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1. Introduction
The intersection of artificial intelligence (AI) and

natural sciences has seen significant advances in re-
cent years, particularly inmodeling physical dynam-
ics. Among these developments, Hamiltonian Neu-
ral Networks (HNNs) [1] have emerged as a novel
framework for learning and preservingHamiltonian
dynamics. HNNs are designed to directly learn the
Hamiltonian of a system. This makes HNNs espe-
cially suitable for modeling systems governed by
conservation laws.
Building on this foundation, several extensions

have been proposed. For instance, Symplectic
Recurrent Neural Networks [2], SympNets [3] and
HenonNets [4], which explore intrinsic symplectic
structures. A recent study [5] introduced General-
ized Hamiltonian Neural Networks (GHNNs), offer-
ing a unified framework that connects these various
approaches.
Despite these advancements, the global visualiza-

tion and analysis of phase-space structures, partic-
ularly invariant manifolds, remains unexplored in
visualizing the neural network modeling of Hamil-
tonian systems. Invariant manifolds, such as stable
and unstable manifolds, define boundaries between
regions of behavior and are essential for predicting
long-term system evolution. To address this, we pro-
pose the use of Lagrangian Descriptors [6, 7] to visu-
alize the phase space of learned dynamics, enabling
a deeper understanding of global features.
This paper has two primary objectives: (1) to

evaluate the ability of neural network models to
learnHamiltonian systems and (2) to employ LDs for
phase-space visualization, assessing how well these
models reconstruct critical structures such as invari-
ant manifolds.
As a test case, we use the Duffing equation, a

nonlinear oscillator with rich Hamiltonian dynam-
ics. A key feature of the Duffing system is the ho-
moclinic orbit, which separates the basins of attrac-
tion. By applying GHNNs and leveraging LDs, we
aim to demonstrate the effectiveness of our method
in uncovering the intricate structures of phase space
learned by neural networks.

2. Methods
2.1 The Datasets
The Duffing equation’s Hamiltonian, derived

through an appropriate transformation, takes the

form:
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This system becomes particularly interesting when
α < 0, corresponding to a softening spring in the
context of spring dynamics. This condition results
in a double-well potential, introducing bistable be-
havior. Specifically, the system exhibits three fixed
points: two center points at (x, ·x) = (0,±α) and a
saddle point at (x, ·x) = (0, 0). The homoclinic or-
bit, connecting the saddle point to itself, serves as a
boundary between the basins of attraction of the two
stable equilibria, playing a critical role in the sys-
tem’s dynamics.
Here we used α = −1. The training datasets are

generated by numerically solving the Duffing equa-
tion with the initial conditions ·x(0) = 0 while x(0)
randomly chosen from the interval (−3, 3). Each tra-
jectory simulates 100 time units of dynamics. The
datasets vary in the number of trajectories, with
totals of 10, 20, 50, 100, and 200 trajectories. For
eachdataset, the trajectories are divided into 80% for
training, 10% for validation, and 10% for testing.

2.2 Neural Network Models
In this article, we compare the performance of

SympNet, HenonNet, and GHNN models. We refer
to [5] for details of the architectures of the models.
Themodel parameters are chosen to alignwith those
described in [5] and summarized in Table 1

NN type Learned
Hamiltonians

Neurons
per Layer

Trainable
parameters

SympNet 10 50 3000
HénonNet 10 50 755
GHNN 5 25 7250

Table 1: Hyperparameters of the Neural Network

An advantageous property of the neural network
(NN) models considered in this study is their inher-
ent invertibility, which significantly simplifies LD
computation. Specifically, the invertibility allows for
efficient computation of the backward-time portion
of the trajectory without resorting to solving nonlin-
ear equations at each step. For general NN models
lacking this property, computing the backward tra-
jectory would require iterative solutions, leading to
prohibitively high computational costs. Due to this
reason, we are not considering comparing our result
with the baseline MLP.
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2.3 Lagrangian Descriptors
Lagrangian Descriptors (LDs) are a powerful tool

for uncovering phase-space structures in dynamical
systems due to their simplicity and straightforward
implementation. In this study, the LDs are computed
by evaluating the finite-time arc length of trajecto-
ries in the phase space for each model. Specifically,
for a given initial state, the LD is defined as:

M(x0, ẋ0) =

∫ τ

−τ

√
|ẋ|2 + |ẍ|2dt (2)

where we use τ = 5 is the integration time. Through
experimentation, we determined that this integra-
tion time is sufficient to reveal the homoclinic struc-
ture in the phase space. Remark that, in general, for
LD other positive scalar valued functions might be
used rather than the arc length of the trajectory[7].
The LD computation is performed on a phase-

space grid defined by x0 ∈ [−1.5, 1.5] and ẋ0 ∈
[−0.8, 0.8], using a resolution of 400 grid points in
each direction. This fine grid ensures a detailed vi-
sualization of the phase space structure.

3. Result
For datasets containing 200 trajectories, all the

evaluated methods - SympNet, HenonNet, and
GHNN - successfully captured the presence of a ho-
moclinic orbit in phase space, as shown in the first
three plots of Fig. 1. However, subtle differences in
the location of the homoclinic orbit are evident, par-
ticularly in the bottom panel of Fig. 1, where we plot
the exact homoclinic orbit for comparison. Among
themethods, the HenonNetmodel exhibits themost
noticeable deviation from the exact orbit.
Reducing the number of training datasets en-

ables the capture of the homoclinic orbit, albeit with
greater deviations. In extreme cases, the neural net-
work models to capture the homoclinic orbit en-
tirely, as indicated by the Lagrangian Descriptors,
which identified that the learned phase space struc-
ture consists only of a central fixed point. Among
the datasets used, GHNN requires a minimum of
20 datasets to capture the homoclinic orbit, while
HenonNet needs at least 50 datasets, and SympNet
requires 200 datasets. Due to space constraints, de-
tailed visualizations of these cases are not included
here..

4. DISCUSSION AND CONCLUSION
This study demonstrates that some class Hamil-

tonian Neural Networks (HNNs), namely SympNet,
HenonNet, and GHNN, , can effectively learn the
dynamics of Hamiltonian systems, as evaluated
through their ability to reconstruct the homoclinic
orbit of the Duffing equation. By employing La-
grangian Descriptors (LDs) for phase-space analy-
sis, we verified that all models successfully capture
the homoclinic orbit, a key structure in the Duff-
ing system. However, subtle discrepancies in the
learned orbits were observed, with HenonNet ex-

Fig. 1: Lagrangian Descriptors for SympNet, Henon-
Net, and GHNN across 200 datasets (top three
plots). The bottom panel shows the homoclinic
structure extracted from the Lagrangian Descrip-
tors. The dashed line represents the exact homo-
clinic orbit of the Duffing Equation.

hibiting the most significant deviation from the ex-
act trajectory. Moreover, we found that the number
of training datasets plays a critical role in the accu-
racy of learned dynamics.
A key contribution of this work is the applica-

tion of Lagrangian Descriptors as a diagnostic tool
for assessing phase-space structures in learned dy-
namics. LDs provided a detailed and intuitive visu-
alization of the reconstructed manifolds, highlight-
ing both the strengths and limitations of eachmodel.
This demonstrates the potential of LDs for evaluat-
ing the accuracy and reliability of data-driven mod-
els in capturing essential dynamical features.
Future work will extend this analysis to chaotic

regimes of the Duffing equation, where intricate
manifold structures and sensitivity to initial condi-
tions pose significant challenges. Additionally, we
aim to investigate the use of LDs in analyzing the
phase space dynamics of neural networks trained
on the nonlinear Schrödinger equation, a system
with rich and diverse behavior, including solitons
and modulational instability. These extensions will
further explore the capabilities of HNNs in learning
complex dynamical systems and reinforce the role
of LDs as a valuable tool for phase-space analysis.
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