
A Proof of Proposition 1

Proposition 1. There is a one-dimensional family of parameters θ = θ(s), and s1, s2 ∈ R, such
that p(· ;θ(s)) = p(· ;θ∗), for all s ∈ (s1, s2).

Proof. We use (6) to write down the following probabilities,

p0(θ) := p(∅;θ) = p(();θ) =
1

1 + w11 + w22

p1(θ) := p({1};θ) = p((1);θ) =
w11

1 + w11 + w22

1

1 + w22w12
=

p0w11

1 + w22w12

p2(θ) := p({2};θ) = p((2);θ) =
w22

1 + w11 + w22

1

1 + w11w21
=

p0w22

1 + w11w21
.

We define the probabilities of the true model p∗i := pi(θ
∗), for i = 0, 1, 2, and solve the system

pi(θ) = p∗i , i ∈ {0, 1, 2}
wij > 0, i, j ∈ {1, 2}.

The solution is the following parametric family,

w11 = s

w22 = 1/p∗0 − 1− s

w21 =
1− p∗0 − p∗2 − p∗0s

p∗2s

w12 =
p∗0s− p∗1

p∗1(1/p
∗
0 − 1− s)

,

for s ∈ (s1, s2), where s1 = p∗1/p
∗
0 and s2 = (1−p∗0−p∗2)/p∗0. Then, the parameter family θ = θ(s)

can be computed as θij(s) = logwij(s), for i, j ∈ {1, 2}.

Illustration of the parameter family
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Figure 4: The family of parameters that result in the same marginal distribution of sets p(S;θ∗) for
the two-item example discussed in Section 3 and for α = 4. The square marks highlight the true
model parameters θ∗11 = 0, θ∗22 = −α, θ∗12 = α, θ∗21 = 0.
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B Proof of Theorem 1

We consider a CTMC with parameter matrix Θ+ = θ+Im. As a reminder, for simplicity of notation
we define w+ = eθ+ . The following lemma derives the mean and variance of the posterior time
distribution, for any fixed observation S+.

Lemma 1. For any m > 0, and any observation S+ ⊆ V with |S+| = k, if we define r = k/m,
then the posterior time distribution p(t |S+;θ+) has mean and variance given by

Mpost =
1

w+
(ψ(α+ β)− ψ(α))

Vpost =
1

w2
+

(ψ1(α)− ψ1(α+ β)),

where α = 1/w++(1− r)m+1, β = rm+1, and ψ, ψ1 are the digamma and trigamma functions
respectively.

Proof. At any time t ≥ 0, and for any x ∈ V , if we denote by X the randomly observed set, then
the indicator random variable Jx ∈ XK is Bernoulli with success probability 1− e−tw+ . Therefore,
the variable |X| follows a binomial distribution with parameters m and 1− e−tw+ , and the posterior
time density can be written as

p(t |S+;θ+) = p(t | |X| = k;θ+)

∝ p(|X| = k | t;θ+)p(t)

=
(
1− e−tw+

)k (
e−tw+

)m−k
e−t

=
(
1− e−tw+

)rm
e−t(1+(1−r)w+m).

Consider now the variable transformation y = e−tw+ with derivative dy/dt = −w+e
−tw+ . If T is a

random variable with density p(· |S+;θ+), then the random variable Y = e−Tw+ has density given
by

p(y |S+;θ) ∝ y1/w++(1−r)m(1− y)rm,
that is, Y ∼ Beta(α, β), where α = 1/w+ + (1− r)m+1, and β = rm+1. We can then write the
posterior time mean and variance as

Mpost = E[T ] = − 1

w+
E[log Y ]

Vpost = Var[T ] =
1

w2
+

Var[log Y ].

The mean and variance of log Y can be computed with the help of the digamma function ψ, and
trigamma function ψ1, which are defined as

ψ(z) =
d

dz
log Γ(z)

ψ1(z) =
d2

d2z
log Γ(z),

where Γ denotes the gamma function. We then have

Mpost = −
1

w+
E[log Y ] =

1

w+
(ψ(α+ β)− ψ(α))

Vpost =
1

w2
+

Var[log Y ] =
1

w2
+

(ψ1(α)− ψ1(α+ β)).

Since the size k of the observed set is randomly distributed given the observation time, the next
lemma shows how this size concentrates around the mean.
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Lemma 2. Let S+ ⊆ V be randomly drawn according to the CTMC with parameter matrix Θ+, let
t∗ be the true observation time, and define random variable r = |S+|/m. Then, for any δ ∈ (0, 1),
and any m ≥

√
2/δ, the following holds with probability at least 1− δ,∣∣∣r − (1− e−w+t∗)

∣∣∣ ≤√ logm

m
.

Proof. In the preceding lemma we saw that |S+| follows a binomial distribution with parameters m
and 1− e−t∗w+ . Applying Hoeffdings’s inequality gives us

P
[∣∣∣|S+| −m(1− e−w+t∗)

∣∣∣ ≤√m logm
]
≥ 1− 2

m2

⇒ P

[∣∣∣r − (1− e−w+t∗)
∣∣∣ ≤√ logm

m

]
≥ 1− 2

m2
.

Theorem 1. Let S+ ⊆ V be randomly drawn according to the CTMC with parameter matrix Θ+,
and let t∗ be the true observation time of S+. Then, for any δ ∈ (0, 1), there exists a m0, such
that for all m ≥ m0, the mean and variance of the posterior time distribution p(t |S+;θ) can be
bounded as follows with probability at least 1− δ,

|Mpost − t∗| ≤ C1(θ+, t
∗)

√
logm

m
+O

(
logm

m

)
Vpost ≤ C2(θ+, t

∗)
1

m
+O

(
1

m2

)
.

Proof. We start with the posterior mean. By Lemma 1 we have

Mpost =
1

w+
(ψ(α+ β)− ψ(α))

=
1

w+

(
log(α+ β)− 1

2(α+ β)
− log(α) +

1

2α
+O

(
1

(α+ β)2

)
+O

(
1

α2

))
(by ψ series expansion)

=
1

w+

(
log

(
1

w+m
+

2

m
+ 1

)
− log

(
1

w+m
+ (1− r) + 1

m

)
+O

(
1

m

))
(by Lemma 2)

= − 1

w+
log(1− r) +O

(
1

m

)
, (by Taylor expansion of log)

which holds with probability at least 1− δ, for all m ≥ max(
√

2/δ,m1), where m1 is the smallest

positive integer that satisfies
∣∣∣ 1+2w+

w+m1

∣∣∣ ≤ 1, and
∣∣∣ 1+w+

w+m1

∣∣∣ ≤ 1 − r. These conditions are necessary
for the Taylor expansions of the logarithms to be converging. Now we can bound the distance of the
posterior mean from the true observation time as follows,

|Mpost − t∗| =
∣∣∣∣− 1

w+
log(1− r) + 1

w+
log
(
e−w+t∗

)
+O

(
1

m

)∣∣∣∣
=

1

w+

∣∣∣log ((1− r)e−w+t∗
)∣∣∣+O( 1

m

)
=

1

w+

∣∣∣log (1 + (1− r − e−w+t∗)ew+t∗
)∣∣∣+O( 1

m

)
=

1

w+

∣∣∣(1− r − e−w+t∗)ew+t∗
∣∣∣+O( 1

m

)
+O

((
1− r − e−w+t∗

)2)
(by Taylor expansion of log(1 + ·))

≤ ew+t∗

w+

√
logm

m
+O

(
logm

m

)
, (by Lemma 2)
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which holds with probability at least 1 − δ, for all m ≥ max(
√
2/δ,m1,m2), where m2 is the

smallest positive integer that satisfies
∣∣(1− r − e−w+t∗)ew+t∗

∣∣ ≤ 1. Again, this condition is neces-
sary for the Taylor expansion of the logarithm to be converging. The bound of the theorem follows

by defining C1(w+, t
∗) :=

ew+t∗

w+
.

The argument for the posterior variance follows a similar structure. By Lemma 1 we have

Vpost =
1

w2
+

(ψ1(α)− ψ1(α+ β))

=
1

w2
+

(
1

α
− 1

α+ β
+O

(
1

(α+ β)2

)
+O

(
1

α2

))
(by ψ1 series expansion)

=
r

w2
+(1− r)

1

m
+O

(
1

m2

)
.

Using Lemma 2, we can show that r/(1− r) is upper bounded by a constant in m with probability
at least 1 − δ. In particular, for all m ≥ max(

√
2/δ),m3, where m3 := 1/(1 − e−2w+t∗), we get

1− r ≥ e−w+t∗/2 > 0. It follows that

r

1− r
≤ 2− e−w+t∗

e−w+t∗
.

The posterior variance bound follows by defining C2(w+, t
∗) :=

2− e−w+t∗

w2
+e

−w+t∗
.

To conclude the formulation of the theorem, we define m0 := max(
√
2/δ,m1,m2,m3).

Illustration of C1 and C2

The following figure shows the constants C1(w+, t
∗) and C2(w+, t

∗) for different values of w+ and
t∗. Note that as we keep increasing the true observation time t∗, the values of w+ that minimize C1

and C2 keep decreasing. This verifies the intuition provided in the main text that larger rates for the
independent elements in V+, that is, larger values of w+ will be more suitable (i.e., will have faster
convergence in m) for determining smaller observation times t∗ and vice versa. We also see that
larger times are in general harder to estimate as evidenced by the increase of the minimum values of
C1(·, t∗) and C2(·, t∗) with increasing t∗.
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Figure 5: The terms C1 and C2 that appear in the bounds of Theorem 1, plotted for different values
of w+ and t∗.
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C Violating the assumptions of Theorem 1

We show that the time posterior can behave in a similar way to what is described in Theorem 1 even
when the assumption about Θ+ having the form θ+Im is relaxed.

In a similar setup to Figure 1, given a matrix Θ+, we draw N = 1000 samples and compute the
variance of the posterior time distribution for each sample. We then plot the average variance over
the samples for each choice of Θ+.

Three of the lines in Figure 6 satisfy the assumptions of Theorem 1 each with a different choice of θ+.
The fourth line corresponds to independently drawing each diagonal entry of Θ+ uniformly from
[−3,−1]. Both axes are plotted in logarithmic scale, and the error bars denote two standard errors
of the mean. The dashed line denotes the function c/m for some constant c, and is provided for
reference. Note that the setting where the diagonal parameters are drawn uniformly exhibits similar
behavior to the constant diagonal setting. In particular, we can see that in all cases the variances
asymptotically decrease with rate 1/m, as shown in our theorem.

Next, we assume that Θ+ is block-diagonal with blocks of size 2, and introduce positive off-diagonal
parameters γ within each block. In other words, we violate the independence assumption of Theo-
rem 1, and introduce increasingly attractive behavior between pairs of elements. To make sure that
we are able to compare the different choices of γ on equal grounds, we adjust the diagonal param-
eters of Θ+, so that the marginal frequency of each item in S+ stays constant as we vary γ. In
Figure 7, we see that the posterior variance increases up to some point with increasing interaction
strength. Intuitively, we expect that for high enough γ, the two elements of each block are practi-
cally co-occurring (i.e., either neither or both are observed), and therefore the effect of each block
on the time posterior is reduced to the effect of a single element. Figure 7 confirms this intuition;
for example, the average variance for m = 100 and γ = 12 can be seen to be roughly the same as
the average variance for m = 50 and γ = 0 (independent case).

In Figure 8, we show analogous results for γ < 0, that is, repulsive interaction between pairs of
items in S+. In this case, the effect on the posterior time estimates seems to be less noticeable
compared to the attractive case.
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Figure 6: The average variance of the time posteriors for different choices of diagonal Θ+.
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Figure 7: The average variance of the time posteriors for different strengths of attractive interaction.
The independent case γ = 0 is equivalent to the θ+ = −2 case in Figure 6.
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Figure 8: The average variance of the time posteriors for different strengths of repulsive interaction.
The independent case γ = 0 is equivalent to the θ+ = −2 case in Figure 6.
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D Proof of Proposition 2

Proposition 2. The marginal probability of a partial sequence σ = (σ1, . . . , σk) can be written as

p(σ;θ) =

(
k∏

i=1

qσ[i−1]�σ[i]
(θ)

1 + q̃σ[i−1]
(θ)

)
1

1 + q̃σ[k]
(θ)

.

Proof. Event B is defined by Tk < Tobs < Tk+1 To compute P (B | A) we focus first on the event
defined by one of the above inequalities, and rewrite its probability using the definition of jump
times and the chain rule as follows,

P (Tobs > Tk | A) = P

(
Tobs >

k∑
i=1

Hi

∣∣∣∣∣A
)

=

k∏
j=1

P

(
Tobs >

j∑
i=1

Hi

∣∣∣∣∣Tobs >

j−1∑
i=1

Hi,A

)
.

The crucial observation here is that we can greatly simplify the above expression by making use of
the memoryless property of exponential random variables (Bertsekas & Tsitsiklis, 2008). According
to this property, if Z is an exponential random variable, then P(Z > x+ y | Z > x) = P (Z > y),
for all x, y ∈ R. The above expression then becomes

P (Tobs > Tk | A) =
k∏

j=1

P (Tobs > Hj | A)

=

k∏
j=1

P (Hj − Tobs < 0 | A)

=

k∏
j=1

q̃σ[j−1]
(θ)

1 + q̃σ[j−1]
(θ)

. (8)

The last equality comes from the fact that the distribution of the difference of two independent ex-
ponential random variables with rates λ1, λ2 is an asymmetric Laplace distribution with parameters
λ2 and λ1 on the negative and positive half-lines respectively.

An analogous derivation gives us

P (Tobs < Tk+1 | Tobs > Tk,A) = 1− P (Tobs > Tk+1 | Tobs > Tk,A)
= 1− P (Tobs > Hk+1 | A) (by memorylessness)

= 1−
q̃σ[k]

(θ)

1 + q̃σ[k]
(θ)

(by difference of exp.)

=
1

1 + q̃σ[k]
(θ)

. (9)

Finally, combining the results of (8) and (9), we get the probability of a partial sequence,

p(σ;θ) = P (A)P (B | A)
= P (A)P (Tobs > Tk | A)P (Tobs < Tk+1 | Tobs > Tk,A)

=

(
k∏

i=1

qσ[i−1]�σ[i]
(θ)

1 + q̃σ[i−1]
(θ)

)
1

1 + q̃σ[k]
(θ)

.
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E MCMC proposal

As a reminder, we would like to draw samples from p(· |S;θ), which we do by using a Metropolis-
Hastings chain over state space SS . At each time step, given the current permutation σ, the chain
proposes a new permutation σnew according to proposal distribution Q(σnew |σ), and transitions to
σnew with probability

paccept = min

(
1,
p(σnew |S;θ)Q(σ |σnew;θ)

p(σ |S;θ)Q(σnew |σ;θ)

)
. (10)

We focus on proposal distributions Q(σnew |σ;θ) = Q(σnew;θ) that do not depend on the current
state σ. A simple such choice is the uniform proposal Q(σnew) = 1/|S|!. In general, the conver-
gence rate of such proposals depends crucially on the minimum ratio Q(·)/p(· |S;θ) over all states
(Mengersen & Tweedie, 1996); intuitively, we want the proposal to match as well as possible the
true distribution, and, in particular, to have a high chance to propose states that have high probability
according to p(· |S;θ).
Algorithm 2 shows how to draw a permutation σ from our proposal Q, and at the same time
compute its unnormalized probability Qval ∝ Q(σ;θ). This is enough to use our proposal in the
Metropolis-Hastings chain, since the acceptance probability in (10) only requires computing ratios
Q(σ;θ)/Q(σnew;θ). As shown in the algorithm, given a set S, we iteratively add items to σ by
considering at each step a weight uν for each candidate item ν ∈ S \ σ. The form of uν bears
a strong similarity to the form of the marginal sequence probability derived in (6). In fact, it is
easy to show that for |V | = 2 this algorithm samples exactly from the correct distribution, that is,
Q(·) = p(· |S;θ). More generally, the factor cν approximates the denominator of eq. (6), and
intuitively takes into account the interactions between the elements that are already in σ and all
other elements in V . The factor

∏
wνj computes the numerator of eq. (6), and intuitively takes into

account the interactions that would occur between item ν (were we to add this item at this position)
and all remaining items in S that would be added subsequently.

To compare this proposal to the uniform one, we use the same synthetic data set as in Figure 1, but
constrain the size of the ground set to be at most n = 20, so that we can compare to the exact gra-
dients. We first run 100 gradient ascent epochs using the exact gradients, and then approximate the
gradient of the marginal likelihood at that point using the Metropolis-Hastings sampler with the two
different proposals. If we denote by g the true gradient, and by ĝ the gradient approximation, Figure
9 plots the error ∥ĝ − g∥2 as a function of the number of samples used. Note that for n = 10 the
two proposals seem to perform similarly, but as n gets larger the advantage of our proposal becomes
increasingly more pronounced. In practice we have observed that for larger ground sets our proposal
tends to provide considerable improvements to the convergence speed of the optimization algorithm,
and also be much less sensitive to the choice of step size compared to the uniform proposal.

Algorithm 2: Drawing from proposal Q
Input :Parameters θ, set S
Qval ← 0

σ ← ()

for k = 1, . . . , |S| do
for ν ∈ S \ σ do

σ′ ← σ ∪ {ν}
dν ← 1 +

∑
j∈V \σ′

wjj

∏
i∈σ′

wij

uν ←
1

dν

∏
j∈S\σ′

wνj

Draw x ∼ Cat(S \ σ, (uν/
∑

j uj)ν∈S\σ)

σ ← σ ∥ x
Qval ← Qval ux/

∑
j vj

return σ,Qval
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Figure 9: The norm of the difference between the true gradient and the gradient approximation
using sampling. Dashed lines correspond to the uniform proposal, while solid lines correspond to
our proposal described in Algorithm 2. Each color denotes a different ground set size.

F Synthetic data sets

Two-item data set
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[
0 4
0 −4

]
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G Further experimental results

Figure 10 shows results on the TCGA glioblastoma data set used by Schill et al. (2019), and orig-
inally preprocessed by Leiserson et al. (2013). (This is an older version of the data used in our
experiments.) We run our method on the same subset of n = 20 genetic alterations chosen by Schill
et al. (2019). The two plots in the top row show the learned parameter matrices Θ for two different
random initializations. The left matrix is practically identical to the result reported by Schill et al.
(2019), while the right matrix has some notable differences. To further highlight these differences,
the bottom plot shows the range (max - min value) of each learned parameter across 20 random
initializations.
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Figure 10: Top: Learned parameter matrices Θ on the reduced data set (n = 20) used by Schill
et al. (2019) for two different random initializations. Orange shades denote θij > 0, while purple
shades denote θij < 0. The zero entries are left blank. Bottom: Learned parameter ranges across 20
random initializations.
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Approximately block-diagonal interaction structure in real data
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Figure 11: The learned parameter matrix Θ for the n = 150 most frequent genetic alterations in the
TCGA glioblastoma data set discussed in Section 6. Note that the matrix consists of a smaller block
of complex dependencies followed by a larger block of approximately independent items.
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