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ABSTRACT

We present SegLLM, a novel multi-round interactive reasoning segmentation model
that enhances LLM-based segmentation by exploiting conversational memory of
both visual and textual outputs. By leveraging a mask-aware multimodal LLM,
SegLLM re-integrates previous segmentation results into its input stream, enabling
it to reason about complex user intentions and segment objects in relation to
previously identified entities, including positional, interactional, and hierarchical
relationships, across multiple interactions. This capability allows SegLLM to
respond to visual and text queries in a chat-like manner. Evaluated on the newly
curated MRSeg benchmark, SegLLM outperforms existing methods in multi-
round interactive reasoning segmentation by over 20%. Additionally, we observed
that training on multi-round reasoning segmentation data enhances performance
on standard single-round referring segmentation and localization tasks, resulting
in a 5.5% increase in cIoU for referring expression segmentation and a 4.5%
improvement in Acc@0.5 for referring expression localization.

1 INTRODUCTION

Image segmentation plays a crucial role in numerous computer vision tasks, while traditional methods
have been limited to providing segmentation results for close-set categories (Cheng et al., 2022;
He et al., 2017) or simple text queries (Ding et al., 2023; Wang et al., 2024b) using CLIP (Ding
et al., 2023; Radford et al., 2021) or BERT (Wang et al., 2024b; Devlin et al., 2018) text embeddings
as classifiers. Recent advancements in Large Vision-Language Models (LVMs) (Pi et al., 2023a;
Zhang et al., 2023a; Lai et al., 2024; Wu et al., 2024; Liu et al., 2024; Touvron et al., 2023; Alayrac
et al., 2022; Awadalla et al., 2023; Dai et al., 2024) have reformulated image segmentation as a next
token prediction task, enabling segmentation models to engage in natural language conversations
with users and reason about the presence, location, and relationships of objects in complex visual
scenes. For instance, LISA (Lai et al., 2024), a Language Instructed Segmentation Assistant, produces
segmentation masks by incorporating a [SEG] token into its vocabulary, which, when generated, is
decoded into the corresponding segmentation mask.

These LLM segmentation models (Lai et al., 2024; Wu et al., 2024; Pi et al., 2023a; Zhang et al.,
2023a) typically achieve their localization capabilities by incorporating a decoder that converts the
output [SEG] tokens of LLMs into localization results. They are trained on numerous visual queries
such as “please find the heart healthy food in the image”, where responses include both text outputs
and segmentation masks. Essentially, these models are advanced versions of early open-vocabulary
segmentation models, with their text encoders upgraded from smaller language models, such as
BERT (Devlin et al., 2018), to smarter LLMs, such as Llama (Touvron et al., 2023). Consequently,
LLM segmentation models are often evaluated on traditional referring expression segmentation (RES)
datasets, such as RefCOCO, which provide a single text query corresponding to each mask. These
single-round referring expression segmentation (RES) datasets overlook one of the most remarkable
properties of LLMs (Achiam et al., 2023; Team et al., 2023; Touvron et al., 2023; Jiang et al., 2023):
generating multi-round responses in a conversational manner. In this paper, we intend to answer the
question: can segmentation models reason about previously segmented objects and conversations,
responding to multiple visual and text queries in a chat-like manner?

Current LLM segmentation or detection models (Lai et al., 2024; Zhang et al., 2023a; Wu et al.,
2024), despite their impressive single-round performance, fall short as multi-modal conversation
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Figure 1: We present SegLLM, a multi-round interactive reasoning segmentation model designed to engage
in chat-like interactions by responding to both visual and text queries. It reasons about previously segmented
objects and conversations to understand complex user intentions. On the left: SegLLM can infer intricate
relationships between objects, such as positional, interactional, and hierarchical connections with previously
identified entities, e.g., instance [1]. On the right: We introduce the MRSeg, a new multi-round image referring
segmentation benchmark. As the rounds progress, the complexity of interaction and memory retention increases.
However, SegLLM consistently surpasses the previous SoTA method LISA (Lai et al., 2024), with a significant
margin across all conversational rounds.

agents due to their inability to handle multi-round, interactive conversations. For instance, after
obtaining a mask of a ‘person in black hoodie’ in Fig. 1, a user might want to perform additional
queries based on this mask output—such as segmenting the ‘ski he is holding’, segmenting the ‘man
standing to the right of him’, or segmenting a different person if the output is incorrect. Existing
models struggle with these complex queries because there is no “communication” between the large
language models (LLMs) and the vision encoders. Information flows only from the LLMs to the
mask decoder, not vice versa, preventing the LLM from being aware of the output mask and making
it difficult to reason about complex queries involving previous mask outputs.

To address this issue, we propose SegLLM. Unlike existing LLM segmentation models that naively
assemble a mask decoder with an LLM, we introduce a novel communication protocol that feeds
the segmentation outputs of the mask decoder back into the input stream of the LLMs, and the past
conversation context into the input query of the mask decoder. This design allows the LLMs to
“see” past mask outputs and the mask decoder to “see” the past conversation context, enabling it to
handle complex queries like ‘segment the helmet of the previously segmented person’, as shown in
Fig. 1. Concretely, we introduce a Mask-Encoding scheme to make the LLM mask-aware and a
Reference Mask-Decoding scheme to make the segmentation head context-aware. To fully explore
the capabilities of these novel designs, we curated multiple high-quality multi-round interactive
segmentation datasets, named MRSeg. The new dataset consists of complex object queries involving
existing mask outputs, formulated in seamless multi-round natural language conversations.

Through extensive experiments, we demonstrate that SegLLM outperforms previous state-of-the-art
models by 18∼30% on our multi-round reasoning segmentation benchmarks, MRSeg. Additionally,
SegLLM surpasses prior state-of-the-art performance on the single-round referring segmentation
and detection benchmark, RefCOCO, with over a 5.5% improvement in segmentation (cIoU) and a
4.5% increase in detection accuracy (Acc@0.5). SegLLM also exhibits greater robustness to various
question templates, achieving 9.6% performance gains on RefCOCO with diverse query formats.

2 RELATED WORKS

2.1 MULTI-MODAL LARGE LANGUAGE MODELS

To leverage the advancements in language models (Brown et al., 2020; Touvron et al., 2023; Chowdh-
ery et al., 2023; Le Scao et al., 2023; Hoffmann et al., 2022) across various modalities, Multi-modal
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Large Language Models (MLLMs) have been developed to combine language and vision (Yin et al.,
2023; Liu et al., 2024; Zhu et al., 2023; Alayrac et al., 2022). Flamingo was one of the first unified
architectures to align image and text pairs in context learning through gated cross-attention blocks
(Alayrac et al., 2022). End-to-end MLLMs typically require a finetuning process where an intermedi-
ate network (Lai et al., 2024; Zhang et al., 2023a) and/or sampler module (You et al., 2023) is used to
map the vision features into the language space. BLIP-2 bridges the modality gap with a querying
transformer and a two-stage training process, which involves pretraining on a trainable LLM and
instruction tuning on a frozen one (Li et al., 2023b). Models like MiniGPT-4 (Zhu et al., 2023) and
LLava (Liu et al., 2024) follow a similar training paradigm, with Vicuna 18 as a language decoder
and GPT-4 designed prompts. Other notable models in instruction tuning include Otter (Li et al.,
2023a) that is based on (Awadalla et al., 2023), mPLUG-Owl (Ye et al., 2023) with a novel modular
architecture, and InstructBLIP (Dai et al., 2024) which features an instruction aware Q-former.

2.2 MULTI-ROUND CONVERSATIONAL MLLMS

Recent advancements in MLLMs have focused on enhancing interactive capabilities. Models like
Kosmos-2 (Peng et al., 2023) and Shikra (Chen et al., 2023) use visual grounding and referring to
provide the LLM with detailed location information of the objects, which enables the user to point
out specific areas in the image. Various works aim to improve local information, such as Ferret (You
et al., 2023) and PerceptionGPT (Pi et al., 2023b) which employ flexible continuous representations
to handle different shapes. Other approaches (Yang et al., 2023a;b; Zeng et al., 2022) utilize prompt
engineering and APIs to facilitate interaction, instead of relying on end-to-end models.

More recent approaches introduce the concept of reasoning, leveraging LLMs to provide a visual
answer based on implied information. DetGPT (Pi et al., 2023a) performs object detection using
high-level instructions rather than distinct classes. GPT4RoI (Zhang et al., 2023b) receives spatial
boxes as input to focus on specific regions and better align vision and text. LISA (Lai et al., 2024)
adds a new embedding prompt to the mask decoder of the SAM (Kirillov et al., 2023) guiding
segmentation, which is then processed by LLaVA (Liu et al., 2024) to perform high-level reasoning.
NExT-Chat (Zhang et al., 2023a) expands on LISA by using embeddings instead of tokens for location
information and adding a decoder with a joint loss to facilitate object detection.

While some methods support multi-round conversations, they often lack mechanisms to maintain lo-
calization performance over successive rounds, leading to degradation and information loss. SegLLM
improves the multi-round interactive segmentation by leveraging the text and segmentation results
from previous rounds, thereby generating refined masks and supporting hierarchical representations
to enhance performance in multi-round interactions.

3 BACKGROUND: REASONING SEGMENTATION

Task definition. The reasoning segmentation task (Lai et al., 2024) involves generating binary
segmentation masks based on an image and descriptive, free-form text prompts. This task requires
the model to possess cross-modality comprehension, understanding both the complex visual scenes,
as well as the natural-language signals in the text prompt. Specifically, the model must interpret
complex user text prompts that go beyond simple class names to include implicit descriptions that
require general world knowledge, such as “the device that can illuminate a dark room”.

Overall pipeline. To achieve such capabilities, reasoning segmentation model typically first employs
a pre-trained large multimodal models (VLMs), FMM, which is capable of comprehending both visual
and textual information simultaneously (Lai et al., 2024). A new [SEG] token is then added to the
VLMs’s vocabulary. Given an input image ximg and input text prompt xtxt, the VLMs generates an
output text response ŷtxt, which includes the [SEG] token to request the generation for a segmentation
mask. Finally, the segmentor FSEG uses the last layer’s hidden state, hseg, corresponding to the [SEG]
token along with the input image ximg to generate the segmentation mask ŷSEG.

Model architecture. An image reasoning segmentation model, FMM, typically consists of three
key components (Lai et al., 2024): an image encoder EMM (e.g., CLIP (Radford et al., 2021) and
DINOv2 (Oquab et al., 2023)), a base language model L (e.g., Llama (Touvron et al., 2023)), and a
vision-to-language projection layer fVtoL, which is typically an MLP layer. Given a pair of input image
and text prompt (ximg, xtxt), the image encoder first encodes the input image into patch embeddings
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[1].
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previously segmented 
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Figure 2: Pipeline for generating our multi-round conversational dataset MRSeg. The workflow involves
selecting instances, generating relationships, fitting the instances and relationships into conversational templates,
and refining the conversations using a language model for improved accuracy.

himg, which are then projected into the text embedding space via fVtoL. The resulting visual tokens
are concatenated with the sequence of text tokens htxt. Finally, taking both visual and language tokens
as inputs, the language model L produces the output response ŷtxt containing the [SEG] token: ŷtxt =
FMM(ximg, xtxt) = L(cat([fV2L(EMM(ximg)), htxt)]). The [SEG] token in the output responses is
then decoded into the segmentation mask using the mask decoder FSEG of a pre-trained segmentation
model, SAM (Kirillov et al., 2023): ŷSEG = FSEG(ximg, hSEG) = DSEG(ESEG(ximg), hSEG).

4 MULTI-ROUND REASONING SEGMENTATION

The success of our SegLLM method relies on two essential components: a comprehensive dataset
MRSeg that has an extensive collection of Multi-Round interactive Segmentation instructions, and a
mask-aware VLMs specifically designed to reason about the conversational history, with a particular
focus on the segmentation masks generated in previous interactions.

4.1 DATA PIPELINE

Data sources. We constructed our multi-round image reasoning segmentation dataset (MRSeg) based
on several widely utilized datasets, and include data from the following sources: RefCOCO(+/g) (Yu
et al., 2016; Kazemzadeh et al., 2014), Visual Genome (Krishna et al., 2017), PACO-LVIS (Ra-
manathan et al., 2023), LVIS (Gupta et al., 2019), Pascal Panoptic Part (de Geus et al., 2021),
ADE20K(Zhou et al., 2017), COCO-Stuff(Caesar et al., 2016) and MSCOCO(Lin et al., 2014b). We
used bounding box or segmentation annotations from these datasets to generate natural language
conversations, applying a template-based approach as detailed in subsequent sections. The overall
pipeline can be seen in Fig. 2 and we provide the statistics and some sample data for MRSeg in Fig. 3.

Multi-round conversation generation. We design various pipelines for generating multi-round
conversations, tailored to the types of data and inter-instance relationships they support:

• Hierarchical Relationships (PACO-LVIS, Pascal Panoptic Part): In these queries, the model is
tasked with segmenting objects that are sub-parts of previously segmented instances. The queries
start by asking about the instance, followed by questions about its parts. Example query: “Can
you segment the <part> of the <object>?”

• Positional Relationships (RefCOCO(+/g), LVIS): These queries require the model to segment
objects based on their positional relationships to previous outputs. An example query is: “Can
you segment the <class> that is <relationship> the output from round <i>?” We refine these
conversations using GPT-4 (our full prompt to GPT-4 can be found in Table A3) to ensure
natural language fluency. Details on the RefCOCO(+/g) pipeline are in Fig. A2. Additionally,
we introduce a challenging variant called MRSeg (hard), where understanding previous round
information is necessary to correctly segment the current instance (details in Appendix A.1).

• Interactional Relationships (Visual Genome): Utilizing Visual Genome (VG) relationship
annotations, we construct conversations that focus on interactional dynamics, rather than just
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direction to the right of [1]
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20196
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Figure 3: Statistics and sample conversations for the Multi-Round Referring Segmentation dataset
(MRSeg). We provide more details for MRSeg in Appendix A.1.

positional relationships. Each conversation has two rounds: the first round segments the subject,
and the second round segments an object based on its relationship to the subject.

• Attribute-oriented Queries (MSCOCO): These queries ask the model to segment objects based
on their attributes or usage rather than class names. An example query is: Q: Outline and extract
the object that has a tall, slender neck covered with a distinct pattern of patches. A: Yes, the figure
you specified for segmentation is a giraffe. We generate captions by cropping MSCOCO instances
and using GPT-4V prompts (details in Table A2).

• Single-Round Semantic Segmentation is based on ADE20K and COCO-Stuff datasets. We
construct single-round conversations by fitting class labels into various query templates.

Additional details on the multi-round data pre-processing for MRSeg are provided in Appendix A.1.

Conversation templates. We observed that current state-of-the-art chat-based image segmentation
models, such as LISA (Lai et al., 2024), tend to rely heavily on a fixed set of question templates. This
leads to fluctuations and instability in segmentation quality when user prompts are phrased differently,
suggesting potential overfitting to specific language prompts. To address this, we leveraged the web-
version of GPT-4 (Achiam et al., 2023) to generate diverse templates, creating more natural language
conversations from dataset annotations. We generated templates for direct referring segmentation
queries, relational queries, and hierarchical queries. For each query type, we created 100∼200
templates for training and 50∼100 different templates for validation.

4.2 SEGLLM FOR MULTI-ROUND IMAGE REASONING SEGMENTATION

Overall Pipeline. We introduce SegLLM to ensure that the VLMs’s next token predictions can
incorporate the conversational memory from previous interactions, including the visual outputs,
i.e., segmented masks, and the text conversations. The architecture of our model is illustrated in
Fig. 4. SegLLM consists of two key components: 1) Mask-Encoding Module: This module feeds the
output masks back into the input stream of the LLM, enabling it to reason about segmented masks
from previous rounds. 2) Mask-Aware Decoding Module: This module allows the mask decoder
to generate new masks based on both the visual and textual conversational history, enhancing its
contextual understanding. For example, when a user requests segmentation of a part of an object
identified in a previous round (e.g., the ear of a man), the model’s ability to access prior mask data
enables the decoder to more precisely localize and segment the specified object.

Mask-Encoding Scheme. For each mask generated by the decoder, we compute two types of
embeddings: mask embedding and bounding box embedding. The mask embedding captures the
semantic information of the masked object, and the bounding box embedding captures its location
within the original image. Employing mask embeddings (one token per mask) and box tokens instead
of a new set of patch tokens for each mask substantially reduces the number of visual tokens required
for multi-round conversations. Furthermore, since the visual patch tokens for the entire image have
already been utilized in previous conversations, this design does not compromise the richness of
information necessary for accurate image segmentation and visual question answering.
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Round 4: Hi, could you please 
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LLMs

IMG-EMBED

MASK-EMBED
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TEXT-EMBED
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[REF]    

[PAD]

[REF]    

[SEG]

Decoded Reference Mask

Decoded Target Mask

It Is [REF] [SEG]

[x1, x2, y1, y2]

Figure 4: Model architecture of SegLLM for multi-round interactive image reasoning segmentation, which can
understand complex user intentions and segment entities based on their relationships with previously identified
ones. To facilitate this, first, we implement a mask encoding scheme that reincorporates the reference mask
information back into the input stream of the LLMs. This enables the LLMs to reason about segmented masks
from previous rounds. Second, we develop a mask-aware decoding scheme that allows the mask decoder to
generate new masks based on both the output from the LLMs and the historical memory of output masks. The
model uses the last layer hidden states associated with the [REF] and [SEG] tokens to generate both the reference
mask and the target mask, seamlessly integrating past and current segmentation results.

To obtain the mask embedding, we first set the pixels outside the reference mask as black, then we
crop the image according to the bounding box of the reference mask. This yields an object-centric
image of the masked object. We pass this image to a CLIP encoder (Radford et al., 2021) to get the
raw mask embedding. We use an MLP layer to map this embedding to the input dimension of LLMs.

To obtain the bounding box embedding, we first compute the bounding box coordinates using the
generated mask, then we create a positional embedding whose dimension matches the input dimension
of LLM. We use this generated positional embedding as the final bounding box embedding.

For each mask, we obtain the two embeddings and feed them sequentially back to the input stream of
LLMs. Following LISA, we use a [SEG] token to generate the masks. During the training process, we
employ the teacher enforcing (Williams & Zipser, 1989) and directly append the ground truth mask
and bounding box embedding after each [SEG] token. At the inference time, we compute the two
embeddings for each mask generate and insert the embeddings before the input for the next round.

Mask-Aware Decoding. To facilitate the decoding process, we generate two tokens and [SEG] to the
mask decoder. The [REF] token contains information about the referenced mask and [SEG] token
contains information about the relational query. For example, in the query “segment the head of
[instance 1]” where “[instance 1]” is a previously segmented person, the [ref] token should encode
the previous mask [instance 1] while [SEG] should encode the target mask. In the training process, we
construct two queries. We match first query “[REF] , [PAD] ” to the referenced mask Mref ([instance
1] in the previous example), and match the second query “[REF] , [SEG] ” to the desired mask Mtgt
(the head of the person in the previous example). The final loss is formulated as:

Lmask = Lseg(F ([REF] , [PAD] ,Mref)) + Lseg(F ([REF] , [SEG] ,Mtgt)) (1)

where Lseg = Lce + λLDICE. We apply cross entropy loss and DICE loss to the target mask and
reference mask predictions. We set λ as 1 by default.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

We use a pretrained CLIP-ViT-Large (Radford et al., 2021) with a patch size of 14 as the image
encoder, HIPIE-R50 (Wang et al., 2024b) as the mask encoder and LLaVA-v1.5-7B (Liu et al.,
2024) as the base language model. Compared with LISA, which has exactly one mask per training
sample, SegLLM’s setup contains multiple masks per conversation. Hence, we replaced the SAM
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Rounds MR-RefCOCO MR-RefCOCO+ MR-RefCOCOg
LISA GLaMM SegLLM ∆ LISA GLaMM SegLLM ∆ LISA GLaMM SegLLM ∆

# 2 60.6 59.5 81.9 +21.3 51.4 52.9 78.0 +25.1 61.3 65.4 79.2 +13.8
# 3 58.9 61.6 81.7 +20.0 51.2 58.3 78.5 +20.2 52.1 57.8 76.0 +18.2
# 4 61.3 59.3 78.4 +17.1 49.0 54.2 74.3 +20.1 56.0 55.4 77.1 +15.0
# 5 61.0 62.6 80.3 +17.6 48.5 50.5 76.5 +26.0 47.5 49.4 66.9 +14.0
# 6 60.7 62.6 74.5 +11.9 45.6 54.8 73.4 +18.6 39.9 40.8 68.9 +24.8
# 7 54.4 52.1 69.3 +14.9 42.8 48.4 64.0 +15.6 55.1 57.8 71.0 +13.3
# 8 51.9 50.7 70.5 +18.7 36.9 43.6 59.0 +15.4 36.3 38.4 54.9 +16.5

Table 1: Multi-round referring segmentation on the proposed multi-round RefCOCO/+/g benchmarks. As
the rounds progress, it becomes harder to interact and retain all relevant information, causing the performance
measured in cIoU to drop. SegLLM can consistently outperform LISA (Lai et al., 2024) and GLaMM (Rasheed
et al., 2024), across a series of rounds by a significant margin on the MR-RefCOCO/+/g benchmarks.

Methods RefCOCO RefCOCO+ RefCOCOg
val testA testB val testA testB val test

VLT (Ding et al., 2021) 67.5 70.5 65.2 56.3 61.0 50.1 55.0 57.7
LAVT (Yang et al., 2022) 72.7 75.8 68.8 62.1 68.4 55.1 61.2 62.1
LISA-7B (Lai et al., 2024) 74.1 76.5 71.1 62.4 67.4 56.5 66.4 68.5
NExT-Chat (Zhang et al., 2024) 74.7 78.9 69.5 65.1 71.9 56.7 67.0 67.0
SegLLM (ours) 80.2 81.5 75.4 70.3 73.0 62.5 72.6 73.6

Table 2: Comparison between SegLLM and baseline methods on referring segmentation. Although not
specifically designed for single-round referring segmentation, the diverse and challenging multi-round referring
segmentation tasks and training data enable SegLLM significantly outperforms previous state-of-the-art methods
on standard referring segmentation tasks by a substantial margin. We use cIoU as the main evaluation metric.

ViT-H mask decoder (Kirillov et al., 2023) with a smaller HIPIE-R50 (Wang et al., 2024b) to reduce
the computation overhead during the training, We then fine-tune the LLM model and the projector
weights fV2L using the training set of our own multi-round instruction-segmentation dataset MRSeg,
while keeping the weights of the CLIP image encoder and the HIPIE mask decoder frozen.

We use NVIDIA A100 GPUs for model training. We fine-tune our model with a total batch size of
16 (a per-device batch size of 2) using the AdamW optimizer (Loshchilov & Hutter, 2017) with a
learning rate of 2e−5. Furthermore, we utilize stage-2 DeepSpeed accelerator (Rasley et al., 2020)
and bf16 floating point precision to enhance training efficiency and reduce memory consumption.

5.2 EVALUATION

Evaluation benchmarks. For standard single-round image reasoning segmentation and detection
tasks, we evaluate our model on the widely used referring segmentation and comprehension bench-
marks, RefCOCO/+/g (Yu et al., 2016). We also conduct qualitative and quantitative comparisons
with previous SOTA models on our multi-round referring segmentation benchmarks, based on
MSCOCO (Lin et al., 2014a), PACO (Ramanathan et al., 2023) and LVIS (Gupta et al., 2019), which
assess performance based on positional, interactional or hierarchical relationship queries.

Evaluation metrics. We use mean Intersection-Over-Union (mIoU) and cumulative Intersection-
Over-Union (cIoU) as our main evaluation metrics. To assess the model’s performance across multiple
rounds of conversation, we track the mIoU and cIoU scores for each round’s segmentation outputs.

Baseline. Since some baseline models, e.g., LISA, do not natively support multi-round interactive
segmentation, for comparisons, we adapt our multi-round validation data into their supported single-
turn format by converting the N -turn data into N single-turn instruction segmentation tasks.

5.3 EVALUATION RESULTS

Mutli-round referring segmentation. We compare the performance of SegLLM and LISA on our
multi-round referring segmentation benchmarks, MR-RefCOCO/+/g. As shown in Table 1, compared
to LISA (Lai et al., 2024) and GLaMM (Rasheed et al., 2024), SegLLM not only achieves 14∼26%
higher cIoU score across all conversation rounds but also stays stable, whereas LISA and GLaMM’s
performance tends to degrade in the later turns of the conversation. For example, by round 5, the
performance gap between SegLLM and GLaMM widens significantly, reaching over 17.6%, 26.0%,
and 14.0% on MR-RefCOCO, MR-RefCOCO+, and MR-RefCOCOg, respectively—nearly double
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Figure 5: Side-by-side qualitative comparison with LISA’s (Lai et al., 2024) on multi-round interactive
segmentation. SegLLM not only excels in reasoning segmentation, demonstrating an understanding of world
knowledge including recognition of famous individuals, as illustrated in the round 1 and round 4 results of the
first demo in row one, but it also efficiently responds to questions that reference previous rounds. Ref indicates
the referenced output from previous round.

Methods RefCOCO RefCOCO+ RefCOCOg
val testA testB val testA testB val test

Shikra-13B (Chen et al., 2023) 87.8 91.1 81.8 82.9 87.8 74.4 82.6 83.2
VisionLLM-H (Wang et al., 2024a) - 86.7 - - - - - -
NExT-Chat-7B (Zhang et al., 2024) 85.5 90.0 77.9 77.2 84.5 68.0 80.1 79.8
SegLLM-7B (ours) 90.0 92.1 86.2 82.2 85.5 76.1 83.9 85.9

Table 3: Comparison between SegLLM and baseline models on referring expression comprehension
(REC). SegLLM not only sets a new SOTA result in referring segmentation (Table 2), but also surpasses baseline
models in detection tasks, including those specifically optimized for these tasks, such as NExT-Chat-7B (Zhang
et al., 2024), or models with larger LLMs like Shikra-13B (Chen et al., 2023). The evaluation metric used is the
standard detection metric for REC, Acc@0.5.

Method Val Test Test (long query)
mIoU cIoU mIoU cIoU mIoU cIoU

LISA (Lai et al., 2024) 53.6 52.3 48.7 48.8 49.2 48.9
SegLLM 57.2 54.3 52.4 48.4 55.9 54.2

Table 4: Result comparison on the
ReasonSeg dataset. SegLLM demon-
strates superior performance, particu-
larly on the long query subset.

the gap observed in round 1 (Table 2). For details on the evaluation protocol used to evaluate LISA
on our multi-round dataset, please see Appendix B. Besides the quantitative results, Fig. 5 presents
the qualitative results comparing SegLLM with LISA (Lai et al., 2024).

Why does SegLLM’s performance in later rounds sometimes exceed the first round by 2∼4%
(Table 2)? This improvement is attributed to earlier rounds helping to narrow down the search space
in the image, thus enhancing the model’s accuracy in subsequent queries.

Single-round referring segmentation and expression comprehension. As shown in Tabs. 2 to 4,
SegLLM consistently exceeds previous SOTA methods, such as LISA (Lai et al., 2024), NExT-
Chat (Zhang et al., 2024) and Shikra-13B (Chen et al., 2023), in the standard single-round referring
segmentation and expression comprehension tasks, despite not being specifically designed for these
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SegLLM LISA
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the desk in this image. Can you help 

me locate it by generating the 
segmentation mask?
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Figure 6: Demo results that demonstrate SegLLM’s robustness against varying question queries, in contrast
to LISA (Lai et al., 2024), which is sensitive to prompt phrasing. Even with simple questions presented in
different templates, LISA’s performance significantly declines, frequently failing to deliver correct segmentation
results for most test templates. This limitation forces users to adhere to specific phrasing, such as “Segment
[object descriptions]”, substantially restricting the model’s real-world applicability.

Models Multi-Round PACO (w/ LVIS) (mIoU) Multi-Round PACO (w/ LVIS) (cIoU)
LISA SegLLM Absolute ∆ LISA SegLLM Absolute ∆

round 1 34.7 54.9 +20.2 45.6 65.3 +19.7
round 2 10.6 37.6 +27.0 15.5 49.7 +34.2
round 3 13.7 32.9 +19.1 21.3 40.9 +19.6
round 4 11.5 33.3 +21.7 18.7 39.4 +20.7
round 5 11.6 31.6 +20.0 20.5 41.9 +21.4

Table 5: Single-round referring segmentation and multi-round hierarchical image segmentation. The
Multi-Round PACO (MR-PACO) benchmark presents a significant challenge as it demands a good hierarchical
understanding and the capability to precisely segment tiny masks representing parts or subparts of an object
(refer to hierarchical query demos in Fig. 1). SegLLM significantly improve performance over LISA (Lai et al.,
2024), demonstrating substantial improvements in both mIoU and cIoU metrics across conversation rounds.

tasks. We hypothesize that SegLLM’s ability to understand the relative relationships among objects
or parts within images in multi-round tasks significantly enhances its overall visual comprehension.
This enhanced visual understanding capability transfers to superior performance in single-round tasks
as well. However, it is worth noting that while SegLLM shows improved performance in single-round
tasks, the performance gap is smaller compared to the improvements observed in multi-round tasks.

Multi-round hierarchical segmentation result comparison between SegLLM and LISA is conducted
with our MR-PACO. As detailed in Sec. 4.1, each subsequent round may query a part or subpart
of a whole object from a previous round of conversation. As shown in Table 5, compared to LISA,
SegLLM obtains 10.7%∼16.2% higher mIoU and 13.2∼27.1% higher cIoU across all rounds. It is
observed that the absolute model performance typically decreases in later rounds. This decline is
primarily due to the progressively smaller object sizes (segment parts of an instance) in later rounds
of the multi-round hierarchical segmentation task, as shown in ??. As shown in Fig. 5, SegLLM
leverages multi-round segmentation, using previous outputs to accurately identify the necktie of the
person in the gray suit in round 2, as requested by the user. In contrast, LISA, lacking this contextual
awareness, fails to correctly identify the person. This is further demonstrated in round 5, where
SegLLM successfully segments Barack Obama’s necktie from round 4, while LISA fails again.

Robustness against question templates. We observed that many previous studies in image reasoning
segmentation, such as LISA (Lai et al., 2024) and SESAME (Wu et al., 2024), tend to overfit to the
specific question templates used during training. Consequently, when these models are evaluated with
diverse question templates not encountered during training, performance often significantly declines.
For example, as shown in Table 6, the performance of LISA and SESAME drops by approximately
7% and 13%, respectively, when assessed using our varied templates.

To mitigate this, we intentionally diversified our question templates during the dataset generation
process. As a result, our SegLLM model not only demonstrates consistent segmentation performance
across diverse templates but also achieves a 5.5% higher cumulative Intersection-Over-Union (cIoU).
Notably, this performance gain occurs on the single-round referring segmentation benchmark, which
these prior studies were specifically optimized for. SegLLM even achieves 2.3% higher cIoU on
RefCOCO+/g than (Wu et al., 2024) on its own question templates. Fig. 6 shows that LISA’s
performance significantly drops when asked with simple questions presented in various templates,
frequently failing to produce correct segmentation results for most test templates.
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Methods Averaged Diverse LISA SESAME
RC RC+ RCg RC RC+ RCg RC RC+ RCg RC RC+ RCg

SESAME (Wu et al., 2024) 67.4 57.9 61.4 66.0 56.9 60.6 61.4 51.6 55.6 74.9 65.1 67.9
LISA-7B (ft) (Lai et al., 2024) 70.1 61.0 63.0 67.8 59.0 62.4 74.7 64.9 66.1 67.8 59.2 60.6
SegLLM (ours) 79.7 70.0 72.2 80.2 70.3 72.6 80.4 70.7 72.3 78.6 69.0 71.6
vs. prev. SOTA +9.6 +9.0 +9.1 +12.4 +11.3 +10.2 +5.7 +5.8 +6.2 +3.7 +3.9 +3.7

Table 6: SegLLM Exhibits greater robustness to a variety of question templates in image reasoning
segmentation. Unlike previous models such as LISA (Lai et al., 2024) and SESAME (Wu et al., 2024), which
tend to overfit to specific question templates encountered during training, SegLLM demonstrates improved
robustness. We assess performance using the single-round RefCOCO dataset with cumulative cIoU as the
evaluation metric. Notably, the templates used for evaluation were not utilized during the model training process.

Mask-enc Box-enc Ref Loss Single-Round Multi-Round Multi-Round (hard)
RefCOCO / + / g RefCOCO / + / g RefCOCO / + / g

✗ ✗ ✗ 80.2 / 67.1 / 70.8 59.6 / 53.9 / 55.2 32.4 / 32.3 / 34.1
✓ ✓ ✗ 82.3 / 72.2 / 77.8 75.7 / 71.3 / 68.6 67.6 / 67.3 / 62.8
✓ ✓ ✓ 83.8 / 72.5 / 76.7 74.0 / 70.1 / 65.8 69.6 / 69.4 / 63.7

Table 7: Ablation study on the effectiveness of proposed components. Model performance evaluated on
three benchmarks: (1) Single-Round—Referring segmentation in a single round using standard RefCOCO,
RefCOCO+, and RefCOCOg datasets. (2) MRSeg: Multi-Round—Referring segmentation over multiple
rounds, based on our custom benchmarks from RefCOCO, RefCOCO+, and RefCOCOg datasets (results show a
weighted average of standard and hard subsets). (3) MRSeg (Hard): Multi-Round (Hard)—Focuses exclusively
on the hard subset of the multi-round segmentation benchmarks. The evaluation metric used is CIoU.

5.4 ABLATION STUDY

Ablation study on the effectiveness of proposed components. We conduct an ablation study
(Table 7) on our Multi-Round RefCOCO benchmark to evaluate the effectiveness of the three
components we introduced in Sec. 4.2. We assess model performance across three subsets of the
MR-RefCOCO dataset: 1) Single-round: single round referring segmentation using the standard
RefCOCO/+/g datasets. 2) MRSeg: multi-round referring segmentation based on our MRSeg. 63)
MRSeg (Hard): this subset focuses exclusively on the hard subset of the MRSeg benchmarks, where
understanding the reference mask is crucial for accurately segmenting the correct object. We provide
more details for MRSeg (hard) in Appendix A.1.

Overall, in the MRSeg task, our proposed components lead to a significant 20% performance
improvement over the baseline. In the MRSeg (hard) subset, our mask-encoding scheme achieves
over 30 points higher cIoU compared to the baseline. These results highlight the effectiveness of
our approach in enabling the model to interpret visual cues from user instructions and perform
mask-conditioned segmentation—critical for handling complex tasks where reference masks, rather
than text-based instructions, provide key information.

The proposed components also improve results on single-round referring segmentation as shown
in Table 7. This achievement is noteworthy as the task does not explicitly require box-encoding and
mask-encoding. We hypothesize that the absence of these encoding modules complicates the learning
of segmentation from multi-round instructions, resulting in less stable training dynamics that affect
performance even in single-round tasks.

6 CONCLUSIONS

We introduce SegLLM, a novel multi-round interactive reasoning segmentation model that enhances
traditional segmentation models by retaining conversational memory of visual, not just textual, results.
Utilizing a mask-aware multimodal large language model, SegLLM integrates previous segmentation
outputs back into its input stream, allowing it to handle complex queries about relationships between
objects across multiple interactions. Tested on the newly curated MRSeg, SegLLM significantly
outperforms existing benchmarks in multi-round interactive segmentation by over 20% and shows
a 4.7% improvement in single-round referring segmentation. These results demonstrate SegLLM’s
capability as a versatile model for a broad range of instruction-following segmentation tasks.
Acknowledgment. We thank helpful discussions with Tsung-han Wu, Xingyi Zhou, Alireza Fathi,
and Cordelia Schmid. XuDong Wang and Trevor Darrell were funded by DARPA and the Berkeley
AI Research (BAIR) industrial alliance programs..
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A APPENDIX

A.1 DATASET DETAILS

In the section, we document further details on the dataset construction process. We also provide some
statistics about our dataset.

A.1.1 DATASET SIZE

We document the number of images sampled from each source dataset and the number of conversations
generated in Table A1. Additionally, we visualize the distribution of the number of rounds for each
dataset in Fig. A1.

Datasets Training Set Validation Set
# of Convs # of Images Max Rounds # of Convs # of Images Max Rounds

RefCOCO(+/g) 55188 27674 18 4263 2701 17
Visual Genome 367674 94221 2 40980 10524 2
PACO-LVIS 40827 40827 19 2178 2178 16
LVIS 71388 71255 17 13898 13898 18
Pascal Panoptic Part 4577 4577 17 4690 4690 18
ADE20K 59784 20196 1 5943 200 1
COCO-Stuff 340127 118205 1 14461 4999 1
Attributes-COCO 49036 36413 1 5000 2566 1
ReasonSeg 1326 239 1 200 200 1
MRSeg (hard) 22470 22470 1 1988 1988 1

Table A1: Statistics of our MRSeg dataset, including the number of overall conversations, number of images,
and the maximum rounds of conversations for each dataset after processing through our dataset pipeline.
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Figure A1: Bar-plot visualization for training and validation conversations count at different number of rounds
for multi-round datasets. There are very conversations with a large number of rounds.

A.1.2 CONVERSATION GENERATION PIPELINE

We employ different strategies to generate natural-language conversation for different source datasets.
Specifically, our dataset is generated using a combination of the following methods:

• Hierarchical relationships based on PACO-LVIS and Pascal Panoptic Part: In these queries,
the model is asked to segment objects which are a sub-part of some output of a previous round.
From each image, we randomly sample between one and four instances, and for each instance,
we randomly sample between one and four parts. We initiate queries about the instance followed
by questions targeting the parts of each respective instance. For Pascal Panoptic Part, we only use
objects and their parts on a instance level and not a semantic segmentation level to avoid ambiguity.
For both PACO-LVIS and Pascal Panoptic Part, we refer to previous round outputs with it’s actual
caption, e.g. ‘‘the knife’’ with probablility 50%. With the other 50% we refer to the
previous round output as ‘‘<instance i>’’ or ‘‘<the output of round i>’’.

All Captions for a 
Single Image

Randomly select between 2 
to 18 captions

Selected Captions Selected Captions 
and Relative Indexes

GPT Generated 
Templates

Fit relationships and 
instance annotations to 
templates

Based on a certain probability, we either 
ask about the current caption or select a 
another caption to inquire about.

captions_array = [“right tray pizza 
slices”, “left male”, “pizza guy with 
glasses”,“the left pizza not the slice”]

relative_array = [-1, 0, -1, 1 ] 
Index represents index of the 
corresponding object in captions array. 

Calculate spatial 
relationship to 
chosen related 
objects

Captions, Objects 
and Relationships

relationships_array = [“none”, “to 
the top left”, “none”, “below” ] 

User:  I'm looking for the segmentation mask of 
right tray pizza slices in the image.
SegLLM: Sure, the segmentation result is [1].
User: Could you highlight the left male that's to 
the top left of right tray pizza slices?
SegLLM: [2].
User: "Can pizza guy with glasses be the main 
subject of segmentation?
SegLLM:[3].
User: Can you find and segment the left pizza not 
the slice that is below the output of round 2?"
SegLLM:Sure,[4].

Multi-Round Conversational Data

Figure A2: Pipeline for generating multi-round conversational data for RefCOCO(+/g) in MRSeg.

• Positional relationships based on Refcoco(+/g) and LVIS: These conversations task the system
with segmenting objects based on their positional relationships to the outputs from previous
rounds.We randomly sample between 2 to 18 annotations per image. For each selected annotation,
we either generate a query about the object itself or generate a query involving an object from
previously processed instances, focusing on their relative positions calculated from their bounding
box coordinates. For RefCOCO(+/g), multiple annotations may be selected for the same instance
due to multiple captions available per instance.For LVIS, we select annotations where only
one or two objects of that class appear in the image. When two objects of the same class are
present, we detail their relative positions and add location descriptions to their captions to prevent
ambiguity. We specifically choose instances not categorized under COCO classes to diversify
the dataset’s class variety. The probability for each round to query about an object itself is 1/3,
otherwise, we query about the current object with a reference to a previous round’s output and
their relative position. To assign the positional relationships, we use compare the edge and center
position of the bounding boxes for the two instance we are trying to assign a relationship to.
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There are 9 total possible positions two instances can have (the same as, overlapping with, to the
left/right, above/below, to the top/bottom left/right of). Similar to Hierarchical Queries,we refer
to previous round outputs with it’s actual caption, e.g. ‘‘the woman on the left’’ with
probablility 50%. With the other 50% we refer to the previous round output as ‘‘<instance
i>’’ or ‘‘<the output of round i>’’. A detailed pipeline for how RefCOCO(+/g)
dataset is sampled can be see in Fig. A2

• MR Seg(hard): For each RefCOCO image, we identify cases where there are two instances of
the same class within the image. From these, we select a pair of instances and construct two
single-round conversations. Given two instances, X and Y, of the same class in the image, we
create the following conversations:

– Conv 1: [IMAGE] [ENCODE X] Please segment the other <class
name> → Sure, [DECODE Y]

– Conv 2: [IMAGE] [ENCODE Y] Please segment the other <class
name> → Sure, [DECODE X]

We have 10 different templates for the training and 5 templates validation/test for MR Seg(hard).
• Interactional relationships based on Visual Genome: We adopt Visual Genome (VG), utilizing

its relationship annotations to construct conversations that emphasize interactional dynamics
rather than merely positional relationships. We sample up to four relationships per image. Each
relationship prompts a two-round conversation: the first round involves segmenting the subject,
and the second round involves segmenting an object based on its relationship to the subject. Since
VG also only provides bounding box labels, we generate masks for selected instances using SAM.

A.1.3 DETAILS OF GPT4 USAGE

We prompt GPT-4 models for generating captions for attribute-based descriptions as well as for
cleaning grammar errors in our dataset. The detailed instructions and specific model we used can be
found in Table A2 and Table A3. For the attribute-based description, we crop COCO images to only
contain the specified instance, feeding the cropped image and it’s class name to GPT to generate a
description. For language correction, we found that grammar correction is often erroneous but can be
a lot of accurate if we go through the data twice to double check.

A.1.4 MORE DISCUSSIONS ON DEMO OUTPUTS

In Fig. A3, example A illustrate the necessity of our Mask-Encoding Scheme, to avoid the ambiguity
that may arise in cases where multiple instances of the same class are present in the image. Round 2
and round 3 in example A show that without our mask encoding mechanism to supply information
about the person segmented from round 1, since there are multiple laptops and chairs present in
the image, confusion arises as to which specific laptop or chair the user is referring to in the query
prompt. Therefore, without the guiding information from the mask encoding, LISA seems to naively
guess the incorrect laptop in round 2, and does not generate a comprehensible segmentation mask in
round 3. In contrast, the mask encoding guides our model to correctly segment the requested objects.
Similarly, in round 4 and round 6, our model was able to successfully segment the keyboard of the
laptop from round 3 and the person setting on the chair from round 5.

This phenomenon is again demonstrated in B in Fig. A3. Since there are two women, both carrying
bags and holding an umbrella in the image, our Mask-Encoding Scheme again resolves this the
ambiguity and allows the user to conveniently specify the bag and the umbrella requested in round 2
and round 3 are carried and held by the person from round 1. As before, the awareness of previous
round outputs enables our model to segment the correct objects, whereas LISA guesses the incorrect
objects due to the lack of this awareness.

Example C demonstrates that our model is not limited to multi-round prompting, and can produce
accurate segmentation results via direct, single-round prompts as well. In the indirect case, we first
ask the model to segment the dog during the first round of the conversation. Then, in the second
round, we ask a follow up question to guide the model to segment the Frisbee that is caught by the
dog from round 1. However, tin the direct case, we straight away ask for the Frisbee that is caught by
the dog. In comparison, our model succeeds in both the direct and indirect case, whereas LISA fails to
segment the correct Frisbee instance in either cases. This shows that our multi-round comprehension
capability is not a limitation but an addition.
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payload = {
"model": "gpt-4-turbo-2024-04-09",
"messages": [
{
"role": "user",
"content": [
{

"type": "text",
"text": f"Can you focus on describing the {class_name} in

the image? Can you format your output in a two item
array, such that the first index is an abstract
description without any class name, such as ’has a pizza
sitting on top of it’ or ’is wearing a beige t-shirt’
and the second index is the exact classname for the
object, such as ’a dining table’ or ’a man’."

},
{

"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}",
"detail": "low"

}
}

]
}

],
"max_tokens": 200

}

Table A2: Our full prompt to the GPT-4-turbo-2024-04-09 model for generating abstract descriptions

Lastly, we note that round 3 and round 6 of example A, round 2 and round 3 of example B and round
2 of example C demonstrate our model’s understanding of interactional relationships as introduced
in Sec. 4.1 and round 4 demonstrates the hierarchical relationship introduced in Sec. 4.1.

B DETAILS OF COMPARISON WITH LISA

Since Lisa does not naively support multi-round training, to ensure fairness, we employed two
different approaches:

• Approach One: We substitute the mask and bounding box encoding tokens of the reference
instance with the word “mask”. For example, a query in MR-RefCOCO dataset “Segment
the person to the left of <mask> <box>.” would be converted to “Segment the person left
to the mask.”

• Approach Two: We substitute the mask and bounding box encoding tokens with the descrip-
tion of the reference instance. For example, a query in MR-RefCOCO dataset “Segment
the person to the left of <mask> <box>.” would be converted to “Segment the person left
to the dog chasing after a butterfly.” (where <mask> <box> are encoding tokens of the
reference instance “the dog chasing after a butterfly”)

We report results on MR-RefCOCO in Table A4. SegLLM outperforms both alternative approaches 1
and 2. Furthermore, we find that LISA performs worse using approach 2 compared to approach 1,
despite the inclusion of the description of the reference instance. We suspect that this may be due
to LISA being trained on data that focuses on 1 instance, hence the presence of description for two
instances, the target and the reference instance, may cause more confusion than guidance. Regardless,
in our main table Table 1, we report LISA’s performance on our MR-RefCOCO/+/g benchmark using
the best approach for LISA, approach 2.
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Round 1:
response = client.chat.completions.create(

model="gpt-4o-2024-05-13",
response_format={ "type": "json_object" },
messages=[

{"role": "system", "content": "You are a helpful
assistant designed to output JSON."},

{"role": "user", "content": f"Can you fix any errors and
make the sentence sound like natural English, and
provide our output in a dictionary of format
’corrected’=CORRECT_SENTENCE? here is the sentence I
want you to correct, ’{sent}’"}

]
)

Round 2:
response = client.chat.completions.create(

model="gpt-4o-2024-05-13",
response_format={ "type": "json_object" },
messages=[

{"role": "system", "content": "You are a helpful
assistant designed to output JSON"},

{"role": "user", "content": f"Here is the original
sentence: ’{sent}’. Here is the corrected sentence:
’{corrected_sent}’. Does the corrected sentence have
the same meaning as the original? If yes, please
output [’Same’, ’None’]. If no, please output
[’Different’,
’<corrected_with_same_meaning_as_original>’]."}

]
)

Table A3: Out full prompt to the gpt-4o-2024-05-13 model for grammar correction. We use a two-round
approach, feeding GPT’s first round answer back to itself to be self-corrected.

Table A4: Comparison of SegLLM, Lisa(Approach 1), and Lisa(Approach 2) on MR-RefCOCO evaluation set.

SegLLM Approach 1 Approach 2
round 2 81.9 60.6 55.9
round 3 81.7 58.9 54.7
round 4 78.4 61.3 56.7
round 5 80.3 61.0 57.8
round 6 74.5 60.7 57.7
round 7 69.3 54.4 45.6
round 8 70.5 51.9 50.3

C LICENSE

We makes use the following models: CLIP (MIT license), LLAMA 2 (Llama 2 Community License
Agreement), Vicuna (Apache2 license). BLIP-2 ( BSD-3-Clause license)

We use the following dataset COCO (Attribution-NonCommercial-ShareAlike 4.0 Internationa),
RefCOCO (Apache-2.0 license), Visual Genome (Creative Commons Attribution 4.0 International
License.), PACO (MIT License), Pascal-Panoptic-Parts ( Apache-2.0 license), LIVIS (CC BY 4.0 +
COCO license).

D LIMITATIONS

Although we have shown some promising quantitative results in the novel multi-round reasoning
segmentation task, our method exhibits several limitations upon qualitative examination, as shown
in Fig. A4 and discussed in detail below. In addition to revealing potential weaknesses within
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Ref:

Ref:

Ref:

Ref:

Rnd 1: Segment the man

Rnd 2: Segment the other person.

Rnd 3: Segment the object that 
instance 2 is holding.

Rnd 5: Segment the arm of instance 
1.

Rnd 6: Segment the hair tie of 
instance 2.

SegLLM LISA

Rnd 1: Segment the batter.

Rnd 2: Segment the person crouching 
down with the glove to the right of 
instance 1.

Rnd 3: Segment the helmet of 
instance 2.

SegLLM LISA

Ref:

Rnd 1: Segment the TV.

Rnd 2: Segment the object I need 
to control it.

Ref:

Ref:

Figure A3: Additional side-by-side comparison with LISA. This shows that without awareness of segmentation
outputs from previous rounds, LISA struggles to identify the correct instance requested by the user, when there
is ambiguity. Ref indicates the referenced output from previous round.

our proposed model components, perhaps the existence of failure cases in qualitative evaluation
despite the impressive performance in quantitative evaluation indicates that our dataset construction
methodology also requires improvement such as including harder test samples. It is our hope that
these findings will encourage further research along the direction of multi-round segmentation,
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aiming to improve the incorporation of conversation and segmentation history, address some of these
limitations and extend upon our initial proposals and approaches.

Sensitivity to conversation history order. Given fixed input queries for subsequent rounds, when
the order of the previous rounds in the conversation history are permuted, the model’s output is not
consistent. As shown by conversation 1 in Fig. A4, in rounds 1 and 2, version A first asks for the
left paddle board and then the right paddle board, whereas version B first asks for the right paddle
board and then the left paddle board. However, in rounds 3 and 4, both version have the same queries,
first asking for the person standing on top of the paddle board from round 1 followed by the person
standing on top of the paddle board from round 2. Despite having the same input queries for rounds 3
and 4, the model only succeeds in segmenting the correct instance in version A and fails to do so in
version B. From the user’s standpoint, the two versions are equivalent, since the user is equally likely
to start the conversation by asking for the left paddle board, as for the right paddle board. However,
the model’s behavior is not invariant under the permutation of the conversation history, suggesting
that the robustness of our model can be improved.

Sensitivity to input query order. Symmetric to the previous case, given a fixed conversation history,
if the order of the queries in subsequent rounds are permuted, then the model’s output is also no
consistent. As shown by conversation 2 in Fig. A4, in rounds 1 and 2, both version A and version
B first asks for the person wearing red followed by the person wearing blue. Then, in rounds 3 and
4, version A first asks for the chair that the person from round 1 is sitting on (query 1), followed by
the chair that the person from round 2 is sitting on (query 2), and version B asks the same queries
but in the opposite order. However, despite the queries being the exact same, simply switching the
order of these two queries causes the model to only succeed in segmenting the correct instance in
version A and fails to do so in version B. Again, from the user’s perspective, the two versions are
equivalent, since the user is equally likely to first request an instance related to the output from round
1, as to first request an instance related the output from round 2. However, the model’s behavior is
not invariant under the permutation of the input queries in subsequent rounds, suggesting that the
robustness of our model can be improved.

Independence of encoding information. Although we quantitatively showed that using our proposed
mask encoding component to re-introduce past segmentation outputs into the model’s input stream
can surpass the performance of other models without this component on our multi-round segmentation
benchmarks in Sec. 5.3, as well as verified its effectiveness through conducting ablation study in
Sec. 5.4, qualitative evaluations show that the mask encoding information provided by this component
may be underutilized by the model. As shown by conversation 3 in Fig. A4, in rounds 3 and 4, the
helmet belonging to the kid from round 1 and round 2 are asked, respectively. In version A, the mask
encodings corresponding to the reference instance (the kid from round 1 or round 2) are supplied to
the model, whereas in version B, the relevant encoding information were not provided. However,
despite this lack of encoding information, the model is able to successfully segment the correct
instance in version B as well as in version A. This suggest that perhaps the textual information of
“instance 1” is sufficient for the model to reason that the helmet requested in round 3 corresponds
to the one belonging to kid from round 1. Alternatively, the model may just be randomly guessing,
which in this example has a success probability of 0.5. Regardless, it may be worthwhile to re-think
the design of our multi-round dataset. Perhaps increasing the level of ambiguity by filtering for
images where > 2 instances of the same class are present can force the model to rely on mask
encoding information to reason about the requested instance.

Sensitivity to positional keywords. Lastly, during qualitative evaluation, we also observed that our
model can be highly sensitive and reliant on positional keywords, such as “left” or “right”. As shown
in single round conversations 1A and 1B in Fig. A4, the input queries are purposefully constructed to
include the positional word “left” whilst requesting for the person on the right (1A), and including
word “right” whilst asking for the person on the left, respectively. Indeed, the model falls for this trick,
segmenting the person on the left and on the right, whenever the word “left” or “right” is present in
the prompt, respectively, failing to comprehend the referring expression. This indicates that perhaps
the model is paying the most attention to such positional keywords, instead of understanding the
entire expression. Moreover, as shown in single round conversations 2A and 2B in Fig. A4, the model
is able to correctly segment the request instance when given a referring expression that includes a
positional keywords “right” (2A), but fails to do so when given an alternative referring expression
that doesn’t include any positional keywords. This further indicates that currently our model relies
heavily on positional keywords that appear in the referring expression for the request instance, thus
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limiting its accuracy and generalization beyond expression that do not contain such keywords. As
mentioned previously, perhaps re-designing the construction of our dataset, such as by reducing the
number of samples involving Positional Relationships (see Sec. 4.1) and introducing more complex
relationships between instances may alleviate this dependency on positional keywords.
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Figure A4: Limitations exhibited by model during qualitative evaluation. (Top row) Sensitivity to order
of conversation history, given fixed queries in subsequent round. (2nd row) Sensitivity to order of queries in
subsequent rounds, given fixed conversation history. (3rd row) Independence of mask encoding information.
(Bottom row) Reliance on positional keywords in referring expression of query.
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