Appendices

A Importance-weighted sampling estimate

Note that Equation (8]) only provides a lower-bound to log P (r), and a tighter bound via importance-
weighted sampling. Following Hoogeboom, Cohen, and Tomczak [66], Burda, Grosse, and Salakhut-
dinov [67]], and Domke and Sheldon [68]], we computed the importance-weighted sampling estimate
as follows:

=~ p(¢
log P (r >log[Z ik], (11)

q (Crlr;v)

where ¢ ~ ¢ (¢|r;v), ¢ (¢|r; v) is the approximate posterior distribution with parameters v; p (¢;w)
is the continuous prior with parameters w, and K is the number of samples.

B Model for the dequantizer distribution

For the dequantizer distribution, ¢ (|r; V), we utilize a conditional normalizing flow-based flexible
distribution, as in [66].

The conditional normalizing flow utilizes a series of bijective affine transformations with ELU
nonlinearity. It has a base distribution that follows a conditional isotropic Gaussian distribution.
Mathematically, we can express g (¢;|r; /), where ¢; is the continuous latent variable behind neuronal
response rj, as:

q(&lrsv) =N (n; = 94 (&5:€)) g, 071) - T4 (12)

In this equation, J4 = 3 CJ represents the Jacobian matrix of the transformation function g4 with re-
o ;MLP(r)+bg

spect to ;. pj = wy,, MLP(r) +b,,, and o'j = exp" i and MLP (multi-layer perceptron)

is a multi-layered neural network with nonlinearities.

Note that pt; and 0' , being dependent on r, is what makes the dequantizing distribution a “condi-
tional" normalizing ﬂow and we refer to p; and O'J as the “conditioning functions".

C System identification model architecture

This work uses a system idenfitication model for two purposes: (1) as the approximate posterior
distribution’s amortization function that maps images to neuronal responses (refer to paragraph on
posterior models under Section [Z) and (2) as a standalone model of neuronal responses conditioned
on images that can be compared to the approximate posterior (Figure [3).

The system identification model used in this work is an artificial neural network similar to the ones
proposed by Cadena et al. [25]], Lurz et al. [27] and Baroni et al. [73]. It consists of a nonlinear "core"
network and a linear "readout" network: the core is shared amongst all neurons and is used to fit the
non-linear features of the image that are encoded by the neurons. It consists of 3 convolutional layers
with 32 features channels, each being followed by a batch normalization and an ELU nonlinearity.
The latter two convolutional layers are depth-separable. In the readout network, the relevant features
in the core are selected for each neuron separately. This selection is done using a pyramid readout
network (Sinz et al. [39]) which learns a spatial location (X,y) and extracts the features in the core at
this location of the last layer as well as of two progressively down-sampled versions (average pooling,
kernel size of 3) of the last layer’s output. In Sinz et al. [39], the so obtained features at location (x,y)
are then weighed by a neuron-specific feature vector and passed through a non-linearity to obtain
the neuron specific firing rate of the Poisson distribution. Differently to this, we model the neural
responses with a Gamma distribution which has two parameters: a rate and concentration parameter,
which both have the constraint of being non-negative. We thus learn two locations and two weight

16

Session ID Neuron-count Train-size Validation-size Test-size

A 24 9826 2399 2820
B 20 9110 2319 2715
C 18 12020 2995 3915
D 17 5604 1341 2070
E 29 10779 2795 3690
F 18 14196 3548 4770
G 22 9732 2387 3000
H 17 10084 2546 3735
I 21 10529 2596 3255
J 21 9654 2390 3000
K 25 11814 2901 4050
L 20 6478 1651 2145

Table 2: Summary of the recorded data from all sessions. The data consists of image-response pairs
of neurons from monkey V1. Images were cropped to 41x41 pixels and normalized to match the
mean and standard deviation of the train and validation images.

vectors per neuron to account for the two parameters and pass each resulting value through a ELU +
1 non-linearity to ensure both outputs to be positive valued. Our model is similar to the Zero-Inflated
Gamma model of Lurz et al. [[72], differing only in that it does not model the zero inflated version of
the Gamma distribution and in that it uses the pyramid readout mechanism instead of the Gaussian
readout.

D Details of data and models on all sessions

In our section on experiments on recorded neuronal response data (Section [3.2), we defer the exact
details of all the recording sessions to the appendix. Please refer to Table 2| for a summary of details
on all recording sessions. Additionally, in our section on experiments on recorded neuronal response
data (Section[3.2), we only provide results of the fit of the generative models (prior, likelihood and
joint, Figure |4) as fit on the session with the highest number of neurons (session ID “E" with 29
neurons (Tabl). Please refer to Figure[6] Figure[7] Figure 8] for fits of the generative models on all
sessions.

E Model training and hyperparameter searches

We train all models using the PyTorch library [[85], using the Adam optimizer [86]. Since for
us, the generative model consists of three different models: the prior, likelihood and posterior
(Section [2.2), we describe the training details of each of these models below. All models were
trained across 5 random seeds and grid search was performed using the validation-set across
all hyperparameters as mentioned below. Code is available at https://github.com/sinzlab/
neural-sampling-neurips2023.

All computations were conducted on the shared high-performance compute cluster in the University
of Washington (HYAK), which consisted of dedicated 8 x NVIDIA TESLA A100 GPUs and over
400 shared NVIDIA Turing and Ampere generation GPU’s on a non-dedicated, as-available basis.
We estimate end-to-end computation time for all models and experiments, including training and
hyperparameter searches, to be roughly 3-4 days.

E.1 Prior models

The prior models in our case are dequantization models (see paragraph under "Prior" in Section[2.2),
which consist of a “continuous prior distribution", p (¢;w) and a “dequantizer distribution", g ({|r; v).

Continuous prior We consider three different distributions for p (¢; w), namely: (1) Exponential
distribution (Exp), (2) Half-normal distribution (HN) and (3) Normalizing flow-based distribution

17

https://github.com/sinzlab/neural-sampling-neurips2023
https://github.com/sinzlab/neural-sampling-neurips2023

Relative log-likelihood
(lower bound)

Relative log-likelihood
(lower bound)

1.41

o 1.6

s 1.55 4 L ' ,}

E % . / 1.49 1 ,Iio.oe / io 07

8% 1.5 Il 0.18 [— 2] 1.2 1 II v

z 1.44 -

£8 1454) NS o’

£ 1.39 1151 ¥
$ £ 3 g z z e z =
i o= 2 I oF g § T g

Figure 6: Relative log-likelihood scores (lower-bound), in bits of prior models, p (r), on population
recordings (test set), averaged by the number of neurons and trials. Each panel in the plot corresponds
to prior models fit on one session. On top of each panel the label: “X/N" denotes "session-id/number
of neurons". Refer to Table[2]for information on all sessions. The scores are computed relative to
the Expl prior model baseline. We additionally denote the improvement the Flow model achieves,
relative to the Exp model. Note that for the prior models on discrete spike counts, r, we can only
obtain a lower bound on p (r). Here we show the importance-sampling bound (Equation @)) with
1000 samples. Error-bars denote the standard error of mean computed across trials.

(Flow). Hyperparameter optimization was unnecessary for Exp and HN as they are standard
distributions with only a single learnable parameter per dimension (A for Exp and o for HN). We
used the following set of hyperparameters for the Flow model:

* Positive transformation: [softplus, exp, square, ELU + 1].

* Non-linearity after each affine layer: [tanh, ELU, exp, log].

* Learning rate: [le-4, 5e-4, 1e-3]

Dequantizer distribution the dequantizer distribution is implemented via a conditional normalizing
flow (Section [B) and we used identical lists of hyperparameters as for the Flow continuous prior
as listed above, and in addition considered the following hyperparameters w.r.t the conditioning
function:

* Conditioning function: [Linear, MLP]

- Nonlinearity for MLP conditioning function: [RELU, tanh|
* Weight-initialization for affine layers in the conditioning function: [N/ (0, le-3), N(0, le-5)]
* Learning rate: [le-4, 5e-4, le-3]

E.2 Likelihood models

We model the likelihood as an isotropic Gaussian distribution

D <x|r(i)) =N <X|u(i),o'2(i) ~I> , (13)

18

A/ 24 B/ 20 - 4C/18 D/17
—188 {4/ _1.97 48/ 1.84 / -1.93 /
1
_ i / 1
B L8 / ~1.98 - / -1854
2 / / ’ 1944 L7
= -—1.90 1 , 0.033 / .023 / 0.022 ' ’ .009
< / -1.994] 7 | -1.86 41 s %
= -1914[, L 2 | A
g -2.00 41 Y _1g7 I -1.95 A
S 19 df : -1.87 :
-1.93 +——— —2.01 Y—w B T
-1.86 1 E/29 F/18 G/22 H/17
j
o / -1.81 y ~1.98 - A -1.96 /
o / /
S -188 /I ’ / /
£ / / /
Q / 0.052 — - 0.020 0.039 0.039
2 / 1827 7/ 2004 ~1984 7
5, ~—l904 , L, / /
o / LI
2 / -1.83 4f——+ b
192 [T I ~2.02 ~2.00 4|
L 0T 1 L 0T 1
-1.88
_19441/21 17441721 K/25 L/ 20
) -1.975
8 / / 1.90 /
8 /l -1.75 4 / -1 / -1.980
5 -19%64 / /)
X ;D040 -1.76 4 ¢ 90.029 —1.924 ¢ 0061 _10985 4] ~~ Pp.003
E',” / 1.77 l,// ll 1.990
/ -1.77 1 -1.990 ~
=4 -1984 -1.94 q1/
-1.78 —I f --------- —1.995 A
N D i B -1.96 - 1 i B
c o = o c o = o
- s - s - s - s

Figure 7: Likelihood scores of the likelihood models py, (x|r), averaged across image pixels and
trials. Each panel in the plot corresponds to likelihood models fit on one session. On top of each
panel the label: “X/N" denotes "session-id/number of neurons". Refer to Table [2] for information on
all sessions. We additionally denote the improvement the MLP model achieves, relative to the linear
model. Error-bars denote the standard error of mean computed across trials.

where parameters mean, u(i) and variance, o2(9) are functions of response, r(® and the function is
either linear or nonlinear (see paragraph under "Likelihood" in Section [2.2). Operationally, both
linear and nonlinear are formulated via an MLP (for linear, the MLP has no nonlinearities). We used
the following sets of hyperparameters to train the MLP:

* Number of layers: [2, 3, 4]

* Nonlinearity: [RELU, Leaky RELU, none (linear)]

* Dropout rate: [0, 0.5, 0.8]

* Learning rate: [le-4, le-3]

* Weight-initialization: [N(0, le-3), N (0, le-5)]

* L2 regularization strength: [le-1, le-3]

E.3 Posterior models
For each of the trained generative models, p (x,r;60*), we approximated the model’s posterior

distribution p (r|x; 6*) using an approximate posterior ¢ (r|x; ¢) trained on samples from the trained
generative model (Equation (I0)).

19

3 0.0025 {A/ 24{ 4 0.0020 B /20 0.0030 {C /18 0.0020 D/17
<] . E) _
2
=T 0.0020 A 0.0025 -
g5 l‘, ‘ 0.0015 0.0015 -
T 8 0.0015 1.48e- I] : /
o0 . 1 ;1.486 3 i.22e-3 0.0020 A 1.31e-3 .57e-3
e ! i 0.0010 1 : I |
g 5 0.0010 A | 0.0015 4 | 0.0010
£2 WP SU— 0.0005 s
3 0.0005 - 0.0000 0.0010 - 0.0005 -
T rrrrr T rrrrr T rrrrr T rrrr rr
0.0030 - 4
3 E/29 000254 /18 G/22 H/17
2 _. 0.0025 0.004
=3 RS 0.0020 0.002
= 3 0.0020 o i ! ;
=3 | | 0.003 - I
o0 I 1.85e-3 0.0015 1 1.19¢-3 I 1.79e-3 I 2.39¢-3
2§ 0.0015 I 1 i 0.001 1 | |
S | 1 * * 0.002 -
28 400104 ; 0.0010 | H' : :
© . e IrrrY— |t
5 }_H ,,,,,,,,,
o< 0.0005 - 0.0005 - 0.000 0.001 l
T rrrrr T rrrrr T rrrrr T rrrr rr
0.003 - 0.0015
3 IIZI}{" 00025_J/21 KIZS}{’{ L/20
e} ' 0.003
£ :
S g 0.002 R 0.0020 [0.0010
E’_g I 11.96e-3 0.0015 4 l' %’1.49e—3 0.002 - ,' 12.45e-3 19e-3
o5 i ! : :
o2 0.001 % 0.0010 4 i | I i 0.0005 - I l ‘ ‘
=0-T | O S 0.001
§ 0,000 0.0005 }
" T rrrrr T rrrrr T rrrrr T rrrr rr
Sceqoq £ceooq £ceoaa £cegaq
321333 221333 221383 221333
BESEES STEEES BEOEES STEEES

Figure 8: Relative log-likelihood scores (lower-bound), in bits of joint models, px , (x,r), on
population recordings (test set), averaged by the number of neurons, image pixels and trials. Each
panel in the plot corresponds to joint models fit on one session. On top of each panel the label: “X/N"
denotes "session-id/number of neurons". Refer to Table 2] for information on all sessions. The scores
are computed relative to the Exp1-Lin joint model baseline. We additionally denote the improvement
the Flow-MLP model achieves, relative to the Exp-Lin model. Note that since for the prior models on
discrete spike counts, r, we can only obtain a lower bound on p, (r), the estimated joint log likelihood
log px,z (x, 1) = log p, (r) 4 log p, (r) is also a lower bound. Error-bars denote the standard error
of mean computed across trials.

Since we have the trained generative model, we are free to sample as many pairs of neuronal responses
and images (x',r’ ~ p (x,r;60*)) as we wish. We sampled 100,000 such pairs from each trained
generative model and trained the approximate posterior on these samples respectively.

Note that the approximate posterior model maps images to the distribution over neuronal responses,
and hence, we chose a nonlinear system identification model (Section |C) architecture as its functional
form.

The training details of the posterior models mirror that of the system identification model, except that
posterior models are trained on samples from the trained generative model (Algorithm[T) and system
identification models are trained directly on real responses to natural images. System identification
model training is detailed below.

E.4 System identification models

We trained the system identification models on monkey V1 data as described in Table [2, where
we trained it separately for each session such that we can compare its performance to the NSC
posterior models (Figure[5). We cropped the images to a size of 41x41 pixels and normalized them
with respect to the mean and standard deviation of the images from the train and validation set. As
objective function, we used the negative log-likelihood of a Gamma distribution whose parameters
were predicted by the system identification model. The parameters of the system identification model
itself were optimized using the Adam optimizer with an initial learning rate of 0.0042. This learning
rate was reduced by 30% when the correlation between the mean of the predicted Gamma distribution

20

and the true responses on the validation set did not improve for three epochs. The training was
stopped after reducing the learning rate three times.

F Details on analytical tractability of fitting literature models on simulated
data

The classical models that we consider on simulated data (see “Simulated data" under Section[3)), are
@ a Hoyer & Hyviirinen model (HNH) [9], @ an Olshausen & Field (ONF) model [20], and @) a
full Gaussian model (Gauss).

When fitting these classical models, the exact forms of the prior distributions in each of the models
are as follows.

* HNH model: the prior is an exponential distribution :p (r;) = /\i exp (—=\;r;)H (r;), where
H is the heavyside function

* ONF model: the prior is a Laplace distribution, p (r;) = 51 exp (7%7(1\)

* Gauss model: the prior is a simple isotropic Gaussian with mean ., and variance o2:
p(r) =N (r|p,, o21).

All the three models share a common linear, isotropic Gaussian conditional distribution p (x|r) =

N (x|Ar, o?T).

Each of these (joint) models can be fit to simulated data analytically. This is possible since maximizing
the joint distribution objective of each of the models (according to Equation (7)), boils down to
maximum likelihood estimation (MLE) of standard distributions.

For HNH, the objective of maximizing the joint distribution would be:

]) : (4).
Likelihood logp(x(’) \r(’);ﬁ) Prior logp(r ’9)

N
A* 0" * = arg max E log N/ (X(l)|Ar(l), 021> +log — exp (—r(l)>H (r(l)> .
Ao\ i—1 A A

N N
_ . 1 1 .
—argmax ¥ lo N(x(z) Ar(z),azl);ar max Y log —ex <r(1))H (r(z))
gm > "log | g1 ;:1 gy exp |~

=1
MLE of conditional normal distribution MLE of exponential distribution
(14)
Similarly, for ONF:
)) Prior log p r(i);e
Likelihood log p(x("|r(*);0) en()
N .
. . 1 r) _ g
A*, 0%, a*,b" = arg max E log (x(l)|Ar(1), 021> +log — exp ,u)
A,o,a,b T 2b b
=1
N N i
()] Au(i) -2 1 r®) —
= arg max E log NV (x"|Ar'") 6°1); arg max log—exp| ——— |,
Ao 4 o ; 2b b
’ =1) i=1
MLE of conditional normal distribution MLE of laplace distribution
(15)

21

Similarly, for Gauss:

Likelihood logp(x(i)|r(i);0) Prior log p(r:0)

N —
A* o™ ur, oy = arg max Zlog./\/ (x(i)\Ar(i), 0'2]:) +log N (r|pr, o21) .

A0y 0

N N (16)
= arg max Z log N (x(i) |Ar(®) 021) ;argmax Y log (r(i) e, 031) ,
i=1

A,o =1 WO

MLE of conditional normal distribution MLE of normal distribution

G Evaluating Gamma-distribution on spike counts

Both the system identification model and the posterior model use a conditional Gamma distribution as
the distribution of spike counts conditioned on images (see paragraph titled “Posterior" in Section[2.2).

Hence we compute the lower-bound using uniform dequantization (X = 1,000 samples) since
we are evaluating our continuous Gamma-posterior on discrete spike counts, and full-likelihood is
intractable [66H68]:

K
i ; 1 .
log Plower-bound (r\x(‘)) > logE, [pz‘xm (r + u\x(‘))} ~ log Ve ;Pz\xm (I‘ +ul® |X(l))
a7
where u®) ~ 2/ (0, 1).

Note that: S

Paixor (k) = [T oy (i1, 87) (s)
j=1

where p., denotes the Gamma-distribution, and j denotes the jth neuronal response.

22

	Introduction
	Fitting the Neural Sampling Code
	Theory
	Models

	Experiments
	Synthetic data
	Neurophysiological data

	Discussion
	Appendices
	Importance-weighted sampling estimate
	Model for the dequantizer distribution
	System identification model architecture
	Details of data and models on all sessions
	Model training and hyperparameter searches
	Prior models
	Likelihood models
	Posterior models
	System identification models

	Details on analytical tractability of fitting literature models on simulated data
	Evaluating Gamma-distribution on spike counts

