisingly, that if the
human predicts the true label, the model’s probability for the true label tends to increase slightly (if at
all) rather than decrease.) To put these values on an appropriate scale we also compute (empirically
from the data) the maximum possible increase that could occur, when additionally conditioning on
the human label h being correct (the black points). The conclusions are similar to what we found
with conditional mutual information, namely, that there is little indication of conditional dependence
in the CIFAR-10H data, and some indication of dependence in the ImageNet-16H data, particularly
for higher noise levels.

Figure 4: Change in expected values of model probabilities on CIFAR-10H data for the true class y,
conditioning on just y (x-axis), versus conditioning on both y and h(x) = y (y-axis, in red).
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Figure 5: Same as Figure 4 but for VGG-19 models on ImageNet-16H data.

Figure 6: Same as Figure 4 but for GoogLeNet models on ImageNet-16H data.
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Appendix B Derivation of Fully Bayesian Model for TS

In this section, we derive a fully Bayesian method for combining classifier probabilities with human
labels. In summary, we place a Gaussian prior on the log-temperature (for calibration) and independent
Dirichlet priors over the columns of the human confusion matrix. The posterior human confusion
matrix is available in closed-form (due to conjugacy), and we sample from the posterior distribution
over calibration parameters using MCMC. To predict on a new datapoint, we marginalize over the
calibration and confusion parameters using the sampled temperatures and closed-form posterior
confusion parameters. This marginalization is only approximate due to the required sampling step.

In more detail, let ϕ∗i ∼ Dirichlet(αi) for i = 1, 2, . . . , k be priors over the columns of the confusion
matrix, and let log T = τ ∼ N (µ0, σ

2
0) be a prior over the log-temperature. We use ϕ to denote the

confusion matrix with columns ϕ∗1, . . . , ϕ∗K . We assume a fully labeled dataset is available, and
of the form D = {(h`,m`, y`)}. Take the calibration and confusion parameters to be conditionally
independent given the data:

p(τ, ϕ|D) = p(τ |ϕ,D)p(ϕ|D) = p(τ |D)p(ϕ|D) (8)

The confusion parameters have a conjugate prior, but the calibration parameters do not – hence,
suppose that we have sampled {τ1, . . . , τns} from the posterior p(τ |D). To do inference on a new
datapoint (h,m), we marginalize over ϕ and τ for a particular choice of y:

p(y|h,m,D) =

∫∫
p(y, τ, ϕ|h,m,D)dϕdτ (9)

=

∫∫
p(y|τ, ϕ, h,m,D)p(τ |D)p(ϕ|D)dϕdτ (10)

The second line is obtained by conditioning on τ, ϕ and using the fact that τ and ϕ are independent
given D. We now use Equation (2) to re-write the first term, obtaining (up to a constant):

∝
∫∫

p(h|y, ϕ)p(y|m, τ)p(τ |D)p(ϕ|D)dϕdτ (11)

We now split the integral into its independent components, and use our parametric assumptions to
replace p(h|y, ϕ) with ϕhy and p(y|m, τ) with m(τ)

y :

=

[∫
m(τ)
y p(τ |D)dτ

] [∫
ϕhyp(ϕ|D)dϕ

]
(12)

The second integral is the posterior mean of ϕhy, which is available in closed-form by conjugacy.
However, as we do not have a closed-form posterior for p(τ |D), we estimate the first integral using
our samples. In all, we obtain

≈

 1

ns

ns∑
j=1

m(τj)
y

 · α′hy∑K
`=1 α

′
`j

(13)

where α′ij is the posterior Dirichlet parameter for entry (i, j) in the confusion matrix ϕ. Note that
the resulting probabilities will be un-normalized, but normalization is straightforward as we are
considering a set of discrete outcomes.

In practice, we use HMC [Neal et al., 2011] in the Pyro probabilistic programming language [Bingham
et al., 2019] to sample from the posterior over log-temperatures.
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Appendix C EM Algorithm Details

In this section, we provide a detailed derivation and description of our EM algorithm.

Let DC = {(m(x`), h(x`))}n`=1 be an unlabeled dataset used for fitting combination parameters,
consisting of classifier probabilities and human labels but no ground truth labels. Our goal is to infer
classifier calibration parameters θ and the human confusion matrix ϕ from DC . We use m` as a
shorthand for m(x`) throughout (respectively for h).

We can fit this model via EM, where the ground truth is treated as latent. For simplicity, we derive
the maximum likelihood variant, and discuss the necessary changes for the MAP variant at the end of
this section. In the E-step, p(y|m`, h`, ϕ, θ) is estimated from Equation (3).

For the M-step, we maximize the expected log-likelihood, where we use Θ = {θ, ϕ} to denote the
set of all parameters:

Θt+1 = arg max
Θ

∑
i

Ey∼p(y|h,m,θt) [log p(y, h`,m`|Θ)]

= arg max
Θ

∑
`

∑
y

p(y|h`,m`,Θt) log p(y, h`,m`|Θ)

= arg max
Θ

[∑
`

∑
y

p(y|h`,m`,Θt) log p(h`|y,Θ)

+
∑
`

∑
y

p(y|h`,m`,Θt) log p(y|m`,Θ) + C

]

where C is a constant not depending on Θ. Assuming further that the calibration and confusion
parameters are independent, the M-step becomes two independent optimizations (i.e. one for θ and
one for ϕ):

θt+1 = arg max
θ

∑
`

∑
y

p(y|h`,m`,Θt) log p(y|m`, θ) (14)

ϕt+1 = arg max
ϕ

∑
`

∑
y

p(y|h`,m`,Θt) log p(h`|y, ϕ) (15)

In Equation (14), log p(y|m`, θ) depends on the calibration method we choose, and the update for
θt+1 does not have a closed-form update. We use gradient methods to maximize this term.

Equation (15) is maximum likelihood for the confusion matrix and hence ϕt+1 can be solved for in
closed-form. In particular, the value for ϕt+1 at entry i, j is

ϕi,j =

∑
`:h`=a p(y = j|h`,m`,Θt)∑
` p(y = j|h`,m`,Θt)

(16)

For the MAP variant of our EM algorithm, our optimizations become

θt+1 = arg max
θ

∑
`

∑
y

p(y|h`,m`,Θt) log p(y|m`, θ) + log p(θ) (17)

ϕt+1 = arg max
ϕ

∑
`

∑
y

p(y|h`,m`,Θt) log p(h`|y, ϕ) + log p(ϕ) (18)

The first optimization (Equation (17)) is still fit using gradient methods. As we choose independent
Dirichlet priors for each column of ϕ, the closed-form estimate for ϕ becomes

ϕi,j =
αji − 1 +

∑
`:h`=a p(y = j|h`,m`,Θt)

γ + (K − 1)β −K +
∑
` p(y = j|h`,m`,Θt)

(19)

which is analogous to the typical Dirichlet-multinomial posterior.
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Appendix D Conditional Independence Combination as a Special Case of
Logistic Regression

We demonstrate that the conditional independence combination (Equation (3)) can be seen as a
special case of logistic regression taking m(x) and h(x) as inputs, but only when the calibration
map takes a particular functional form. Calibration maps such as temperature scaling and Dirichlet
calibration [Kull et al., 2019] satisfy this requirement.

D.1 Logistic Regression

In the logistic regression (LR) model, for input x we have features z ∈ R2k, z(x) = m(x)⊕H(x),
where H(x) is the one-hot version of h(x) and ⊕ is the direct sum. A weight matrix W ∈ Rk×2k

and a bias b ∈ Rk are to be learned. The probabilistic output is given by an element-wise softmax:

x 7→ SoftMax(Wz(x) + b) ∈ Rk (20)

We can write W = [Wm|Wh] as a block matrix, where Wm,Wh ∈ Rk×k are the model and human
weights respectively. In log-space, the LR model is then

log p(y|m(x), h(x)) = Wmm(x) +WhH(x) + b− log(C) (21)

where C is a normalizing constant. Since H(x) is one-hot, the term WhH(x) corresponds to a
column in Wh, e.g. if H(x) = [1, 0, . . . , 0]T, then WhH(x) is the first column of Wh. The above is
the full vector of probabilities. To make it clearer, for an index i, let W i

m be the ith row of Wm (resp.
for Wh).

p(y = i|m(x), h(x)) = W i
mm(x) +W i

hH(x) + bi − log(C) (22)

= W i
mm(x) + (Wh)ih(x) + bi − log(C) (23)

D.2 CI Model

In the CI model,
p(y|m(x), h(x)) ∝ p(y|m(x))p(h(x)|y) (24)

In log-space for a single index i:

log p(y = i|m(x), h(x)) = log p(y|m(x)) + log p(h(x)|y)− log(C) (25)

= logmθ
i (x) + logϕh(x)y − log(C) (26)

D.3

From this, we see that Wh is analogous to the log-confusion matrix of h. Similarly, Wm can be
thought of as a linear operator mapping the model probabilities to log-calibrated model probabilities.

If we use logm(x) (pointwise) for the input feature z(x), the LR model is

p(y = i|m(x), h(x)) = W i
m logm(x) + (Wh)ih(x) + bi − log(C) (27)

In the special case Wm = 1
T I , bi = 0, and Wh = logϕT, we recover temperature scaling CI. In fact,

the equation Wm logm(x) + b is the same as Dirichlet calibration – vector scaling / matrix scaling
are special cases as well.
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Appendix E Learning Curves

In addition to those in Figure 2, we provide learning curves that include additional baseline models:
logistic regression (LR), the single-parameter confusion matrix method (SP), and the fully Bayesian
P+L method (P+L Fully Bayesian). We report only the mean error rate averaged over 10 random
seeds for the sake of visual clarity. All methods (other than LR) are fit using MAP inference. We
do not present the maximum likelihood (ML) variants for these methods, as the MAP methods
outperform their ML counterparts in our experiments.

While the SP method is label efficient given its low parameter count, it often underfits to the data and
converges to an error rate worse than the P+L method. In some cases, the fully Bayesian obtains a
lower error rate than the P+L method, but requires more labeled data to be fit, as well as being more
computationally intensive. On the CIFAR-10 data, the logistic regression method is label inefficient,
and while it outperforms the L+L method, converges to a worse error rate than the P+L method. In
contrast, LR is able to outperform the P+L method on the ImageNet-16H datasets, but only when fit
several hundred datapoints.
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Figure 7: Learning curves for various models on CIFAR-10H.
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Figure 8: Learning curves for VGG-19 on ImageNet-16H at various noise levels.
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Figure 9: Learning curves for GoogLeNet on ImageNet-16H at various noise levels.
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Appendix F Dataset, Model Training, and Code Details

F.1 CIFAR-10H

The CIFAR-10H dataset Peterson et al. [2019] consists of the 10, 000 images in the standard CIFAR-
10 test set, but each image is labeled by approximately 50 individual human labelers. There are ten
classes in this dataset.

We study four CNN model architectures on CIFAR-10H:

• ResNet-110 and ResNet-164 He et al. [2016a]: Deep residual networks with 110 and 164
layers respectively.

• PreResNet-164 He et al. [2016b]: A deep residual network with identity mappings as skip
connections, with 164 layers.

• DenseNet-BC Huang et al. [2017]: A densely connected CNN with L = 190 layers and a
growth-rate of k = 40, using bottleneck layers.

For each model, we use pre-trained weights available at https://github.com/bearpaw/
pytorch-classification (MIT License). These models were trained on the standard CIFAR-10
training split.

F.2 ImageNet-16H

The ImageNet-16H dataset consists of noisy images from the ImageNet test set Deng et al. [2009],
distorted by phase noise at each spatial frequency based on four levels of phase noise (80, 95, 110,
and 125). Approximately 7200 images were classified at each noise level (with slight variability per
noise level). The number of classes is reduced to 16 (as compared to 1000 in the original ImageNet
dataset).

We study two model architectures on ImageNet-16H: VGG-19 Simonyan and Zisserman [2015] and
GoogLeNet Szegedy et al. [2015]. Our training procedure is detailed as follows. We first load a
pre-trained ImageNet model (trained on the original 1000 class ImageNet dataset) from the PyTorch
model library [Paszke et al., 2019]. We remove the final linear layer and replace it with a randomly
initialized linear layer with a 16-dimensional output. We then fine-tune all model weights (using
the cross-entropy loss) on noisy images from the ImageNet-16H training set (261,168 images). The
models are fine-tuned to all levels of noise simultaneously by randomly assigning a different degree
of phase noise (ranging from 0 to 130 degrees) to each training image in a batch.

F.3 Additional Code Details

Our experiments are implemented in Python 3.8, and make use of the following libraries:

• Scikit-Learn [Pedregosa et al., 2011] (BSD License)
• PyTorch [Paszke et al., 2019] (BSD License)
• Pyro [Bingham et al., 2019] (Apache 2.0 License)
• NumPy [Harris et al., 2020] (BSD License)
• IMax Calibration Patel et al. [2021] (AGPL-3.0 License)
• Ensemble Temperature Scaling Zhang et al. [2020] (MIT License)

F.4 Compute Resources

All of our experiments were conducted on a standard desktop computer (AMD Ryzen 5 6-core @
3.6GHz, 16GB memory).

Other than the fully Bayesian combination, all combination methods studied in this work do not
require significant computational resources and can be fit on the order of seconds. The fully Bayesian
method (Appendix B) is more computationally intensive as it requires the use of MCMC to sample
from the posterior distribution over calibration parameters, but can still be fit in approx. 2 minutes
with 5000 labeled datapoints. However, we focus on MAP estimation in our main results (which
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does not require MCMC), and only compare to the fully Bayesian setup as a baseline comparison. In
addition, we find the fully Bayesian setup to be less label efficient than the MAP counterpart (see
Appendix E).

In terms of model training, our ImageNet-16H models were trained on an internal GPU server with 8x
GTX 2080ti GPUs and 2 x Intel Xeon Gold 5218 (16 core) processors. On our hardware, fine-tuning
for 50 epochs requires approximately 6 hours of training per model.
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Appendix G Individual-Level Combinations

Here, we investigate the robustness of our method to the sampling used to select human-generated
labels for the images in our experiments. In particular, we fit a confusion matrix for each individual
human annotator on both the CIFAR-10H and ImageNet-16H datasets.

The combination is fit with 25 ground-truth labeled datapoints, and is evaluated using 25 datapoints
on CIFAR-10H and 175 images on ImageNet-16H. The combination method is our Bayesian P+L
combination. The train and test sizes are small here, as each individual human only labels a few
images in our datasets. The reported results are averaged across all human labelers for ten random
train/test splits.

In general, we see that the individual-level combinations obtain a similar level of performance to that
of the sampled combinations (i.e. compared to the results in Appendix H).

Model Name Human Model P+L

ResNet-110 5.11± 5.7 11.1± 2.5 4.06± 1.76
ResNet-164 — 6.09± 1.75 2.87± 1.4
PreResNet-164 — 4.92± 1.6 2.62± 1.3
DenseNet-BC — 3.31± 1.4 2.04± 1.1

Table 4: Error rates on CIFAR-10H, ± one standard deviation. We fit a confusion matrix to
each individual labeler using 25 datapoints, and evaluated with the remaining data (175 points per
individual). The combination is the MAP P+L method, using the priors detailed in the main body of
the paper.

Noise Level Human Model P+L

80 9.81± 8.5 11.29± 6.3 6.15± 4.9
95 13.87± 9.7 12.56± 6.3 8.11± 5.5
110 23.13± 12.3 15.49± 7.6 11.59± 6.7
125 39.84± 13.4 21.92± 8.2 20.87± 8.3

Table 5: Error rates with VGG19 on ImageNet-16H, ± one standard deviation. We fit a confusion
matrix to each individual labeler using 25 datapoints, and evaluated with the remaining data (25
points per individual). The combination is the MAP P+L method, using the priors detailed in the
main body of the paper.

Noise Level Human Model P+L

80 9.81± 8.5 14.49± 7.0 7.11± 5.6
95 13.87± 9.7 17.16± 7.0 9.72± 6.4
110 23.13± 12.3 18.88± 8.2 14.25± 7.7
125 39.84± 13.4 26.63± 9.2 24.30± 9.3

Table 6: Error rates with DenseNet-BC on ImageNet-16H, ± one standard deviation. We fit a
confusion matrix to each individual labeler using 25 datapoints, and evaluated with the remaining
data (25 points per individual). The combination is the MAP P+L method, using the priors detailed
in the main body of the paper.
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Appendix H Calibration Methods and Uncalibrated Combinations

In this section we provide additional empirical results on CIFAR-10H and ImageNet-16H. In partic-
ular, we evaluate several different calibration methods (MAP TS (as used in the main paper) Guo
et al. [2017], Ensemble TS Zhang et al. [2020], IMax Binning Patel et al. [2021]). We also compare
to the L+L combination, and the P+L combination of the uncalibrated model probabilities with the
human labels (Uncalibrated). The error rate of the human alone (Human) and model alone (Model)
are provided for context.

In most cases, human-machine combinations using calibrated probabilities outperform those using
uncalibrated probabilities. Moreover, in some cases we obtain small gains in performance by using a
more complex calibration map (IMax Binning), but it is not clear how to incorporate prior information
with this method. As prior information is useful in increasing the label efficiency and decreasing the
error rate of the combination, our focus in the main paper is on MAP TS as our calibration method.

All tables in this section correspond to error rates (± one standard deviation) averaged across 25
different random seeds. The combinations (P+L, Equation (3)) are fit using 5000 labeled data points
on CIFAR-10H and using between 5067 and 5152 data points on ImageNet-16H (varies by noise
level). The combinations are evaluated using 3000 data points on CIFAR-10H and using between
2171 and 2208 on ImageNet-16H.

Combination

Model Name Human Model L+L Uncalibrated TS ETS IMax

ResNet-110 4.62± 0.33 11.28± 0.44 4.70± 0.36 4.40± 0.25 3.83± 0.15 3.76± 0.25 3.80± 0.24
ResNet-164 — 6.10± 0.38 4.71± 0.37 3.05± 0.23 2.78± 0.15 2.82± 0.23 2.85± 0.23
PreResNet-164 — 5.00± 0.36 4.36± 0.39 2.90± 0.22 2.43± 0.22 2.46± 0.25 2.43± 0.26
DenseNet-BC — 3.25± 0.30 3.39± 0.32 2.22± 0.21 2.01± 0.15 2.17± 0.17 2.04± 0.18

Table 7: Error rates (%, ± one standard deviation) averaged over 25 seeds on CIFAR-10H for various
classifiers.

Combination

Human Model L+L Uncalibrated TS ETS IMax

9.99± 0.48 11.10± 0.60 6.78± 0.42 7.52± 0.52 6.03± 0.54 6.79± 0.44 6.31± 0.46
14.07± 0.70 12.58± 0.53 9.01± 0.57 9.02± 0.44 7.89± 0.37 9.32± 0.49 8.62± 0.47
22.99± 0.71 15.51± 0.62 14.07± 0.82 12.59± 0.53 11.62± 0.54 13.18± 0.59 12.30± 0.57
39.76± 0.75 22.07± 0.69 21.89± 0.66 19.45± 0.62 19.63± 0.70 20.74± 0.62 20.47± 0.63

Table 8: Error rates (%,± one standard deviation) averaged over 25 seeds, VGG-19 on ImageNet-16H.
Each row corresponds to a different noise level (80, 95, 110, 125).

Combination

Human Model L+L Uncalibrated TS ETS IMax

9.99± 0.48 14.48± 0.70 7.33± 0.39 8.06± 0.50 6.80± 0.47 7.73± 0.41 7.66± 0.44
14.07± 0.70 17.22± 0.72 9.93± 0.73 10.66± 0.52 9.67± 0.40 10.23± 0.51 10.05± 0.49
22.99± 0.71 19.09± 0.75 15.43± 0.71 14.78± 0.64 14.09± 0.55 14.76± 0.53 14.53± 0.53
39.76± 0.75 27.06± 0.47 25.64± 0.43 23.06± 0.72 22.60± 0.63 24.38± 0.64 23.91± 0.69

Table 9: Error rates (%, ± one standard deviation) averaged over 25 seeds, GoogLeNet on ImageNet-
16H. Each row corresponds to a different noise level (80, 95, 110, 125).
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Appendix I Calibration Properties of Combinations

We further study the calibration properties of human-machine (P+L) combinations. The results
in this Appendix are analogous to the results in Table 2 for our ImageNet-16H models, where we
show various calibration metrics as we vary the number of labeled datapoints used for fitting the
combination. In general, we find that using only a small number of labeled datapoints (10 in our
experiments) is sufficient, and we do not observe further improvements in calibration by using more
labeled data (5000 points in our experiments) to fit the combination.

In addition, we investigate whether the resulting human-machine combination can be further cali-
brated. We calibrate the resulting human-machine combinations (with MAP TS) using the same data
used to fit the combination, i.e. 5000 labeled datapoints (Recal. Comb.). We find that it is possible to
further reduce the ECE of the combinations, but other metrics only see small improvements. However,
we note that this does not affect the error rate of the combination, as MAP TS is accuracy-preserving.

No Calibration 10 Datapoints 5000 Datapoints

Metric Model Name Model Comb. Model Comb. Model Comb. Recal. Comb.

ECE (10−2)

ResNet-110 5.23± 0.35 2.08± 0.25 3.03± 0.58 1.30± 0.23 2.99± 0.36 1.76± 0.18 0.85± 0.22
ResNet-164 2.98± 0.34 1.63± 0.23 1.95± 0.33 1.25± 0.18 1.89± 0.32 1.39± 0.18 0.84± 0.20
PreResNet-164 3.03± 0.29 1.87± 0.22 2.31± 0.33 1.40± 0.26 2.27± 0.31 1.43± 0.21 1.06± 0.21
DenseNet-BC 2.18± 0.27 1.53± 0.20 1.76± 0.28 1.34± 0.14 1.73± 0.28 1.27± 0.13 0.95± 0.18

cwECE (10−2)

ResNet-110 0.81± 0.07 0.23± 0.05 0.58± 0.07 0.24± 0.05 0.58± 0.06 0.19± 0.06 0.19± 0.04
ResNet-164 0.39± 0.06 0.15± 0.03 0.31± 0.05 0.15± 0.04 0.31± 0.05 0.13± 0.03 0.14± 0.03
PreResNet-164 0.29± 0.04 0.13± 0.03 0.28± 0.04 0.13± 0.03 0.28± 0.04 0.13± 0.03 0.13± 0.03
DenseNet-BC 0.23± 0.03 0.11± 0.02 0.24± 0.02 0.12± 0.02 0.24± 0.02 0.11± 0.02 0.10± 0.02

NLL

ResNet-110 0.40± 0.02 0.16± 0.01 0.35± 0.02 0.15± 0.01 0.35± 0.02 0.14± 0.01 0.12± 0.01
ResNet-164 0.24± 0.02 0.11± 0.01 0.20± 0.01 0.10± 0.01 0.20± 0.01 0.10± 0.01 0.09± 0.01
PreResNet-164 0.23± 0.02 0.13± 0.02 0.19± 0.02 0.11± 0.01 0.19± 0.02 0.10± 0.01 0.08± 0.01
DenseNet-BC 0.17± 0.01 0.10± 0.01 0.14± 0.01 0.09± 0.01 0.14± 0.01 0.08± 0.01 0.07± 0.01

Table 10: Calibration metrics on CIFAR-10H.

No Calibration 10 Datapoints 5000 Datapoints

Metric Noise Level Model Comb. Model Comb. Model Comb. Recal. Comb

ECE (10−2)

80 8.54± 0.54 5.17± 0.49 7.30± 0.69 3.91± 0.53 7.15± 0.60 4.01± 0.42 3.17± 0.42
95 8.96± 0.48 5.72± 0.39 7.49± 0.77 4.93± 0.36 7.26± 0.51 4.56± 0.37 3.23± 0.35
110 9.76± 0.53 7.81± 0.48 7.81± 0.91 6.31± 0.67 7.24± 0.56 6.07± 0.53 3.92± 0.49
125 11.81± 0.64 10.89± 0.52 7.34± 1.45 10.21± 0.64 7.29± 0.56 8.46± 0.68 4.49± 0.60

cwECE (10−2)

80 1.10± 0.07 0.68± 0.05 1.01± 0.07 0.59± 0.06 1.01± 0.06 0.54± 0.05 0.56± 0.04
95 1.18± 0.06 0.82± 0.05 1.13± 0.06 0.73± 0.06 1.12± 0.06 0.72± 0.04 0.69± 0.04
110 1.44± 0.06 1.14± 0.06 1.38± 0.07 1.04± 0.08 1.36± 0.07 1.03± 0.07 0.96± 0.05
125 1.98± 0.06 1.73± 0.07 1.86± 0.05 1.54± 0.07 1.85± 0.04 1.52± 0.06 1.45± 0.06

NLL

80 0.71± 0.05 0.49± 0.04 0.53± 0.05 0.37± 0.04 0.52± 0.03 0.34± 0.03 0.27± 0.02
95 0.70± 0.03 0.52± 0.03 0.55± 0.04 0.41± 0.03 0.54± 0.03 0.39± 0.02 0.32± 0.02
110 0.73± 0.03 0.61± 0.04 0.60± 0.04 0.51± 0.05 0.57± 0.03 0.49± 0.04 0.41± 0.02
125 0.89± 0.03 0.83± 0.04 0.75± 0.03 0.77± 0.03 0.74± 0.02 0.71± 0.03 0.64± 0.02

Table 11: Calibration metrics for VGG-19 on ImageNet-16H.

No Calibration 10 Datapoints 5000 Datapoints

Metric Noise Level Model Comb. Model Comb. Model Comb. Recal. Comb.

ECE (10−2)

80 7.39± 0.58 4.10± 0.47 4.60± 0.62 3.04± 0.32 4.52± 0.58 3.07± 0.40 1.97± 0.39
95 9.23± 0.58 5.68± 0.40 5.91± 0.55 4.19± 0.54 5.76± 0.59 4.32± 0.42 2.51± 0.45
110 9.04± 0.68 7.60± 0.46 5.34± 1.15 6.66± 0.71 5.34± 0.37 5.98± 0.50 3.00± 0.43
125 11.98± 0.40 10.95± 0.62 6.78± 1.40 11.33± 0.36 6.54± 0.43 7.98± 0.60 3.37± 0.42

cwECE (10−2)

80 1.33± 0.07 0.67± 0.04 1.30± 0.07 0.63± 0.04 1.30± 0.07 0.57± 0.03 0.57± 0.03
95 1.47± 0.08 0.87± 0.05 1.46± 0.05 0.78± 0.06 1.47± 0.05 0.75± 0.04 0.74± 0.05
110 1.70± 0.08 1.23± 0.06 1.66± 0.03 1.12± 0.07 1.65± 0.04 1.10± 0.06 1.03± 0.06
125 2.31± 0.06 1.92± 0.06 2.19± 0.06 1.70± 0.06 2.19± 0.06 1.68± 0.05 1.59± 0.06

NLL

80 0.59± 0.03 0.34± 0.02 0.50± 0.02 0.29± 0.02 0.50± 0.03 0.28± 0.02 0.25± 0.02
95 0.65± 0.03 0.43± 0.03 0.56± 0.01 0.37± 0.02 0.56± 0.01 0.36± 0.02 0.33± 0.02
110 0.75± 0.03 0.60± 0.03 0.66± 0.03 0.56± 0.03 0.66± 0.02 0.53± 0.02 0.47± 0.02
125 0.97± 0.02 0.88± 0.03 0.85± 0.02 0.89± 0.02 0.85± 0.01 0.79± 0.02 0.74± 0.02

Table 12: Calibration metrics for GoogLeNet on ImageNet-16H.
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Appendix J Proofs of Theorem (1) and Theorem (2)

We provide proofs for our theoretical claims in Section 6.

J.1 Confidence Ratios

Proof of Theorem (1). Recall that c(x) is the prediction output by Equation (3). The accuracy is then
bounded as follows:

E [1 (c(x) = y)] = P
{
y = arg max

k
ϕh(x)km

θ
k(x)

}
= P

{
ϕh(x)ym

θ
y(x) > max

k 6=y
ϕh(x)km

θ
k(x)

}
≥ P

{
ϕh(x)ym

θ
y(x) > max

k 6=y
ϕh(x)k max

k 6=y
mθ
k(x)

}
≥ P

{
ϕh(x)ym

θ
y(x) >

(
1− ϕh(x)y

) (
1−mθ

y(x)
)}

= P
{
rm(x) > (rh(x))

−1
}

In fact, we have proved the stronger but somewhat less interpretable inequality:

E [1 (c(x) = y)] ≥ P

{
mθ
y(x)

maxk 6=ymθ
k(x)

>

(
ϕh(x)y

maxk 6=y ϕh(x)k

)−1
}

We note further that the same argument can be used to analyze the combination of two probabilistic
predictors when the combination is done by pointwise multiplying their calibrated probabilities. In
particular, if we have two probabilistic classifiers m and m̃,

E [1 (c(x) = y)] ≥ P
{
rm(x) > (rm̃(x))

−1
}

where rm̃ is defined analogously to rm. The proof for this statement is exactly analogous to that of
Theorem (1), where m̃θ̃

y now plays the role of ϕh(x)y . This same argument can again be adapted for
the combination of two non-probabilistic combiners, combined by parameterizing Equation (2) with
their confusion matrices.

J.2 Estimation Error

We begin with a useful lemma that will play a key part in our estimation error analysis.

Lemma 1. For scalars a1, a2, b1, b2 ∈ [0, 1], the difference of the products is at most the sum of the
differences:

|a1b1 − a2b2| ≤ |a1 − a2|+ |b1 − b2| (28)

Proof.

|a1b1 − a2b2| = |a1b1 − a2b2 + a1b2 − a1b2|
= |a1(b1 − b2) + b2(a1 − a2)|
≤ |a1| · |b1 − b2|+ |b2| · |a1 − a2| (triangle inequality)
≤ |b1 − b2|+ |a1 − a2|

We now proceed to the proof of Theorem (2).
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Proof of Theorem (2). Recall that η(x, y) = |p(h(x)|y)p(y|m(x))−mθ
y(x)ϕ̂h(x)y| is the estimation

error for Equation (3) (up to normalizing constants), where ϕ̂ij represents an estimate of p(h(x) =
i|y = j).

By the law of total expectation, we can condition on a particular value of y and h(x):

E [η(x, y)] =

K∑
i=1

K∑
j=1

p(y = j)ϕijE [η(x, y)|y = j, h(x) = i] (29)

We now apply Lemma (1) to the conditional expectation above:

E [η(x, y)|y = j, h(x) = i]

= E
[
|ϕijp(y = j|m(x))− ϕ̂ijmθ

j (X)|
∣∣∣∣y = j, h(x) = i

]
≤ E

[
|ϕij − ϕ̂ij |+ |p(y = j|m(x))−mθ

j (x)|
∣∣∣∣y = j, h(x) = i

]
= |ϕij − ϕ̂ij |+ E

[
|p(y = j|m(x))−mθ

j (x)|
∣∣∣∣y = j

]
We additionally employ the conditional independence assumption to arrive at the last line.

Plugging this back in to Equation (29), we obtain

E [η(x, y)] ≤
K∑
i=1

K∑
j=1

P (y = j)ϕij |ϕij − ϕ̂ij |

+

K∑
j=1

p(y = j)E
[
|p(y = j|m(x))−mθ

j (x)|
∣∣∣∣y = j

]

Since ϕij , p(y = 1) ≤ 1, the first summand is at most
∑K
i=1

∑K
j=1 |ϕij − ϕ̂ij | = ||ϕ− ϕ̂||1. In fact,

the first summand is typically much smaller than ||ϕ− ϕ̂||1 – for example, if all classes are equally
likely, the first summand is at most 1

K ||ϕ− ϕ̂||1.

The second summand is readily recognized as the `1 marginal calibration error [Kumar et al.,
2019].
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Appendix K Human-Machine Combinations

Although our main focus is on human-model combinations, our method can be applied to the
combination of a non-probabilistic model (i.e. that predicts only a label) and a model that outputs
a distribution over classes. To demonstrate this, we perform an experiment where we discard the
probabilistic information from one of our models (detailed in Section 5 and Appendix F) and treat it
as only outputting a label. We then combine the resulting predictions with the other available models
for the given dataset. In this section, we call the label-producing model the hard predictor, and the
distribution-producing model the soft predictor.

However, we find that such a combination of two models does not generally improve over the
individual components. We hypothesize that this is due to a lack of diversity in the predictions of
the models. To investigate this, we compute a simple set of diversity statistics, namely the joint
distribution of binary outcomes. That is, we estimate the quantities

qcc = P {yh = y ∧ ys = y} qci = P {yh = y ∧ ys 6= y}
qic = P {yh 6= y ∧ ys = y} qii = P {yh 6= y ∧ ys 6= y}

where yh is the label produced by the hard predictor, ys is the label produced by the soft predictor,
and y is the true label. Intuitively, if a combination method always selects either yh or ys, then the
best achievable combination error rate is qii, and so these diversity statistics capture some of the
limitations of any such method.

We see in our results below that the diversity of two models is generally less than that of a model
and a human, suggesting a partial explanation as to why the combinations of two models tend to
under-perform.

Error Rate

Hard Soft Hard Soft P+L qcc qii qic qci

ResNet-164 ResNet-110 6.47 11.03 6.57 86.97 4.47 2.00 6.57
Human — 4.47 — 3.70 85.90 1.40 3.07 9.63
PreResnet-164 — 5.13 — 5.33 87.23 3.40 1.73 7.63
Human — 4.47 — 3.70 85.90 1.40 3.07 9.63
DenseNet — 3.63 — 4.10 88.10 2.77 0.87 8.27
Human — 4.47 — 3.70 85.90 1.40 3.07 9.63
ResNet-110 ResNet-164 10.90 6.40 8.20 87.00 4.30 6.60 2.10
Human — 4.70 — 2.60 89.93 1.03 3.67 5.37
PreResnet-164 — 4.90 — 4.93 92.03 3.33 1.57 3.07
Human — 4.70 — 2.60 89.93 1.03 3.67 5.37
DenseNet — 3.20 — 3.40 92.67 2.27 0.93 4.13
Human — 4.70 — 2.60 89.93 1.03 3.67 5.37
ResNet-110 PreResnet-164 11.57 5.33 7.73 86.83 3.73 7.83 1.60
Human — 4.77 — 2.80 91.03 1.13 3.63 4.20
ResNet-164 — 6.10 — 5.77 91.90 3.33 2.77 2.00
Human — 4.77 — 2.80 91.03 1.13 3.63 4.20
DenseNet — 3.40 — 3.63 93.47 2.20 1.20 3.13
Human — 4.77 — 2.80 91.03 1.13 3.63 4.20
ResNet-110 DenseNet 11.03 3.20 4.87 87.93 2.17 8.87 1.03
Human — 4.57 — 2.10 92.83 0.60 3.97 2.60
ResNet-164 — 5.57 — 4.30 93.20 1.97 3.60 1.23
Human — 4.57 — 2.10 92.83 0.60 3.97 2.60
PreResnet-164 — 5.17 — 3.93 93.70 2.07 3.10 1.13
Human — 4.57 — 2.10 92.83 0.60 3.97 2.60

Table 13: Two model combinations and diversity statistics on CIFAR-10H.
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Error Rate

Noise Hard Soft Hard Soft P+L qcc qii qic qci

80 Googlenet VGG19 14.67 11.41 12.06 82.36 8.44 6.23 2.97
80 Human — 10.43 11.41 6.43 81.38 3.23 7.21 8.18
95 Googlenet — 17.21 12.72 14.69 80.11 10.04 7.17 2.68
95 Human — 14.52 12.72 8.67 77.26 4.50 10.02 8.22
110 Googlenet — 19.24 15.62 16.88 77.39 12.25 6.99 3.38
110 Human — 23.79 15.62 11.95 68.19 7.60 16.18 8.02
125 Googlenet — 26.75 21.73 23.63 68.63 17.11 9.64 4.62
125 Human — 38.91 21.73 19.93 52.36 13.00 25.91 8.73
80 VGG19 Googlenet 11.41 14.67 11.34 82.36 8.44 2.97 6.23
80 Human — 9.85 14.67 6.81 78.88 3.40 6.46 11.28
95 VGG19 — 12.72 17.21 12.69 80.11 10.04 2.68 7.17
95 Human — 12.71 17.21 9.90 75.52 5.43 7.27 11.78
110 VGG19 — 15.62 19.24 15.43 77.39 12.25 3.38 6.99
110 Human — 24.93 19.24 15.65 65.36 9.52 15.41 9.72
125 VGG19 — 21.73 26.75 21.98 68.63 17.11 4.62 9.64
125 Human — 39.97 26.75 24.58 50.46 17.18 22.79 9.57

Table 14: Two model combinations and diversity statistics on ImageNet-16H.
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