
On Memorization in Probabilistic Deep Generative Models
Supplementary Material

A Memorized observations in recently proposed generative models

(a) (b)

Figure 6: Examples of images
from the CIFAR-10 training
set that were spotted in illus-
trations of samples from the
model in recent work on gen-
erative models.

While experimenting with the proposed memorization score on
CIFAR-10 [47], we noticed that the images of automobiles shown
in Figure 6 are present in the training set multiple times (with slight
variation). We subsequently spotted these images in the illustrations
of generated samples in [7] (Figure 13, example (a) can be seen
twice) and [61] (Figure 11 and Figure 13, truck class). These works
are recently proposed probabilistic generative models that achieve
impressive performance on sample quality metrics such as the incep-
tion score (IS) [35] and the Fréchet inception distance (FID) [36],
and also achieve high log likelihoods. However, the fact that we
were able to serendipitously spot images from the training set in
the generated samples might suggest that some unintended memo-
rization occurs in these models. We do not know if there are other
images in the presented samples that are present in the training data.
Of course, spotting near duplicates of training observations is only possible because these models
yield realistic samples. As we argue in the main text and as has been shown by previous works
[32, 37], quality metrics such as IS and FID do not detect memorization.

We emphasize that this evidence is presented mainly to support the notion that (unintended) memo-
rization can occur in probabilistic deep generative models, and to provide additional motivation for
understanding and quantifying when and how memorization arises, which is the focus of our work.

B Experimental Details

This section describes additional details of the data sets, model architectures, and experimental setup.

B.1 Datasets

We use the MNIST [46], CIFAR-10 [47], and CelebA [48] data sets, which are widely used and are
freely available for research purposes (although to the best of our knowledge explicit licenses are
not available). For MNIST we binarize the images dynamically during training by considering each
grayscale pixel value as the parameter of an independent Bernoulli variable, as is common [11, 62].
Images in all data sets are resized to 32×32 pixels for efficiency and ease of implementation. CIFAR-
10 contains color images from 10 different categories and does not require further preprocessing.
CelebA contains potentially identifiable images of faces of celebrities sourced from publicly available
images on the Internet. We used the predefined cropping function of [11] to center the face region.
For CIFAR-10 and CelebA we used random horizontal flips during training as data augmentation. All
data sets have predefined train and test sets, and CelebA additionally has a validation set. We mainly
used the training sets in the experiments, with the exception of the experiments for Figure 4a, which
uses the MNIST test set, and the experiments in Section 4.4, which use the CelebA validation set.

B.2 Model Architectures

Let L denote the size of the latent space and recall that x ∈ X ⊆ RD. For all experiments we used a
Gaussian encoder with a learned diagonal covariance matrix, qφ(z |x) = N (z;µφ(x), diag(σ2

φ(x)))

and a standard multivariate Gaussian prior on the latent variables, p(z) = N (z; 0, IL). As mentioned
above we used a dynamically binarized version of the MNIST data set, and therefore used a Bernoulli
likelihood for the decoder of the VAE. Both the encoder and decoder used fully connected layers
with the RELU activation on the intermediate layers [63] and a sigmoid activation on the output of
the decoder that represents the parameter of the Bernoulli distribution. For MNIST we used L = 16.
Full details of the model architecture are given in Table 1.

For CIFAR-10 and CelebA we used a Gaussian likelihood for the decoder, employed uniform dequanti-
zation on the pixel values [64], and trained the models in logit space following [65]. For both data sets
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Table 1: Model architectures used for the experiments. We used fully connected (FC) layers with the
RELU activation for MNIST, with the SIGMOID activation on the decoder. For CIFAR-10 and CelebA
we used convolutional layers for the encoder (CONV2D with kernel size 4, stride 2, and padding 1),
followed by batch normalization (BN), and the Leaky ReLU activation (LRELU, using slope 0.2).
For these data sets the decoder consists of transposed convolution layers (CONVT2D, with kernel
size 4, stride 2, and padding 1 except for the layer marked with an asterisk (*), which uses kernel
size 2, stride 1, and padding 0 to get the correct output size), followed by batch norm and the ReLU
activation. We use the abbreviations ENCBLOCK(C1, C2) = CONV2D(C1, C2)→ BN → LRELU
and DECBLOCK(C1, C2) = CONVT2D(C1, C2)→ BN → RELU.

Data set Encoder network Decoder network Likelihood (pθ(x | z))
MNIST FC(1024, 512)→RELU FC(L, 256)→ReLU B(xij ;πij(z))

→ FC(512, 256)→RELU → FC(256, 512)→ReLU
→ FC(256, L), FC(256, L) → FC(512, 1024)

→ SIGMOID

CIFAR-10 CONV2D(C,F )→ LRELU DECBLOCK∗(L, 8F ) N (x;µθ(z), diag(σθ(z)))
→ ENCBLOCK(F, 2F ) →DECBLOCK(8F, 4F )
→ ENCBLOCK(2F, 4F ) →DECBLOCK(4F, 2F )
→ ENCBLOCK(4F, 8F ) →DECBLOCK(2F, F )

→ FLATTEN →CONVT2D(F, 2C)
→ FC(32F,L), FC(32F,L)

CelebA Same as for CIFAR-10 Same as for CIFAR-10, N (x;µθ(z), γθID)
except final layer uses

CONVT2D(F,C)

we used an architecture similar to DCGAN [66], consisting of four convolutional layers in the encoder,
each followed by batch normalization [67] and leaky RELU activation [68], and five transposed con-
volution layers in the decoder followed by batch normalization and RELU, see Table 1. For CIFAR-10
the Gaussian likelihood on the decoder was parameterized as pθ(x | z) = N (x;µθ(z), diag(σθ(z)))
and for CelebA we used the simpler formulation pθ(x | z) = N (x;µθ(z), γθID) with a learned
parameter γθ, as the more general decoder was unnecessary. For CIFAR-10 and CelebA the number
of input channels is C = 3 and we used L = 64 and L = 32, respectively. For the convolutional
networks the feature map multiplier was set to F = 32 (see Table 1).

B.3 Training details

We used Adam [49] to optimize the parameters of the model with learning rate η = 10−3 for the
main experiments and η = 10−4 for the experiments on MNIST in Section 4.2. We used a batch size
of 64 and left the remaining parameters for Adam at their default values in PyTorch [50]. For both
MNIST and CIFAR-10 we trained for 100 epochs, and used 50 epochs for CelebA. These settings
were chosen by taking into consideration the available computational resources and aimed to avoid
overtraining. The parameter settings were determined through some preliminary experimentation
and were not extensively optimized. Experiments were conducted on a desktop machine running
Arch Linux, using an NVIDIA GeForce GTX 1660 SUPER GPU, 32GB of RAM, and an AMD
Ryzen 5 3600 processor. Total wall-clock time was about 200 hours for the main results, excluding
preliminary experimentation. Electricity needed for the experiments came from carbon-free sources.

As mentioned in the main text, importance sampling was used to approximate p(x), such that

p(x) ≈ 1

N

N∑
l=1

pθ(x | zl)p(zl)
qφ(zl |x)

, zl ∼ qφ(z |x). (9)

This was computed in log space for numerical accuracy. For MNIST we used N = 256 and for
CIFAR-10 and CelebA we used N = 128 samples.
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C Additional Results

Below we show additional results that confirm the findings presented in the main text for different
data sets.

C.1 Qualitative Illustrations

In Figures 7, 8, and 9 we illustrate observations with low, median, and high memorization scores
for a VAE trained on MNIST using η = 10−3, MNIST using η = 10−4, and CelebA, respectively.
As can be seen from the figures and as discussed in the main text in Section 4.2, while some of the
highly memorized observations have visual anomalies, others are not unlike those that receive low
memorization scores. For instance, for the VAE trained on MNIST with learning rate η = 10−4, we
see that images from both the low and high memorization groups have active pixels that are not part
of the digit (compare, for instance, the images of 9s on the middle of the bottom rows of Figure 8a
and Figure 8c).

(a) Low memorization (b) Median memorization (c) High memorization

Figure 7: Observations with low, median, and high memorization scores in the MNIST data set, for a
VAE trained using learning rate η = 10−3. Memorization scores range from about −18 in the top
left of figure (a) to about 200 in the bottom right of figure (c), with a median of 4.4.

(a) Low memorization (b) Median memorization (c) High memorization

Figure 8: Observations with low, median, and high memorization scores in the MNIST data set, for a
VAE trained using learning rate η = 10−4. Memorization scores range from about −13 in the top
left of figure (a) to about 80 in the bottom right of figure (c), with a median of 3.5.

(a) Low memorization (b) Median memorization (c) High memorization

Figure 9: Observations with low, median, and high memorization scores in the CelebA data set when
the density is learned using a convolutional VAE. Memorization scores range from about −450 in the
top left of figure (a) to about 6500 in the bottom right of figure (c), with a median of about 60.
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C.2 Outliers vs. Memorization

Figures 10 and 11 replicate the experiments shown in Figure 3 in the main text for the VAE trained on
the MNIST data set using two different learning rates. We again see that relatively high memorization
is not exclusive to observations that receive a low probability under the model. Note that for this
particular data set the density estimated by the VAE is slightly multimodal, with the peak in density
for higher values of logPA(x | D) corresponding to observations for digit 1.
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(b) Proportions

Figure 10: In (a) we show a histogram of the number of highly memorized (yellow) and regular (blue)
observations for bins of the log probability under a VAE model trained on the MNIST data set using
learning rate η = 10−3. The numbers above the bars correspond to the number of highly memorized
observations in each bin (for MNIST, n = 60, 000). Randomly selected training observations from
several bins are shown, with dashed lines illustrating the bin where the images in a particular column
can be found. Images with a yellow frame are highly memorized whereas those with a blue frame
have low memorization scores. Figure (b) shows the proportion of highly memorized and regular
observations for each bin.
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(b) Proportions

Figure 11: Similar to Figure 10, but for the VAE trained on MNIST with learning rate η = 10−4.
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C.3 Nearest Neighbors

The nearest neighbor experiments demonstrated in Section 4.4 are repeated below in Figures 12 and 13
for the VAEs trained on the MNIST data set using learning rates of 10−3 and 10−4. For these models
and data set we again do not see a clear relation between the nearest neighbor distance ratio ρi and
the proposed memorization score MK-fold

i , as discussed in the main text.
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(b) Distribution of ρi

Figure 12: Illustration of the nearest neighbor distance ratio in (6) compared to the memorization
score for a VAE trained on MNIST using a learning rate of η = 10−3. We present the average of ρi
for bins of the memorization score of width 2, and show error bars representing the confidence interval
of the standard error of the mean of distance ratio measurements in each bin. The horizontal axis in
figure (a) trims off one observation at MK-fold

i ≈ 210 for clarity. Figure (b) shows the distribution of
the distance ratio for observations with a high memorization score (top 5%) and the regular ones.
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Figure 13: Similar to Figure 12 but for the VAE trained on MNIST using a learning rate of η = 10−4.
The horizontal axis in figure (a) trims off one observation at MK-fold

i ≈ 80 for clarity.
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Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] We discuss limitations in the

Discussion, Section 6.
(c) Did you discuss any potential negative societal impacts of your work? [N/A] Although

memorization itself may have potential negative impacts, our work on measuring it
does not.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the

main experimental results (either in the supplemental material or as a URL)?
[Yes] Code to reproduce our experiments is available at https://github.com/
alan-turing-institute/memorization.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Supplement B.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] In the computation of the memorization score we average
over different random seeds, and this applies to the log probabilities in Figure 3 as well
(see eq. (1)). Error bars for the average nearest neighbor ratio are given in Figure 5a.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Supplement B.3.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] See Supplement B.1.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes] See Supplement B.1.
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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