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In this supplementary material, we provide detailed architecture specifications (§1), further experimen-
tal details (§2), acceleration approaches (§3), linear probe results (§4), more Grad-CAM visualization
results (§5) and failure analysis (§6) for contextual CNNs.

1 DETAILED ARCHITECTURES

Table 1 presents a detailed architecture comparison between Contextual ConvNeXt-T, Contextual
ResNet50 and their plain counterparts. For Contextual ConvNeXt-T/S/B, only one of every 3 blocks
for each contextual stage (“Stage2/3/4”) is substituted by the contextual convolution block. For
Contextual ResNet50, one of every 2 blocks for each contextual stage is replaced by the contextual
convolution block. The resulting contextual models share the same number of blocks and same
number of channels as their plain counterparts at all stages.

2 DETAILED EXPERIMENTAL SETTINGS

2.1 CHOOSING THE NUMBERS OF CONSIDERED CLASSES (N1 , N2, N3 AND N4)

0 100 200 300 400 500 600 700 800 900
N2 (Stage 2)

0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00

Re
la

tiv
e 

Re
ca

ll

0 50 100 150 200 250 300 350 400 450
N3 (Stage 3)

0 25 50 75 100 125 150 175 200 225
N4 (Stage 4)

Figure 1: The relative recall curves of ground-truth classes for “Stage2”, “Stage3” and “Stage4”.

For “Stage1”, “Stage2”, “Stage3” and “Stage4” of Contextual CNN, the numbers of considered
classes are denoted by N1, N2, N3 and N4, respectively. N1 is always the number of classes of the
dataset (e.g. N1 = 1000 for ImageNet-1K), N2, N3 and N4 are hyperparameters for the Contextual
CNN. In what follows, taking Contextual ConvNeXt-T on ImageNet-1K for example, we introduce
the strategy of choosing N2, N3 and N4:

1. Following the training recipe of ConvNeXt-T, we train a naive Contextual ConvNeXt-T for
a few epochs (e.g., 50) with N2 = 1000, N3 = 1000 and N4 = 1000.

2. On the validation set, we plot the relative recall curve of ground-truth classes for stage i
(i = 2, 3, 4) using the naive model. The recall is calculated using the classification scores si
for the current stage (detailed in Section 3.2 of the main paper). The relative recall curve
shows how the recall changes when the number of considered classes Ni varies.

3. The resulting curves are shown in Figure 1. One can observe that the naive model achieves a
high recall of 99% when N2 is around 500, N3 is around 200, and N4 is around 50. Based

∗This work was done when the author was visiting Alibaba as a research intern.
†Corresponding author.
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Table 1: Detailed architecture specifications for Contextual ConvNeXt-T, Contextual ResNet50 and
their plain counterparts. The input image size is assumed as 224×224. “d7×7” denotes a 7×7
depthwise convolution. “c3×3” denotes a 3×3 contextual convolution. “cd7×7” denotes a 7×7
contextual depthwise convolution. The blocks in brown are contextual convolution blocks.

output
size ConvNeXt-T Contextual

ConvNeXt-T ResNet50 Contextual
ResNet50

stem 56×56 4×4, 96, stride 4 7×7, 64, stride 2
3×3 max pool, stride 2

stage1 56×56

[d7×7, 96
1×1, 384
1×1, 96

]
×3

[ 1×1, 64
3×3, 64

1×1, 256

]
×3

stage2 28×28

[d7×7, 192
1×1, 768
1×1, 192

]
×3

contextualizing ×1

[cd7×7, 192
1×1, 768
1×1, 192

]
[d7×7, 192

1×1, 768
1×1, 192

]
[d7×7, 192

1×1, 768
1×1, 192

]


×1

[1×1, 128
3×3, 128
1×1, 512

]
×4

contextualizing ×1

[ 1×1, 128
c3×3, 128
1×1, 512

]
[1×1, 128

3×3, 128
1×1, 512

]

×2

stage3 14×14

[d7×7, 384
1×1, 1536
1×1, 384

]
×9

contextualizing ×1

[cd7×7, 384
1×1, 1536
1×1, 384

]
[d7×7, 384

1×1, 1536
1×1, 384

]
[d7×7, 384

1×1, 1536
1×1, 384

]


×3

[ 1×1, 256
3×3, 256
1×1, 1024

]
×6

contextualizing ×1

[ 1×1, 256
c3×3, 256
1×1, 1024

]
[ 1×1, 256

3×3, 256
1×1, 1024

]

×3

stage4 7×7

[d7×7, 768
1×1, 3072
1×1, 768

]
×3

contextualizing ×1

[cd7×7, 768
1×1, 3072
1×1, 768

]
[d7×7, 768

1×1, 3072
1×1, 768

]
[d7×7, 768

1×1, 3072
1×1, 768

]


×1

[ 1×1, 512
3×3, 512
1×1, 2048

]
×3

contextualizing ×1

[ 1×1, 512
c3×3, 512
1×1, 2048

]
[ 1×1, 512

3×3, 512
1×1, 2048

]
[ 1×1, 512

c3×3, 512
1×1, 2048

]


×1

on this observation, we set N2 = 500, N3 = 200 and N4 = 50 for Contextual ConvNeXt-T
and train a new model from scratch with this setting for our experiments.

The above strategy can be easily extended to a new dataset or a new contextual model. For simplicity,
we adopt the setting of Contextual ConvNeXt-T for all experiments on ImageNet-1K in this work,
including the ones that use Contextual ConvNeXt-S/B and Contextual ResNet50. For the downstream
experiments, we scale N2/N3/N4 linearly according to the given N1 (the number of classes for the
datasets). For more details, please refer to §2.4 and §2.5.

2.2 CHOOSING THE VALUE OF LOSS WEIGHT SCALAR (α)

The cross entropy loss Li can be large in magnitude with a large number of considered classes Ni

(refer to equation 1 of the main paper). As a result, losses of the earlier stages dominates the overall
loss of Contextual CNN. To balance the losses of intermediate stages and the final classification layer,
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Figure 2: Top-1 accuracy as a function of the loss weight scalar α, measured on ImageNet with a
Contextual ResNet50 model.

we adopt loss weight α < 1 to downweighting the losses of earlier stages L1, L2 and L3 (refer to
equation 2 of the main paper). As shown in Figure 2, we have experimented with different values of
α and found that α = 0.15 leads to the best performance for Contextual ResNet50. We reuse this
setting for all other experiments of this work.

2.3 SETTINGS FOR IMAGE CLASSIFICATION ON IMAGENET

For Contextual ConvNeXt-T/S/B, to compare with the state-of-the-arts methods, we follow the same
training recipe as Liu et al. (2022). For clarity, we list the training settings in Table 2 (column 2). The
settings are used for our results in Table 3 of the main paper. All Contextual ConvNeXt variants use
the same setting, except that the stochastic depth rate is customized for each model.

For Contextual ResNet50, to accelerate the ablation study, we use simple augmentation and reg-
ularization strategies as shown in Table 2 (column 3). The settings are used for all our ablative
experiments (Table 4-6 of the main paper). The accuracy of our baseline ResNet50 is slightly better
than the official result of PyTorch (Paszke et al., 2019) (76.58% vs. 76.13%).

Table 2: ImageNet training settings. The recipe of training Contextual ConvNeXt-T/S/B from scratch
is from Liu et al. (2022). The recipe of training Contextual ResNet50 from scratch is partially from
Wightman et al. (2021). Multiple stochastic depth rates (i.e., 0.1/0.4/0.5) are for multiple variants
(i.e., Contextual ConvNeXt-T/S/B), respectively.

settings Contextual ConvNeXt-T/S/B Contextual ResNet50
optimizer AdamW AdamW

base learning rate 4e-3 1e-3
weight decay 2e-5 1e-2

batch size 4096 1024
training epochs 300 150

learning rate schedule cosine decay cosine decay
warmup epochs 20 20

warmup schedule linear linear
randaugment (Cubuk et al., 2020) (9, 0.5) (9, 0.5)

mixup (Zhang et al., 2018) 0.8 None
cutmix (Yun et al., 2019) 1.0 None

random erasing (Zhong et al., 2020) 0.25 None
label smoothing (Szegedy et al., 2016) 0.1 None
stochastic depth (Huang et al., 2016) 0.1/0.4/0.5 None

layer scale (Touvron et al., 2021) 1e-6 None
EMA (Polyak & Juditsky, 1992) 0.9999 None
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2.4 SETTINGS FOR VIDEO CLASSIFICATION ON KINETICS-400

For the experiments on Kinetics-400, we follow the training/testing settings used in TSM Lin et al.
(2019). Specifically, the Contextual ResNet50 backbone is firstly pretrained on ImageNet using the
recipe in Table 2 (column 3). Then, we fine-tune the pretrained backbone using the TSM framework.
During fine-tuning, since Kinetics-400 has 400 video classes, we reinitialize the class embeddings
for the 400 classes (with d = 256) and use the rest weights pretrained on ImageNet as network
initializations. According to the strategy in §2.1, the numbers of considered classes for the four stages
on Kinetics-400 are set as: N1 = 400, N2 = 200, N3 = 80 and N4 = 20.

2.5 SETTINGS FOR INSTANCE SEGMENTATION ON COCO

For the experiment on COCO, we use MMDetection (Chen et al., 2019) as codebase and follow the
training/testing settings used in Swin Transformers (Liu et al., 2021) and ConvNeXts (Liu et al.,
2022). We use multi-scale training, AdamW optimizer, and a 3× schedule. Notably, since COCO is
not annotated with image classes, we cancel all classification losses for the contextual backbone (L1,
L2, L3 and L4), and reuse the class embeddings from ImageNet-1K (rather than reinitialize them as
in Kinetics-400). During fine-tuning, the class embeddings are frozen and the rest of the contextual
model is fine-tuned using the instance segmentation losses.

3 EFFICIENT BATCH COMPUTATION FOR CONTEXTUAL CONVOLUTIONS

One issue with the batch computation of contextual convolutions is that the weight offsets are adaptive
for each image and therefore the contextual convolution weights have an extra dimension of batch size.
For a contextual convolution layer, consider the input X (B,C, h, w) and weight W (B,C ′, C, k, k),
where B is batch size, C/C ′ is input/output channel size, h×w is spatial size and k× k is kernel size.
A naive solution is to perform convolution image by image, which is however slow when B grows
large. To enjoy the advantage of parallel processing on GPUs, we reshape X to (1, B × C, h,w),
reshape W to (B × C,C ′, k, k), then perform a group convolution with a group number of B
following Ma et al. (2020).

Another issue with the batch computation of contextual convolutions is that the sampling offsets
are adaptive for each image as well as each output position. To accelerate computation, we follow
the two-step computation pipeline of deformable convolutions (Dai et al., 2017; Zhu et al., 2019).
Specifically, we first sample the deformable input features (C × k × k) for each output position of
each image in parallel, and second aggregate the features and perform batch matrix multiplication per
convolution group.

To handle both weight offsets and sampling offsets, we combine the above two practices and found
they work efficiently for contextual ResNets. However, for contextual ConvNeXts, depthwise
convolutions1 are adopted and the actual number of groups for contextual depthwise convolutions is as
large as B ×C. Since the aforementioned computation pipeline performs batch matrix multiplication
per group, the contextual depthwise convolutions get very slow in practice. To solve the problem,
we propose an equivalent one-step computation pipeline for the contextual depthwise convolutions.
Specifically, for each output position of each image, we accumulate the weighted values of k × k
kernel positions for each channel (C × 1). The accumulation step can be performed in parallel and
still enjoy the acceleration of GPUs. Compared to the previous pipeline, the newly proposed pipeline
generate the same output features while achieves 2× faster inference and requires only 1

k2 of memory
usage (C × k × k → C × 1). As a result, the Contextual ConvNexts shares highly competitive
inference throughput as their plain counterparts (refer to Table 1 of the main paper).

4 LINEAR PROBE EVALUATION

This section compares the linear probe performance of Contextual ResNet50 and ResNet50 (He
et al., 2016) on two widely-used downstream datasets, Stanford Cars (Krause et al., 2013) and CUB
(Wah et al., 2011). The first dataset, Stanford Cars, is a fine-grained classification dataset with 8, 144
training images and 8, 041 testing images from 196 car classes. The second dataset, CUB, is another

1A depthwise convolution is typically taken as a group convolution with a group number of C.

4



Published as a conference paper at ICLR 2023

fine-grained classification dataset with 5, 994 training images and 5, 794 testing images from 200
bird classes.

Settings. The pretrained weights for Contextual ResNet50 and ResNet50 are from the ablation
models a5 and a1 in Table 4 of the main paper, respectively. For Contextual ResNet50, we freeze
all pretrained layers (including both contextualizing layers and convolutional blocks), remove the
original final classifying head and fine-tune a randomly-initialized fully-connected (FC) head over the
backbone features. For both datasets, we fine-tune the FC head for 3, 000 iterations using an AdamW
optimizer (Loshchilov & Hutter, 2017) with a learning rate of 0.001. The batch size is set as 512 and
the weight decay is 1e− 5. The top-1 accuracy on a single crop of size 448× 448 is reported.

Table 3: Linear probe results on Stanford Cars (Krause et al., 2013) and CUB (Wah et al., 2011).

backbone Cars
top-1 acc.

CUB
top-1 acc.

ResNet50 50.20% 63.02%
Contextual ResNet50 (ours) 55.82% 66.64%

Results. On both Stanford Cars and CUB datasets, the proposed Contextual ResNet50 yields
significantly better top-1 accuracy (+5.63%/+3.62%). This demonstrates that the learned features of
the proposed method are robust and can be simply transferred to fine-grained downstream tasks.

5 MORE GRAD-CAM VISUALIZATIONS

ConvNeXt-T Ours 
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badger (GT): 62%
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Image ConvNeXt-T Ours 
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vestment (GT): 30%

vestment (GT): 54%
poncho: 18% 

syringe: 39% 
power drill (GT): 5%

power drill (GT): 35%
syringe: 6% 

crutch: 63% 
tripod (GT): 21%

tripod (GT): 56%
crutch: 28% 

case 1 case 2

case 3 case 4

case 5 case 6

Figure 3: More Grad-CAM visualization results of ConvNeXt-T and Contextual ConvNeXt-T on
ImageNet-1K. “GT” denotes the ground truth class of the image.

Figure 3 presents more Grad-CAM visualizations (Selvaraju et al., 2017) comparing ConvNeXt-T
and the proposed Contextual ConvNeXt-T. For all cases, our method differentiates the ground-truth
classes from their distractors by extracting features of discriminative patterns among them, instead of
features of shared patterns. Specifically:

• For case 1, our method differentiates “badger” from “skunk” by extracting features of the
body of the animal, instead of the head.
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• For case 2, our method differentiates “fireguard” from “stove” by extracting features of the
surroundings of the fire, instead of the fire itself.

• For case 3, our method differentiates “weight scale” from “digital clock” by extracting
features of the shape of the object, instead of the digital screen.

• For case 4, our method differentiates “vestment” from “poncho” by extracting features of
the sleeves and the decorations of the clothes, instead of the collar.

• For case 5, our method differentiates “power drill” from “syringe” by extracting features of
the chuck, instead of the bit.

• For case 6, our method differentiates “tripod” from “crutch” by extracting features of the
camera platform, instead of the leg.

These observations demonstrate that the newly proposed Contextual CNN can modulate themselves
according to the contextual priors (a few most likely classes) for each image, and learn to generate
more discriminative features with regard to these classes.

6 FAILURE ANALYSIS

Unusual Object Appearances 

Case 3

bandit aid (GT): 11%

packet: 14%

abacus (GT): 2% 
necklace: 77%
Case 4

Case 5

hair slide (GT): 24%
wool: 25%

toyshop (GT): 34% 
teddy: 45%
Case 6

Noisy Labels

Case 1

hammer (GT): 10%
flute: 27%

traffic light (GT): 5% 
torch: 42%
Case 2

Huge Viewpoint Variations

Figure 4: Visualization of failure cases of Contextual ConvNeXt-T on ImageNet-1K. “GT” denotes
the ground truth class of the image.

Figure 4 presents some failure cases of the proposed Contextual ConvNeXt-T on ImageNet-1K. The
failure cases are summarized into three kinds:

• Huge viewpoint variations. Both case 1 and case 2 show part of the objects (“hammer” and
“traffic light”) from the bottom of the objects. The viewpoints are very different from those
of training, e.g., the frontal of the objects.

• Unusual object appearances. Case 3 shows an unusual bacon-like “bandit aid”. Case 4 shows
an unusual “abacus” that is made of decorative beads. These unusual object appearances
confuse the proposed model.

• Noisy labels. Case 5 shows a “hair slide” that is simultaneously a “wool”. Case 6 shows a
scene of the “toyshop” which contains many “teddy” bears. These cases have noisy labels
since each of them contain multiple correct classes but is annotated with only one label.

Similar failure cases are also observed in recent SOTA methods like Swin Transformers and Con-
vNeXt. These cases reveal the unsolved challenges of visual recognition and suggest the potential
directions for future works.
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