A Proof of Proposition 1

Proposition 1. There is a one-dimensional family of parameters @ = 0(s), and s1,s2 € R, such
that p(-;0(s)) = p(-;0%), for all s € (s1, 52).

Proof. We use (6) to write down the following probabilities,

Po(6) = p(0:6) = p((): 0) .
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We define the probabilities of the true model p} := p;(6*), for i = 0, 1, 2, and solve the system

p:(0) =p;, i€{0,1,2}
Wi; > 0, 1,j¢€ {172}.

The solution is the following parametric family,

w11 = 8
waa =1/pf—1—3s
1 —p§ —p5 —pos
P3s

Pos — P
pi(l/pg—1—s)
for s € (s1, s2), where s1 = p}/p§ and s2 = (1—pf—p3)/p§. Then, the parameter family 8 = 6(s)
can be computed as 0;;(s) = logw;;(s), for i, j € {1,2}. O
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Illustration of the parameter family

021

—0.4 —0.2 0
011

Figure 4: The family of parameters that result in the same marginal distribution of sets p(.5; 8*) for
the two-item example discussed in Section 3 and for & = 4. The square marks highlight the true
model parameters 07, = 0, 655, = —a, 075, = «, 05, = 0.
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B Proof of Theorem 1

We consider a CTMC with parameter matrix ® ;. = 6, I,,,. As a reminder, for simplicity of notation
we define w, = e%+. The following lemma derives the mean and variance of the posterior time
distribution, for any fixed observation S .

Lemma 1. For any m > 0, and any observation S+ C V with |Sy| = k, if we define r = k/m,
then the posterior time distribution p(t| Sy; 0+) has mean and variance given by

Mpost = wi(w(a + B) - ¢(a))

"
Voo = = (1(0) — 10+ B)),
¥

where o = 1/wy +(1—r)m+1, 8 = rm+1, and 1, Y1 are the digamma and trigamma functions
respectively.

Proof. At any time ¢t > 0, and for any = € V, if we denote by X the randomly observed set, then
the indicator random variable [z € X] is Bernoulli with success probability 1 — e~*“+. Therefore,
the variable | X | follows a binomial distribution with parameters m and 1 — e %%+, and the posterior
time density can be written as

p(t|S4+;04) =pt||X]|=Fk;04)
o p(|X| = k|[t;04)p(t)
_ (1 _ e—tw+)k’ (e—tuur)m*k et

_ (1 _ e—tw+)rm e—t(l+(1—r)w+m).

Consider now the variable transformation y = e ~*“+ with derivative dy/dt = —w e "+ . If Tis a
random variable with density p(- | Sy ; @, ), then the random variable Y = =7+ has density given
by

Py | S438) oyt /e AL gy,
thatis, Y ~ Beta(a, 8), where « = 1/w4 + (1 —r)m+ 1, and 8 = rm + 1. We can then write the

posterior time mean and variance as

1
Mpost = ]E[T] - *a E[log Y]

1
Vi)ost = Var[T] = wT Var[log Y]
+

The mean and variance of log Y can be computed with the help of the digamma function v, and
trigamma function v, which are defined as

¥(2) = < logT(:)

FE
1(z) = = logT'(2),

d
where I" denotes the gamma function. We then have
1 1
Mpost = E[IOg Y} = 7(1#(0‘ + ﬂ) - ¢(O¢))

W4 W4

1 1
Voot = —5 Var[log Y] = —(¢1(a) — 1 (o + B)).
wy wi

O

Since the size k of the observed set is randomly distributed given the observation time, the next
lemma shows how this size concentrates around the mean.
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Lemma 2. Let S C V be randomly drawn according to the CTMC with parameter matrix © ., let
t* be the true observation time, and define random variable r = |Sy|/m. Then, for any ¢ € (0,1),

and any m > +/2/6, the following holds with probability at least 1 — §,

‘r— (1-— €7w+t*)’ < logm.
m

Proof. In the preceding lemma we saw that | S | follows a binomial distribution with parameters m
and 1 — e~ ¥ %+, Applying Hoeffdings’s inequality gives us

P[[154] —m(1 )| < Vrogm] 21— 2

(1767w+t*)’< logm] 171

- m m2’

iP[r

O

Theorem 1. Let S C V be randomly drawn according to the CTMC with parameter matrix © 4,
and let t* be the true observation time of Sy. Then, for any § € (0,1), there exists a mg, such
that for all m > my, the mean and variance of the posterior time distribution p(t| S ;0) can be
bounded as follows with probability at least 1 — 6,

logm logm
My — t*| < C1(04,t" @
My = £ < Ca(04,0) B 4 0 (25

1 1
‘/posl S 02(9—&-71;*)% + @ (TTI?) .

Proof. We start with the posterior mean. By Lemma 1 we have

Moy = iw(a +8) - ¥(a))

(by % series expansion)

1 1 2 1 1 1
:<log< ++1>—log< +(1—r)+>+(’)<>)
wy wim  m wim m m

(by Lemma 2)

1 1
=——1log(1—7r)+0O () , (by Taylor expansion of log)
w4 m

which holds with probability at least 1 — ¢, for all m > max(1/2/d, m1), where m; is the smallest
positive integer that satisfies ‘ 1712& < 1, and ’ Trwy

+ma wma
for the Taylor expansions of the logarithms to be converging. Now we can bound the distance of the
posterior mean from the true observation time as follows,

My =7 = |- g1 =)+ Ltog (¢ ) 40 (1)

< 1 — r. These conditions are necessary

- (1 —r— e—u1+t*)€w+f

w4
:U%r log ((177')6*“’” ( )
:u%rlog<1+(1—r —wHth) “’+t>‘+0< )
1 1) ( 1—r—e‘“’+t*)2>

o (i
(by Taylor expansion of log(1 + -))
wit” ] 1
e /Ogm+0<0gm>7 (by Lemma 2)
wy m m
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which holds with probability at least 1 — 4, for all m > max(y/2/8, m1, ms), where my is the

smallest positive integer that satisfies |(1 —r— e‘w”*)ew”* ‘ < 1. Again, this condition is neces-

sary for the Taylor expansion of the logarithm to be converging. The bound of the theorem follows
ew+t*

by defining C (w, t*) :=

w4

The argument for the posterior variance follows a similar structure. By Lemma 1 we have

‘/pOSl = (1/11 (OZ) - 1/}1 (Oé + ﬂ))

1
w?

1 /1 1 1 1 | .
B uT%r (a Ca+8 +0 <(04+5)2> +0 <a2>) (by 1) series expansion)

T 1 1
wi(l—r)erO(an)'

Using Lemma 2, we can show that /(1 — r) is upper bounded by a constant in m with probability
at least 1 — §. In particular, for all m > max(1/2/6), ms, where ms := 1/(1 — e=2*+"), we get
1—r>e "+ /2 > 0. It follows that

r 2 — e~ w+t”
<
1—r = e w+t*
. . . P
The posterior variance bound follows by defining Co (w4, t*) := P et
wie
To conclude the formulation of the theorem, we define mg := max(y/2/d, m1, ma, m3). O

Ilustration of C; and C5

The following figure shows the constants C (w, t*) and Ca (w4, t*) for different values of w, and
t*. Note that as we keep increasing the true observation time ¢*, the values of w. that minimize C;
and C5 keep decreasing. This verifies the intuition provided in the main text that larger rates for the
independent elements in V., that is, larger values of w will be more suitable (i.e., will have faster
convergence in m) for determining smaller observation times t* and vice versa. We also see that
larger times are in general harder to estimate as evidenced by the increase of the minimum values of
Cy (-, t*) and Cy(-, t*) with increasing ¢*.
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Figure 5: The terms C; and Cs that appear in the bounds of Theorem 1, plotted for different values
of wy and t*.
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C Violating the assumptions of Theorem 1

We show that the time posterior can behave in a similar way to what is described in Theorem 1 even
when the assumption about ® ;. having the form 6 I,,, is relaxed.

In a similar setup to Figure 1, given a matrix ®,, we draw N = 1000 samples and compute the
variance of the posterior time distribution for each sample. We then plot the average variance over
the samples for each choice of @ .

Three of the lines in Figure 6 satisfy the assumptions of Theorem 1 each with a different choice of 0, .
The fourth line corresponds to independently drawing each diagonal entry of ®_ uniformly from
[—3, —1]. Both axes are plotted in logarithmic scale, and the error bars denote two standard errors
of the mean. The dashed line denotes the function ¢/m for some constant ¢, and is provided for
reference. Note that the setting where the diagonal parameters are drawn uniformly exhibits similar
behavior to the constant diagonal setting. In particular, we can see that in all cases the variances
asymptotically decrease with rate 1/m, as shown in our theorem.

Next, we assume that ®  is block-diagonal with blocks of size 2, and introduce positive off-diagonal
parameters v within each block. In other words, we violate the independence assumption of Theo-
rem 1, and introduce increasingly attractive behavior between pairs of elements. To make sure that
we are able to compare the different choices of  on equal grounds, we adjust the diagonal param-
eters of ®, so that the marginal frequency of each item in S stays constant as we vary . In
Figure 7, we see that the posterior variance increases up to some point with increasing interaction
strength. Intuitively, we expect that for high enough ~, the two elements of each block are practi-
cally co-occurring (i.e., either neither or both are observed), and therefore the effect of each block
on the time posterior is reduced to the effect of a single element. Figure 7 confirms this intuition;
for example, the average variance for m = 100 and v = 12 can be seen to be roughly the same as
the average variance for m = 50 and v = 0 (independent case).

In Figure 8, we show analogous results for v < 0, that is, repulsive interaction between pairs of
items in S. In this case, the effect on the posterior time estimates seems to be less noticeable
compared to the attractive case.
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Figure 6: The average variance of the time posteriors for different choices of diagonal ® .
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Figure 7: The average variance of the time posteriors for different strengths of attractive interaction.
The independent case v = 0 is equivalent to the §, = —2 case in Figure 6.
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Figure 8: The average variance of the time posteriors for different strengths of repulsive interaction.
The independent case v = 0 is equivalent to the 6, = —2 case in Figure 6.
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D Proof of Proposition 2

Proposition 2. The marginal probability of a partial sequence o = (01, . ..,0}) can be written as
k
qo’[a‘,—l]"g[i] (0) 1
p(o;0) = - = :
(Z];E I+ q<7[1‘71] (0) 1+ QU[k] (0)

Proof. Event B is defined by Ty, < Tobs < Tx+1 To compute P (B | A) we focus first on the event
defined by one of the above inequalities, and rewrite its probability using the definition of jump
times and the chain rule as follows,

A>

k J
=[IP (Tobs > H;
j=1 i=1

k
P(Tops > T | A) =P (Tobs > H;
i=1

7j—1
Tobs > ZHza-A> .

i=1

The crucial observation here is that we can greatly simplify the above expression by making use of
the memoryless property of exponential random variables (Bertsekas & Tsitsiklis, 2008). According
to this property, if Z is an exponential random variable, then P(Z > x +y | Z > z) = P(Z > y),
for all z,y € R. The above expression then becomes

I
ER‘

P (Tobs > Tk | .A) IP)(Tobs > Hj |-A)

<.
Il
-

Il
=

P (H; — Tops < 0| A)

.
I
-

qa[j—l] (0)
L1+ 4o, (0)

J

(®)

<
Il

I
==

The last equality comes from the fact that the distribution of the difference of two independent ex-
ponential random variables with rates A1, Ao is an asymmetric Laplace distribution with parameters
A2 and A; on the negative and positive half-lines respectively.

An analogous derivation gives us

HD(Tobs < Tk+1 | Tobs > Tkv-A) =1- HD(Tobs > Tk+1 | Tobs > Tkv-A)

=1—P(Tops > Hp41 | A) (by memorylessness)
qo’[k] (0) .
- (by difference of exp.)
L+ Go,,, (0)
1
L 9)
L+ Go,, (0)

Finally, combining the results of (8) and (9), we get the probability of a partial sequence,

p(o;0) =P (A)P(B|A)
= ]P(.A) P(Tobs > T | A) P (Tobs < Tk+1 | Tobs > Tk,A)

— ﬁ qU[i71]—’0[i] (0) 1
i 1+ (jg[i—l] (0) 1+ qO'[k] (0)

=1
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E MCMC proposal

As a reminder, we would like to draw samples from p(- | S; @), which we do by using a Metropolis-
Hastings chain over state space Sg. At each time step, given the current permutation o, the chain
proposes a new permutation ope, according to proposal distribution Q(oyew | o), and transitions to
Onew With probability

P(new | S5 0) Q(U|0new;0)> (10)

p(U | S; 9) Q(Gnew ‘ a3 9)

We focus on proposal distributions Q(0pey | 05 8) = Q(0new; @) that do not depend on the current
state 0. A simple such choice is the uniform proposal Q(onew) = 1/|S]|!. In general, the conver-
gence rate of such proposals depends crucially on the minimum ratio Q(-)/p(- | S; @) over all states
(Mengersen & Tweedie, 1996); intuitively, we want the proposal to match as well as possible the
true distribution, and, in particular, to have a high chance to propose states that have high probability
according to p(- | S; 0).

Paccept = min (17

Algorithm 2 shows how to draw a permutation ¢ from our proposal (), and at the same time
compute its unnormalized probability Qv x Q(c;8). This is enough to use our proposal in the
Metropolis-Hastings chain, since the acceptance probability in (10) only requires computing ratios
Q(0;0)/Q(0new; 8). As shown in the algorithm, given a set .S, we iteratively add items to o by
considering at each step a weight u, for each candidate item v € S \ o. The form of u, bears
a strong similarity to the form of the marginal sequence probability derived in (6). In fact, it is
easy to show that for |V| = 2 this algorithm samples exactly from the correct distribution, that is,
Q(-) = p(-]S;0). More generally, the factor ¢, approximates the denominator of eq. (6), and
intuitively takes into account the interactions between the elements that are already in ¢ and all
other elements in V. The factor [ | w,; computes the numerator of eq. (6), and intuitively takes into
account the interactions that would occur between item v (were we to add this item at this position)
and all remaining items in S that would be added subsequently.

To compare this proposal to the uniform one, we use the same synthetic data set as in Figure 1, but
constrain the size of the ground set to be at most n = 20, so that we can compare to the exact gra-
dients. We first run 100 gradient ascent epochs using the exact gradients, and then approximate the
gradient of the marginal likelihood at that point using the Metropolis-Hastings sampler with the two
different proposals. If we denote by g the true gradient, and by g the gradient approximation, Figure
9 plots the error ||g — g||2 as a function of the number of samples used. Note that for n = 10 the
two proposals seem to perform similarly, but as n gets larger the advantage of our proposal becomes
increasingly more pronounced. In practice we have observed that for larger ground sets our proposal
tends to provide considerable improvements to the convergence speed of the optimization algorithm,
and also be much less sensitive to the choice of step size compared to the uniform proposal.

Algorithm 2: Drawing from proposal )

Input : Parameters 0, set S
Qval «0
o ()
fork=1,...,|5|do
forv e S\ odo

o' +—oU{v}

dv<_1+ Z wjowq;j

JEV\o' i€o’
1
Uy < @ ‘ H 'lUVj
jeS\o’
Draw z ~ Cat(S'\ 0, (uy/ >, uj)ves\o)
ool

Qval — Qval um/ Zj Uj

return o, Qy,
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Figure 9: The norm of the difference between the true gradient and the gradient approximation
using sampling. Dashed lines correspond to the uniform proposal, while solid lines correspond to
our proposal described in Algorithm 2. Each color denotes a different ground set size.

F Synthetic data sets

Two-item data set

@_'@ 0" = [8 —44}

Five-item data set

@—* -1 4 0 0 0
0 -1 -2 -2 0

:[ e =0 -2 -1 -2 0

0 -2 -2 05 4

@ ° 0 0 0 0 -4
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G Further experimental results

Figure 10 shows results on the TCGA glioblastoma data set used by Schill et al. (2019), and orig-
inally preprocessed by Leiserson et al. (2013). (This is an older version of the data used in our
experiments.) We run our method on the same subset of n = 20 genetic alterations chosen by Schill
et al. (2019). The two plots in the top row show the learned parameter matrices ® for two different
random initializations. The left matrix is practically identical to the result reported by Schill et al.
(2019), while the right matrix has some notable differences. To further highlight these differences,
the bottom plot shows the range (max - min value) of each learned parameter across 20 random
initializations.
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Figure 10: Top: Learned parameter matrices ® on the reduced data set (n = 20) used by Schill
et al. (2019) for two different random initializations. Orange shades denote 6;; > 0, while purple
shades denote §;; < 0. The zero entries are left blank. Bottom: Learned parameter ranges across 20
random initializations.
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Approximately block-diagonal interaction structure in real data

Figure 11: The learned parameter matrix © for the n = 150 most frequent genetic alterations in the
TCGA glioblastoma data set discussed in Section 6. Note that the matrix consists of a smaller block
of complex dependencies followed by a larger block of approximately independent items.
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