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ABSTRACT

Knowledge distillation aims to transfer knowledge from a large teacher model to
a compact student counterpart, often coming with a significant performance gap
between them. Interestingly, we find that a too-large performance gap can hamper
the training process. To alleviate this, we propose a Gap Preserving Distillation
(GPD) method that trains an additional dynamic teacher model from scratch along
with the student to maintain a reasonable performance gap. To further strengthen
distillation, we develop a hard strategy by enforcing both models to share pa-
rameters. Besides, we also build the soft bidirectional mappings between them
through Inverse Reparameterization (IR) and Channel-Branch Reparameteriza-
tion (CBR). IR initializes a larger dynamic teacher with approximately the same
accuracy as the student to avoid a too large gap in early stage of training. CBR
enables direct extraction of an effective student model from the dynamic teacher
without post-training. In experiments, GPD significantly outperforms existing
distillation methods on top of both CNNs and transformers, achieving up to 1.58%
accuracy improvement. Interestingly, GPD also generalizes well to the scenar-
ios without a pre-trained teacher, including training from scratch and fine-tuning,
yielding a large improvement of 1.80% and 0.89% on ResNet18, respectively. The
code is available at https://github.com/guoyongcs/GPD.

1 INTRODUCTION

Deep neural networks have achieved remarkable success across various domains (Gu & Dao, 2024;
Liu et al., 2023b; Touvron et al., 2023; Wang et al., 2023; Zhang et al., 2023a). However, the high
accuracy of these models often comes at the cost of large model sizes. Recent studies have begun
to explore methods to reduce model complexity. In parallel to model compression techniques (Liu
et al., 2023a; Wei et al., 2022; Hu et al., 2024; Xiao et al., 2023), knowledge distillation (KD) (Hinton
et al., 2015) offers a solution by transferring knowledge from complex, high-capacity models to
simpler, more lightweight models, thereby achieving effective model compression.

The standard practice of KD is to train a smaller student model to mimic the behavior or predictions
of a teacher model (Sun et al., 2024; Jin et al., 2023; Zhao et al., 2022a; Li et al., 2023; Zhao et al.,
2022a; Passalis et al., 2021; Tian et al., 2020; Zagoruyko & Komodakis, 2017a; Heo et al., 2019a;
Chen et al., 2021b; Yang et al., 2021; Peng et al., 2019). However, existing methods often exploit
a fixed pre-trained teacher model but it does not always guide the training of student in the most
effective way. To be specific, it has been shown that it is often non-trivial for the student to obtain
promising knowledge/improvements from the teacher when there is a very large gap between the
teacher and student models, especially in the early training stage. In contrast, a weaker teacher,
together with a smaller performance gap from the student, has been shown to be a better choice (Son
et al., 2021; Yang et al., 2019b; Mirzadeh et al., 2020; Wang et al., 2022; Gao et al., 2021). In fact,
it can be theoretically proved by (Wang et al., 2022) that weak models “have higher mutual infor-
mation regarding the input” compared to stronger teacher models, which can enhance knowledge
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distillation. Interestingly, this phenomenon can be intuitively understood, just like it is hard for a
child to learn advanced mathematics directly from a senior professor. Instead, it would be better
to teach him/her to count or learn elementary mathematics first. In other words, for distillation, a
student model should learn from a teacher that has an appropriate knowledge/performance gap over
it. Nevertheless, even with a relatively weak teacher that has a small performance gap, a fixed model
that is commonly used would eventually become useless since the student will gradually improve
and surpass the teacher at some time. Thus, how to adaptively control the performance gap within a
reasonable range throughout the whole distillation process is a critical problem.

To address this, we seek to explicitly control the performance gap to boost knowledge transfer.
However, it is non-trivial to determine the best range of the performance gap, since this gap may
vary significantly across different datasets and tasks. For example, a performance gap of 3% or 5%
could be good for training classification models on ImageNet. But this gap will definitely not be
a suitable value for training on MNIST since almost all the models have an accuracy of over 98%.
More critically, if we consider other tasks, e.g. image restoration, accuracy cannot be directly used
to measure the gap. Instead of seeking a universal “best gap”, we propose to cast the problem of
determining the best gap into building a suitable gap in terms of model size between the student
and the teacher. We propose to introduce a learnable dynamic teacher (DT) model besides the pre-
trained static teacher model, training it from scratch together with the student. Since DT is a larger
model and often has higher accuracy than the student, we are able to keep a promising performance
gap between DT and student during training. In addition, we hope to build a stronger connection
between DT and student to transfer knowledge in a more explicit way, in order to further enhance
the performance. To achieve this, we develop a hard strategy for distillation that forces DT and the
student to share their parameters and encourage parameter inheritance. In addition to hard strategy,
we also build a soft bidirectional mapping between them via a novel reparameterization method.

In this paper, we make the following key contributions: 1) We propose a Gap Preserving Distil-
lation (GPD) method that enhances distillation performance by introducing an additional dynamic
teacher (DT). We simultaneously train DT and the student to maintain a reasonable accuracy gap
between them during the whole training process. In this way, it becomes possible to build a dynamic
performance gap at every iteration between the student and teacher, which is essentially different
from existing work. 2) We develop a hard strategy for distillation where the student and the teacher
share the same set of parameters. The key idea is that, since the teacher is often easier to obtain high
accuracy, it may also be easier for the student to get promising improvement if it directly inher-
its well-learned parameters from the teacher, as empirically shown in Table 4. 3) We explicitly
enhance knowledge transfer by building bidirectional mappings between DT and the student via In-
verse Reparameterization (IR) and Channel-Branch Reparameterization (CBR). IR constructs
the dynamic teacher model by expanding the student model with an arbitrary expansion ratio along
both the channel and branch dimensions, while preserving the same accuracy as the student model.
This guarantees that both DT and the student can start from the same initial point and thus avoid
a too-large performance gap in early the training stage. Interestingly, IR is not designed just for
distillation, but a general initialization method for building any-size pre-trained models, yielding
additional contributions to the community beyond distillation. On the other hand, our CBR seeks
to extract an effective student model from the shared parameters with DT without any post-training.
Unlike existing reparameterization approaches, CBR does not equivalently transform a model into
a more compact one, but extracts an effective student out of DT. 4) In experiments, GPD consis-
tently outperforms existing distillation methods on top of both CNN and transformer architectures.
We emphasize that GPD is very flexible in that it also generalizes well to other training settings,
including both training from scratch and fine-tuning, which is rarely reported by other methods.

2 RELATED WORK

Knowledge distillation. Knowledge distillation (KD) (Hinton et al., 2015) transfers knowledge
from a teacher to a smaller student model. Methods improve this by focusing on logits or inter-
mediate features (Sun et al., 2024; Jin et al., 2023; Zhao et al., 2022a; Li et al., 2023; Passalis
et al., 2021; Tian et al., 2020; Zagoruyko & Komodakis, 2017a; Heo et al., 2019a; Chen et al.,
2021b; Heo et al., 2019b; Kim et al., 2018). Standard methods prioritize fully converged teach-
ers with high performance, yet the performance gap can hinder knowledge transfer (Wang et al.,
2022; Cho & Hariharan, 2019; Yuan et al., 2019; Gao et al., 2021). Strategies to address this in-
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Figure 1: Overview of the proposed Gap Preserving Distillation (GPD) method. Besides the static
teacher, we introduce an additional dynamic teacher and train it from scratch along with the student.
The student model shares parameters with the dynamic teacher via Inverse Reparameterization (IR)
and Channel-Branch Reparameterization (CBR). (a) The dynamic teacher is constructed through
IR (top right) from the student model. For any layer, we replicate the weights along the channel
dimension to build a wider layer while introducing additional branches to construct a multi-branch
architecture. In order to maintain the same accuracy as the student, we only activate the first branch
that contains the original student weights and zero out all the other extra branches, i.e., one-scaling
and zero-scaling. (b) We extract a promising student from the dynamic teacher via CBR. The ex-
panded multi-branch architecture can be merged into the student’s single-branch architecture using
a similar way proposed by OREPA (Hu et al., 2022). After that, given an expansion ratio r, we
directly extract the first 1/r parameters multiplied by a scaling factor (see details in Section 3.3.1).

clude using intermediate-stage teachers (Cho & Hariharan, 2019; Zhao et al., 2022b), pre-training
student-friendly teacher model (Yang et al., 2019a; Park et al., 2021; Dong et al., 2024), introducing
intermediate-sized assistant teachers (Mirzadeh et al., 2020; Son et al., 2021) or introducing auxil-
iary networks (Gao et al., 2021). These methods often rely on specially designed and pre-trained
intermediate models. Feature-based methods like DTSKD (Li et al., 2024b) and DiffKD (Huang
et al., 2023) focus on bridging semantic gaps or denoising features. SCKD (Zhu & Wang, 2021)
optimizes transfer using gradient similarity. Recent works refine soft labels (Yuan et al., 2024; Rao
et al., 2023) or student’s output entropy (Zhu et al., 2024a) to enhance knowledge transfer. In con-
trast, our GPD constructs a trainable dynamic teacher based on the student model, maintaining an
appropriate accuracy gap throughout distillation for effective knowledge transfer.
Reparameterization. Structural reparameterization (Ding et al., 2021a;b) has gained attention in
tasks such as compact model design (Dosovitskiy et al., 2021), architecture search (Chen et al.,
2019; Zhang et al., 2023c), and pruning (Ding et al., 2020). RepVGG (Ding et al., 2021b) trans-
forms training-time structures into equivalent, simpler inference structures. Other methods like
DiracNet (Zagoruyko & Komodakis, 2017b), ACB(Ding et al., 2019), DO-Conv(Cao et al., 2022),
and ExpandNet (Guo et al., 2020) also achieve structural reparameterization. OREPA (Hu et al.,
2022) reduces training costs by online reparameterization. In contrast, our CBR enables the extrac-
tion of an effective student model from the dynamic teacher, enhancing knowledge transfer to the
compact student model.
Model expansion. Net2Net (Chen et al., 2016) pioneered functional-preserving model expansion.
bert2BERT (Chen et al., 2021a) applied this to Transformers, with other works focusing on depth
growth (Dong et al., 2020; Chang et al., 2018; Yang et al., 2020; Gong et al., 2019). Staged Train-
ing (Shen et al., 2022) and LEMON (Wang et al., 2024) further expanded both width and depth.
ControlNet (Zhang et al., 2023b) duplicates the model and adds zero convolution layers to main-
tain equivalence, freezing the original parameters for fine-tuning. ControlNet (Zhang et al., 2023b)
duplicates the model, adds zero convolution layers, and freezes original parameters for fine-tuning.
In contrast, our GPD expands the model and enables adaptive switching between compact and ex-
panded models during training, maintaining an appropriate performance gap.
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3 GAP PRESERVING DISTILLATION

In this work, we develop a Gap Preserving Distillation (GPD) method that enhances knowledge
distillation by preserving an appropriate performance gap between the teacher and student through-
out the whole distillation process. Instead of directly defining how large the gap should be, we
propose to learn an additional dynamic teacher (DT) model as a proxy to maintain this gap, which is
more flexible and controllable. Unlike existing methods, we build bidirectional mappings between
DT and student to strengthen their connections. These two mappings can be achieved by the In-
verse Reparameterization (IR) method and the Channel-Branch Reparameterization (CRB) method,
respectively. The overview of our method is shown in Figure 1 and Algorithm 1.

3.1 DISTILLATION WITH DYNAMIC TEACHER

Popular KD methods often exploit a static teacher Ts to guide the training of the student S (Sun
et al., 2024; Jin et al., 2023; Zhao et al., 2022a; Li et al., 2023; Zhao et al., 2022a; Furlanello et al.,
2018; Zhao et al., 2022a; Romero et al., 2015; Passalis et al., 2021; Tian et al., 2020; Zagoruyko &
Komodakis, 2017a; Heo et al., 2019a; Chen et al., 2021b; Heo et al., 2019b; Kim et al., 2018). Unlike
them, our Gap Preserving Distillation (GPD) introduces a learnable dynamic teacher (DT) model Td,
as shown in Figure 1. Moreover, we seek to boost knowledge transfer by not only optimizing the
distillation objectives, but also by inheriting parameters from a better teacher model. To achieve
this, we exploit parameter sharing techniques (Zhao et al., 2023; Xie et al., 2022; Zhang et al., 2022;
Ma et al., 2022; Zhou et al., 2022) and enforce Td and S to share the same set of parameters, which
turns out to be particularly effective (see effectiveness in Section 5).

As for training, besides the standard objective of KD methods, we introduce an additional loss
related to DT LGPD. Let LCE be the cross-entropy loss, and S(x) denotes the student model’s
prediction based on input x. We use ψ(·) to represent a function that extracts desired knowledge
from models, which could be either logits or features. LKD measures the discrepancy between the
knowledge of two models. Given an image-label pair (x, y), the objective function of GPD with a
dynamic teacher is formulated as follows:

Ltotal = LCE(S(x), y) + LKD(ψ(S(x)), ψ(Ts(x)))︸ ︷︷ ︸
standard objective of KD methods

+LGPD.
(1)

As for LGPD, in Figure 1, we seek to use Td to guide the training of S and thus introduce a KD loss
LKD(ψ(S(x)), ψ(Td(x))). Regarding the training of Td, we minimize both the cross-entropy loss
LCE and a KD loss between Td and Ts via LKD(ψ(Td(x)), ψ(Ts(x))). Thus, LGPD becomes

LGPD = LCE(Td(x), y) + λLKD(ψ(S(x)), ψ(Td(x))) + LKD(ψ(Td(x)), ψ(Ts(x))). (2)

Where λ controls the importance of the distillation loss between the student and DT. We set λ = 3
in all experiments. To avoid learning knowledge from a weaker model, we consider single-way
knowledge transfer and apply stop-gradient on all the KD losses.

3.2 BUILD DYNAMIC TEACHER VIA INVERSE REPARAMETERIZATION

In order to build a suitable dynamic teacher, we develop an Inverse Reparameterization (IR) method
to build a larger model from the student with any expansion ratio r, see Figure 1 (top right). To
achieve this, we expand the model along both the channel and branch dimensions. One key charac-
teristic is that the expanded dynamic teacher shares approximately the same accuracy as the student.
Notably, IR can serve as a general initialization method for building any-size pre-trained models,
yielding additional contributions to the community beyond distillation.

3.2.1 CHANNEL-LEVEL INVERSE REPARAMETERIZATION

In the channel level, we seek to expand the number of channels in each layer by an expansion ratio
r without sacrificing accuracy. To this end, we propose a channel-level inverse reparameterization
strategy, as shown in Figure 2. The key idea is to replicate the weights of the student and introduce
a scale factor to compensate for the increased number of channels.
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Algorithm 1 Training process of Gap Preserving Distillation (GPD).
Input: Student S, static teacher Ts, epochsN , step size η, model parameters W, weight of standard

knowledge distillation loss λ, knowledge function ψ(·), training data (x, y)
1: Obtain dynamic teacher Td: Wd ← IR(W) // Inverse Reparameterization
2: for i = 1 to N do
3: Forward propagation using the dynamic teacher via ŷd = Td(x);
4: Compute gradients for dynamic teacher:
5: Gd ← ∇Wd

LCE(ŷd, y) +∇Wd
LKD(ψ(ŷd), ψ(Ts(x)));

6: Obtain student S from dynamic teacher Td:
7: Ws ← CBR(Wd) // Channel-Branch Reparameterization
8: Forward propagation using the student via ŷs = S(x);
9: Compute gradients for student:

10: Gs ← ∇Ws
LCE(ŷs, y) + λ∇Ws

LKD(ψ(ŷs), ψ(Ts(x)))
11: +∇Ws

LKD(ψ(ŷs), ψ(Td(x)));
12: Update parameters Wd sharing between student S and dynamic teacher Td:
13: Wd ←Wd − η(Gd +Gs);
14: end for
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Figure 2: Illustration of channel-level inverse reparameterization with an expansion ratio of 2. (a)
For the first layer, weights are scaled by 2 and replicated along the output channel dimension, ex-
panding from C1×C0 to 2C1×C0. For intermediate layers, weights are scaled by 2, then replicated
along both input and output dimensions, expanding from Cl × Cl−1 to 2Cl × 2Cl−1. For the last
layer, weights are replicated along the input dimension, expanding fromCL×CL−1 toCL×2CL−1.
(b) Inverse re-parameterizing the student model (left) to construct the dynamic teacher model (right)
by expanding channels from 2 to 4 following the procedures exemplified in (a), while preserving the
initial input-output mapping.

Considering a student model with L convolutional layers, let Wl ∈ RCl×Cl−1×K×K be the weight
of the l-th layer. Here, Cl and Cl−1 represent the number of output and input channels, and K ×K
denotes the kernel size. Let Ŵl ∈ RrCl×rCl−1×K×K be the expanded weight matrix for layer l
of the dynamic teacher, given the expansion ratio r. To better illustrate our method, we divide all
layers into three groups, including the first layer, intermediate layers, and the last layer. In Figure 2,
we take the expansion ratio r = 2 for example to illustrate our method. For the first layer (l = 1),
we replicate W1 by r times and scale them by 1/r. In this way, given the same input x, the
output would be 1/r of the original one. Nevertheless, since the number of output channels has
been extended from C1 to rC1, summing up all the channels would obtain the same value as the
original output. For convenience, we use Ŵ1 ∈ RrC1×C0×K×K to denote the weight scaled by
1/r. For the last layer (l = L), the original WL is replicated r times along the input dimension,
giving ŴL ∈ RCL×rCL−1×K×K . As for the intermediate layers, we scale Wl by 1/r and replicate
the scaled weights r times along both output and input channel dimensions, yielding rCl output
channels and rCl−1 input channels. To avoid the trivial solution caused by symmetrical/identical
replications during training, we introduce a small noise ϵ into each replication. The theoretical proof
of the equivalence of channel-level inverse reparameterization is provided in Appendix C.

5



Published as a conference paper at ICLR 2025

Dynamic Teacher Forward Process

⋯

Dynamic teacher

⋯
Branch-Level 

Reparameterization

Channel-Level 

Reparameterization

Channel-Level 

Reparameterized Weight
Student 

Forward Process

Expanded 

Weight

Channel-Branch 

Reparameterized Weight
Dynamic Teacher

Forward Process

Scaling Layer 
Scaling Layer 

𝐖

Student  Forward Process

Figure 3: Illustration of the forward process for the student and dynamic teacher models. The dy-
namic teacher performs a direct forward pass, utilizing its increased capacity. The student model
shares all parameters from the dynamic teacher and undergoes a two-step reparameterization pro-
cess. First, channel-level reparameterization adjusts the expanded channels to match the original
channel dimensions of the student model. Second, branch-level reparameterization merges the ex-
panded multi-branch units into a single branch structure, thereby restoring the original topology of
the student model while inheriting knowledge from the dynamic teacher.

3.2.2 BRANCH-LEVEL INVERSE REPARAMETERIZATION

Besides channel-level expansion, we also seek to expand the student model along the branch dimen-
sion. The branch-level inverse reparameterization aims to expand a single convolutional layer into a
multi-branch structure with increased capacity, while preserving the identical input-output mapping.
The key idea is to introduce additional branches with extra convolutions but zero-out them to keep
the output of multi-branch architecture the same as the single-branch counterpart.

Specifically, considering a convolutional layer represented by the kernel W ∈ RCl×Cl−1×K×K ,
where X ∈ RCl−1×H×W and Y ∈ RCl×H′×W ′

are the input and output tensors, respectively. Thus,
the convolution operation can be represented by Y = WX. As shown in Figure 1 (top right),
we expand this single convolution into a multi-branch topology with M branches. The first branch
consists of a single convolutional layer, whose weights are initialized with the original convolution
weights W, followed by a learnable linear scaling layer S1 ∈ RCl initialized as a vector of ones.
For the remaining M − 1 branches, each branch m comprises a stack of convolutional layers, with
their weights randomly initialized. All these branches are also followed by a learnable linear scaling
layer Sm ∈ RCl , initialized with a vector of zeros. In this way, the output of the multi-branch block
is equivalent to the original single-branch convolution. Let fm(X) denote the computation of the
m-th branch. The expanded model along the branch dimension can be formulated by

Y =

M∑
m=1

Smfm(X) = S1f1(X) = WX. (3)

3.3 PARAMETER SHARING WITH CHANNEL-BRANCH REPARAMETERIZATION

To further enhance knowledge transfer between the student S and the dynamic teacher Td, we pro-
pose a hard strategy for distillation that forces them to share parameters. In this way, the student is
able to directly inherit well-trained parameters from a larger model, i.e., dynamic teacher Td. Based
on the shared parameters, S(x) and Td(x) have different predictions due to different forward propa-
gation methods, as shown in Figure 3. Specifically, Td directly performs the forward pass, while the
student S conducts online reparameterization at both channel-level and branch-level.

3.3.1 CHANNEL-LEVEL REPARAMETERIZATION

As for channel-level reparameterization, given an expansion ratio r, we directly take the first 1/r
kernels and scale them by r. Interestingly, this mapping is exactly the inverse transformation of how
to conduct channel-level inverse parameterization (previously discussed in Section 3.2.1). Formally,
let Wl

m ∈ RrCl
m×rCl−1

m ×K×K denote the weight of the l-th convolutional layer in the m-th branch
of an expanded layer, and rCl

m and rCl−1
m are the numbers of output and input channels, respec-

tively. During training, our channel-level reparameterization strategy explicitly extracts a subset of
the dynamic teacher’s expanded parameters to construct the student model’s weights, enabling us to
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obtain a promising student model after training. Specifically, we extract a channel-wise slice from
Wl

m and apply a scaling operation:

W̄l
m = rWl

m[: Cl
m, : C

l−1
m , :, :], (4)

where W̄l
m ∈ RCl

m×Cl−1
m ×K×K denotes the reparameterized weight for the corresponding layer

in the student model. The slicing operation [: Cl
m, : C

l−1
m , :, :] extracts the first Cl

m output chan-
nels and Cl−1

m input channels from Wl
m. The scaling ratio r ensures the extracted parameters are

appropriately scaled, aligning with the IR process applied during the construction of the dynamic
teacher. For the first and last layers, the channel extraction is performed only over the output or input
channel dimensions, respectively. Specifically, for the first layer, W̄1

m = rW1
m[: C1

m, :, :, :], while
for the last layer, W̄L

m = WL
m[:, : CL−1

m , :, :], as the last layer’s weights are not scaled during IR
process. Moreover, we found that parameter sharing with Batch Normalization (Ioffe & Szegedy,
2015) layers requires special treatment, as detailed in Appendix D.

3.3.2 BRANCH-LEVEL REPARAMETERIZATION

After channel-level reparameterization, we merge the expanded multi-branch units of the dy-
namic teacher model into the student’s single-branch structure via branch-level reparameteriza-
tion. Following Hu et al. (2022), for the m-th branch that contains Lm convolutional layers
W1

m,W
2
m, ...,W

Lm
m , we first obtain W̄1

m,W̄
2
m, ...,W̄

Lm
m through channel-level reparameteri-

zation. These are then merged into a single weight Wm via the standard reparameterization,
which is mathematically equivalent, as proven in (Ding et al., 2021b), by conducting sequential
convolution operations: Wm = W̄1

mW̄2
m...W̄

Lm
m . Performing this for all M branches yields

W1,W2, ...,WM . After that, we sum up all of them to get the final new weight W =
∑M

m=1 Wm

for this layer in the student model. Through the branch reparameterization strategy, the student
model effectively inherits well-trained parameters from the dynamic teacher model.

3.4 EFFECT OF THE PROPOSED DESIGNS IN CONTROLLING PERFORMANCE GAP

We highlight that the proposed designs are necessary to control the performance gap between stu-
dent and teacher. Indeed, there exists a straightforward approach that uses a randomly initialized
dynamic teacher without either IR or parameter sharing. In fact, it works well for training models
from scratch, but it fails in fine-tuning scenarios since the randomly initialized teacher can eas-
ily destroy the distillation of a pre-trained student model. This motivates our design of IR, which
initializes the dynamic teacher to start with the same accuracy as the student, making our method
effective for both training from scratch and fine-tuning settings. On the other hand, the parameter
sharing mechanism is also important since it acts as a hard constraint to control the gap between
student and dynamic teacher within a suitable range. In this way, it is hard for the dynamic teacher
to become significantly better than the student since they share/optimize the same set of parame-
ters. Interestingly, parameter sharing also benefits the training of the student since the gradients
come from optimizing both the dynamic teacher and the student. In fact, this has been empirically
verified. Our ablation study (Table 4) demonstrates that parameter sharing contributes an additional
0.35% accuracy improvement. Together with IR, our GPD is able to effectively maintain appropriate
performance gaps throughout the entire training process.

4 EXPERIMENTS

4.1 DISTILLATION WITH A STATIC TEACHER

We closely follow the settings of Zhao et al. (2022a), Chen et al. (2021b) and put details in Appendix.
Table 1 shows the consistent superiority of our GPD across diverse architecture when training from
scratch with a static teacher. Notably, GPD not only yields substantial accuracy improvements
when combined with existing KD methods like ReviewKD and DKD, but also outperforms the lat-
est state-of-the-art KD approaches. Specifically, in the ResNet34→ ResNet18 setting, GPD boosts
ReviewKD from 71.61% to 72.50%, and improves DKD by 1.01%, reaching 72.71%. These results
outperform the most recent methods. In ResNet50 → MobileNet, GPD enhances ReviewKD by
0.65% and DKD by 1.58%. Similar gains are also observed in the transformer-based setting RVT-
S → RVT-Ti. These significant accuracy improvements across diverse architectures highlight the
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Table 1: Comparison of the performance of various distillation methods across different architec-
tures. “-” denotes the result that is not reported. A → B indicates a teacher model A distilling
knowledge to a student model B. GPD consistently enhances the performance of standard distilla-
tion methods across diverse architectures.

Model Teacher→ Student

ResNet34→ ResNet18 ResNet50→MobileNet RVT-S→ RVT-Ti

Teacher 73.31 76.16 81.69
Student 69.75 68.87 78.45

KD (Hinton et al., 2015) 70.66 68.58 -
AT (Zagoruyko & Komodakis, 2017a) 70.69 69.56 -

OFD (Heo et al., 2019a) 70.81 71.25 -
CRD (Tian et al., 2020) 71.17 71.37 -
RKD (Park et al., 2019) 70.40 68.5 -

WSLD (Zhou et al., 2021) 72.04 71.52 -
SRRL (Yang et al., 2021) 71.73 72.49 -

SimKD (Chen et al., 2022) 71.59 72.25 -
DIST (Huang et al., 2022) 72.07 73.24 -
NKD (Yang et al., 2023) 71.96 72.58 -

CAT-KD (Guo et al., 2023) 71.26 72.24 -
KD+CTKD (Li et al., 2023) 71.38 71.16 -

MLKD (Jin et al., 2023) 71.90 73.01 -
KD+CTKD+LS (Sun et al., 2024) 71.81 72.92 -

DKD+LSKD (Sun et al., 2024) 71.88 72.85 -
MLKD+LSKD (Sun et al., 2024) 72.08 73.22 -

CKD (Zhu et al., 2024b) 72.24 72.97 -

ReviewKD (Chen et al., 2021b) 71.61 72.56 78.92
ReviewKD + GPD 72.50 (+0.89) 73.21 (+0.65) 80.01 (+1.09)

DKD (Zhao et al., 2022a) 71.70 72.05 79.12
DKD + GPD 72.71 (+1.01) 73.63 (+1.58) 80.14 (+1.02)

Table 2: Comparison of training from scratch
without a static teacher model. GPD* denotes
our method using only the dynamic teacher
for distillation. As a standalone method, our
GPD* consistently improves student model per-
formance across diverse architectures.

Model ResNet18 MobileNet RVT-Ti

Baseline 70.07 71.68 78.45
GPD* 71.87 (+1.80) 73.07 (+1.39) 79.85 (+1.40)

Table 3: Performance comparison of fine-
tuning. GPD* denotes distillation using only
the dynamic teacher model without the static
teacher. Our method consistently outperforms
the fine-tuning baseline with longer training
across various architectures.

Model ResNet18 MobileNet RVT-Ti

Pre-trained Model 69.75 68.87 78.45

Longer Training 70.23 69.01 78.61
GPD* 71.12 (+0.89) 69.47 (+0.46) 78.84 (+0.23)

effectiveness of our proposed method. By introducing a dynamic teacher model to mitigate the sub-
stantial gap between the student and a powerful static teacher, our GPD enables the student to more
effectively absorb knowledge from the teacher. This leads to substantial performance improvements
when combined with existing KD methods, surpassing even the most recent distillation techniques.

4.2 TRAIN FROM SCRATCH

In this experiment, we train ResNet18 and MobileNet for 100 epochs, and RVT-Ti for 300 epochs.
Table 2 illustrates the effectiveness of our GPD* method, which utilizes only the dynamic teacher
for distillation, without a static teacher. Across various backbone architectures, GPD* consistently
improves upon baseline models trained without knowledge distillation. For example, the ResNet-18
model achieves a significant accuracy boost from 70.07% to 71.87% with GPD*, indicating a notable
1.80% improvement. Similarly, with GPD*, the MobileNet achieves a noteworthy improvement
from 71.68% to 73.07%. These results highlight the versatility and effectiveness of our proposed
method, which not only enhances the performance of existing KD methods when a strong static
teacher is available but also serves as an effective stand-alone training strategy in scenarios where
pre-trained teacher models are unavailable.

4.3 MODEL FINE-TUNING

In this experiment, we fine-tune the pre-trained models for 50 epochs and set the initial learning
rate to 0.1× w.r.t. its base/standard value. As for our GPD*, the dynamic teacher is constructed via
Inverse Reparameterization based on the student model itself. This process ensures that the dynamic
teacher initially exhibits the same accuracy as the student. In Table 3, compared to the accuracy of
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pre-trained model, GPD* consistently achieves performance improvements across different archi-
tectures. Moreover, GPD* outperforms the longer training approach by up to 0.89% for ResNet18,
and similar performance gains are observed for MobileNet and RVT-Ti models as well.

5 FURTHER DISCUSSIONS

Gap preserving and parameter sharing. We investigate the contribution of the proposed accuracy
gap preserving mechanism and the parameter sharing strategy in this part. The ablation study in
Table 4 validates the critical role of these components in boosting performance. Individually, the gap
preservation mechanism yields a 0.66% accuracy gain, demonstrating its effectiveness in guiding the
student model’s learning trajectory. When combined with parameter sharing, the synergistic effect
leads to a substantial 1.01% improvement over the baseline, underscoring the significance of these
key innovations in facilitating knowledge transfer within the GPD framework.

Channel-branch reparameterization. Table 5 provides insights into the impact of different in-
verse reparameterization strategies on the performance of our GPD. Both channel-level and branch-
level reparameterization techniques individually contribute to performance improvements over the
baseline DKD method, achieving accuracy gains of 0.86% and 0.61%, respectively. However, their
combined application yields the highest performance boost, with a remarkable 1.01% accuracy gain.
Utilizing both techniques enables the dynamic teacher to effectively guide the student model, maxi-
mizing knowledge transfer within the GPD.

Table 4: Ablation studies on preserving the ac-
curacy gap and parameter sharing. We take
DKD as the baseline method to distill knowl-
edge from ResNet34 to ResNet18. Preserving
the accuracy gap alone improves performance
over the baseline, and combining it with pa-
rameter sharing yields further gains.

Preserve Gap Share Param Acc. (%)

Baseline 71.70

✓ 72.36 (+0.66)
✓ ✓ 72.71 (+1.01)

Table 5: Impact of inverse reparameteriza-
tion level on performance. We take DKD
as the baseline method to distill knowledge
from ResNet34 to ResNet18. The com-
bined channel-level and branch-level strategy
achieves the highest accuracy.

Channel-level Branch-level Acc. (%)

Baseline 71.70

✓ 72.56 (+0.86)
✓ 72.31 (+0.61)

✓ ✓ 72.71 (+1.01)

Branch and channel expansion ratio. Figure 4 (left) shows that increasing the number of branches
from 1 to 6 gradually improves accuracy, peaking at M = 6. However, further increasing to 12
branches leads to reduced performance gains, indicating that too many branches may be hard to
train and do not necessarily improve performance. Figure 4 (right) illustrates the impact of the
channel expansion ratio r. Both r = 2 and r = 3 significantly outperform the DKD baseline, but
improvement dramatically drops at r = 4. The main reason is that the performance gap would be
very large again when we consider a large dynamic teacher. We highlight that our GPD method is
highly practical and efficient, since the default setting with M = 6 branches and r = 2 channel
expansion ratio generalizes well to all the considered scenarios. In practice, we recommend using
M = 6 and r = 2 and this setting generalizes well to diverse scenarios. As demonstrated in Sec-
tion 4, these configurations consistently yield significant improvements across various architectures
and distillation scenarios. Based on the above, building the dynamic teacher with M = 6 and r = 2
can be used as a good gap. More critically, GPD consistently enhances baseline performance across
different branch and channel expansion ratios, demonstrating its robustness to parameter choices.
Thus, it is unnecessary to carefully tune these hyper-parameters due to the high robustness.

Effect of teacher-student gap size. As shown in Table 6, when using increasingly larger teacher
models to distill ResNet18, performance initially improves and then deteriorates. Specifically,
knowledge transfer is most effective when we choose ResNet101 as the teacher, with performance
gains of up to 1.16%. However, as the gap further increases with the models ResNet152 and Con-
vNeXt Base, the distillation effectiveness significantly drops. Similarly, Table 9 shows a similar
phenomenon in the transformer architecture family when using larger teachers (RVT-S to ViT-L)
to distill RVT-Ti. These observations across both architecture families justify that overly large per-
formance gaps can indeed hinder the distillation performance. We highlight that this phenomenon
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Figure 4: Impact of branch expansion number and channel expansion ratio on model accuracy.
Performance gains are shown above the baseline (DKD). Left: Increasing M to 6 yields significant
improvements, with diminishing returns beyond that. Right: Channel expansion ratios of 2 and 3
show substantial gains, while a ratio of 4 leads to degradation.

Table 6: Impact of different teacher-student gap sizes on
ResNet18 distillation performance. GPD consistently improves
performance across varying teacher model sizes.

Method ResNet34 ResNet101 ResNet152 ConvNeXt Base ViT-L

Teacher 73.31 77.37 78.31 84.06 85.14
Student 69.75 69.75 69.75 69.75 69.75

DKD 71.70 71.74 71.61 71.49 71.43
DKD + GPD 72.71 (+1.01) 72.90 (+1.16) 72.81 (+1.20) 72.78 (+1.29) 72.71 (+1.28)

Table 7: Accuracy drop compar-
ison when distilling ResNet18
from different teacher models
(ResNet34 vs. ViT-L).

Method ResNet34 ViT-L (Acc. Drop)

Teacher 73.31 85.14
Student 69.75 69.75

DKD 71.70 -0.27 (71.43)
DKD + GPD 72.71 -0.00 (72.71)

aligns well with both our empirical results and has been also observed in a lot of works (Son et al.,
2021; Yang et al., 2019b; Mirzadeh et al., 2020). For a more intuitive illustration of the perfor-
mance impact of the teacher-student gap, please refer to the Appendix G. On the other hand, we
highlight that our GPD effectively mitigates the issue of large teacher-student performance gaps
across various teacher model sizes. As shown in Table 7, when using ViT-L instead of ResNet34
as the teacher, DKD suffers a notable 0.27% accuracy drop (71.70→71.43), while GPD maintains
the same accuracy (72.71%). Similarly, as presented in Table 8, when switching from ResNet-101
to ViT-L, DKD incurs a larger 0.31% accuracy decline (71.74→71.43), whereas GPD shows only
a minor 0.19% drop (72.90→72.71). These results demonstrate GPD’s effectiveness in handling
large teacher-student gaps, ensuring stable student performance even when the teacher model is
significantly larger.

Table 8: Accuracy drop comparison when
distilling ResNet18 from different teacher
models (ResNet101 vs. ViT-L).

Method ResNet101 ViT-L (Acc. Drop)

Teacher 77.37 85.14
Student 69.75 69.75

DKD 71.74 -0.31 (71.43)
DKD + GPD 72.90 -0.19 (72.71)

Table 9: Performance of distilling RVT-Ti using trans-
former teachers of varying sizes. While overly large
performance gaps can hinder distillation performance,
GPD consistently improves performance across differ-
ent teacher model capacities.

Model RVT-S RVT-Base ViT-L

Teacher 81.69 82.51 85.15
Student 78.45 78.45 78.45
DKD 79.12 79.17 78.97

DKD + GPD 80.14 (+1.02) 80.27 (+1.10) 80.16 (+1.19)

6 CONCLUSION

In this paper, we propose Gap Preserving Distillation (GPD), a novel approach to bridging the ac-
curacy gap between teacher and student models for more effective knowledge transfer. Our key
contribution is the introduction of a dynamic teacher model that preserves an appropriate accuracy
lead over the student during training. We propose Inverse Reparameterization to losslessly expand
the student model along the channel and branch dimensions, constructing the dynamic teacher with
increased capacity. Furthermore, we devise a parameter sharing strategy based on Channel-Branch
Reparameterization, enabling the student to inherit parameters from the expanded dynamic teacher.
This reduces computational costs while allowing the student to benefit from the teacher’s enriched
knowledge representations. The improved efficiency and performance of compact models facilitated
by our approach could enable the deployment of deep learning solutions in resource-constrained en-
vironments, thereby promoting wider accessibility to AI technologies. Comprehensive experiments
on the ImageNet dataset validate the effectiveness of GPD in boosting the performance of standard
knowledge distillation methods across various backbone architectures.
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APPENDIX

A OVERVIEW AND OUTLINE

In this paper, we propose Gap Preserving Distillation (GPD) to bridge the performance gap between
large teacher and compact student models. GPD trains a dynamic teacher alongside the student,
maintaining a reasonable gap throughout. We utilize parameter sharing and establish mappings
via Inverse Reparameterization (IR) and Channel-Branch Reparameterization (CBR). The supple-
mentary material provides detailed theoretical analyses and additional experimental information to
support the main paper, organized as follows:

• In Section B, we present a theoretical analysis of the teacher-student performance gap based
on information bottleneck theory.

• In Section C, we provide mathematical proofs for Channel-Level Inverse Reparameteriza-
tion in both CNNs and Transformer architectures, demonstrating the equivalence between
the expanded model and the original model through detailed derivations.

• In Section D, we discuss our strategy for parameter sharing in batch normalization, illustrat-
ing the importance of maintaining independent running statistics for student and dynamic
teacher models to ensure stable training.

• In Section E, we detail our experimental settings, covering various training scenarios in-
cluding distillation with static teachers, training from scratch and fine-tuning.

• In Section F, we provide additional comparisons with teacher assistant methods and self-
distillation approaches, demonstrating GPD’s superior performance.

• In Section G, we analyze how the teacher-student capacity gap affects model performance,
showing GPD’s effectiveness in mitigating performance degradation with large teachers.

• In Section H, We analyze the evolution of performance gap during training, providing in-
sights into GPD’s effectiveness.

• In Section I, we evaluate the computational overhead introduced by our proposed methods,
providing comparative analyses that highlight the efficiency of our approach.

• In Section J, we discuss the key advantages of GPD over existing KD methods.

B THEORETICAL ANALYSIS OF THE TEACHER-STUDENT PERFORMANCE GAP
IN KNOWLEDGE DISTILLATION

The theoretical explanation for the performance gap issue has been rigorously proved by Wang et al.
(2022) (in Section 4) and we further derive the key theoretical analysis to justify our arguments.
To be specific, based on the information bottleneck (IB) theory (Shwartz-Ziv & Tishby, 2017), the
mutual information between two variables is defined as I(·, ·). In this sense, the training of deep
neural networks aims to maximize the mutual information I(Y ;F ) between learned features F
and ground truth Y while minimizing the mutual information I(X;F ) with input data X . In the
context of KD, the goal of effective knowledge transfer can be expressed as retaining high mutual
information between the teacher and student networks (Ahn et al., 2019). Thus, the optimization
goal for the student model in KD can be described as follows:

min
s
{I(X;Fs)− βI(Y ;Fs) + γ|I(X;Ft)− I(X;Fs)|+ γ|I(Y ;Ft)− I(Y ;Fs)|} , (5)

where Fs and Ft are the features extracted by the student and teacher networks, respectively. The
terms |I(X;Ft)−I(X;Fs)| and |I(Y ;Ft)−I(Y ;Fs)|measure the information divergence between
teacher and student networks across input and output representations. β and γ are positive hyper-
parameters to control the importance of these terms.

We highlight that a highly accurate model is often over-confident, to have very large mutual infor-
mation with the target I(Y ;F ) but small mutual information with the input I(X;F ). Nevertheless,
I(X;F ) can be viewed as a type of “dark knowledge” (Wang et al., 2022) that is also very impor-
tant for effective KD. Here, we take the example mentioned in Wang et al. (2022) to illustrate this:
“considering an image with a man driving a car, although it may be uniquely labeled into the “car”
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category, it still contains features of the “people” category”. Such weak but non-negligible features
extracted from the input (measured by I(X;F )) are the most valuable knowledge for distilling stu-
dent models. Intuitively, a low-capacity student model should avoid becoming over-confident,
which justifies why a highly accurate teacher model may hamper the distillation performance.
One possible solution is to maintain suitable mutual information with the input I(X;F ).

Theoretically, for a highly accurate teacher model, the mutual information with the target I(Y ;Ft)
is very large, while the mutual information with the input I(X;Ft) is relatively small. In this
case, I(X;Ft) − I(X;Fs) in the second term becomes negative and I(X;Ft) is a constant that
does not affect computing gradients for the student. Thus, we omit I(X;Ft) and the second term
becomes min

s
γ|I(X;Ft) − I(X;Fs)| = min

s
γ(I(X;Fs) − I(X;Ft)) = min

s
γI(X;Fs). As for

the third term, I(Y ;Ft) − I(Y ;Fs) is positive because I(Y ;Ft) is very large. Similarly, the term
I(Y ;Ft) is a constant that will not affect computing gradients, we also omit it and the third term
becomes min

s
γ|I(Y ;Ft)− I(Y ;Fs)| = min

s
− γI(Y ;Fs). Based on the above, the objective can be

reformulated as:

min
s

(1 + γ)I(X;Fs)− (β + γ)I(Y ;Fs). (6)

This formulation demonstrates that the teacher model tends to aggressively compress the input-
related information (i.e. (1 + γ)I(X;Fs)), potentially causing the student model to lose valuable
”dark knowledge” that is desired for effective KD. In contrast, a weak teacher model tends to have
large mutual information with the target I(Y ;Ft) as well as large mutual information with the input
I(X;Ft). In this case, I(X;Ft) − I(X;Fs) in the second term is often positive and this term
becomes min

s
γ|I(X;Ft) − I(X;Fs)| = min

s
γ(I(X;Ft) − I(X;Fs)) = min

s
− γI(X;Fs). The

overall objective becomes

min
s

(1− γ)I(X;Fs)− (β + γ)I(Y ;Fs). (7)

Compared with the previous objective, the difference is that a highly accurate teacher accelerates the
compression of the mutual information with the input I(X;Fs), while a weak teacher alleviates this
issue. Therefore, we can reasonably assume that: more mutual information with the input data
can be the main reason why a weak teacher model achieves better distillation performance
than a highly accurate teacher model.

This theoretical perspective motivates our proposed dynamic teacher model approach, which main-
tains a reasonable performance gap to optimize the knowledge transfer process.

C PROOF OF CHANNEL-LEVEL INVERSE REPARAMETERIZATION

C.1 CHANNEL-LEVEL INVERSE REPARAMETERIZATION FOR CNNS

To mathematically prove the equivalence of channel-level inverse reparameterization for CNNs,
consider a model with three convolutions (see Figure 2 (b)), where the parameters are denoted as
W 1, W 2, and W 3. Using ⊗ to represent the convolutional operation, the computation of this model
becomes

Y =W 3 ⊗W 2 ⊗W 1 ⊗X. (8)

Following the expansion rules in Figure 2 (a), when performing channel-level expansion with a ratio
of 2, we expand the number of output channels in the first two convolutions W 1 and W 2, scaling
them by 1/2. For the Last convolution W 3, we expand the number of input channels without any
scaling. For simplicity, we omit the introduced noise ϵ introduced to the expanded weights. Thus,
the outputs of these three convolutions can be derived as follows:

Y1 =

[
W 1/2
W 1/2

]
⊗X (9)
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Y2 =

[
W 2/2 W 2/2
W 2/2 W 2/2

]
⊗ Y1

=

[
W 2/2 W 2/2
W 2/2 W 2/2

]
⊗
[
W 1/2
W 1/2

]
⊗X

=

[
W 2 ⊗W 1/2
W 2 ⊗W 1/2

]
⊗X

(10)

Y3 =
[
W 3 W 3

]
⊗ Y2

=
[
W 3 W 3

]
⊗

[
W 2 ⊗W 1/2
W 2 ⊗W 1/2

]
⊗X

=W 3 ⊗W 2 ⊗W 1/2⊗X +W 3 ⊗W 2 ⊗W 1/2⊗X
=W3 ⊗W2 ⊗W1 ⊗X

(11)

Clearly, given the same input X , the expanded model has the same output as that of the original
model, i.e., Y3 = Y .

C.2 CHANNEL-LEVEL INVERSE REPARAMETERIZATION FOR TRANSFORMER
ARCHITECTURES

Our inverse re-parameterization (IR) can naturally extend to transformer architectures, as their key
components (Feed-Forward Networks and Multi-Head Attention) primarily consist of linear layers,
which can be mathematically viewed as 1×1 convolutions. One key difference lies in the Multi-Head
Attention (MHA) module. Note that our re-parameterization would increase the number of channels
in QKV linear projections. Nevertheless, the expanded channels of QKV features/outputs are
not directly used to compute attention. Instead, we use the expanded channels to expand the head
dimension, i.e., increasing the number of attention heads while maintaining the same dimension
per head as the student model. In this way, it can be guaranteed that the computation in each head
in the dynamic teacher still remains as consistent as possible with the one in the student. As for
the re-parameterization process, we follow the strategy depicted in Figure 3 and directly omit the
extra/expanded attention heads to obtain the student model from the dynamic teacher.

We illustrate this extension by considering a two-head attention module with an expansion ratio of
2 (omitting the noise term ϵ for clarity). As shown in Figure 5:

1) Student model: For an input X with two attention heads, the computation is defined as:

Headi = Attention(XWQ
i , XW

K
i , XWV

i )

= Attention(Qi,Ki, Vi)

= softmax
(
Qi(Ki)

T

√
dk

)
Vi

(12)

The final output is then computed by concatenating the attention heads and applying a projection:

Y = Concat(Head1,Head2)WO (13)

2) Expanded Model: Following our re-parameterization principle, we duplicate and scale
the Query, Key, and Value projection matrices:

[
WQ

i /2 WQ
i /2

]
,

[
WK

i /2 WK
i /2

]
,[

WV
i /2 WV

i /2
]
. These duplicated weights form new attention heads, doubling the number of

heads while maintaining the same dimension per head. Consequently, the resulting Query, Key,
and Value are halved to those of the student model. To preserve mapping equivalence, the Query
and Key are scaled by 2 before the dot product to ensure identical softmax output, while the Value
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Figure 5: Illustration of channel-level inverse reparameterization in Multi-Head Attention (MHA).
The student model (left) with 2 heads is expanded to 4 heads (right) by duplicating and scaling the
Query, Key, and Value projection matrices, while preserving the original input-output mapping.

remains halved to maintain proper scaling of each head’s output. This results in:

Head′i = Attention(X(WQ
i /2)2, X(WK

i /2)2, X(WV
i /2))

= Attention(Qi,Ki, Vi/2)

= softmax
(
Qi(Ki)

T

√
dk

)
Vi/2

= Headi/2

(14)

To demonstrate the equivalence between expanded model and student model, we consider the out-
put projection as the last layer. Following the last-layer re-parameterization principle, the input
dimension is expanded by duplicating WO without scaling (as detailed in Section 3.3.1), resulting

in
[
WO

WO

]
. This leads to the following equivalent final output:

Y ′ = Concat(Head′1,Head′2,Head′1,Head′2)
[
WO

WO

]
= Concat(Head1/2,Head2/2,Head1/2,Head2/2)

[
WO

WO

]
= [Concat(Head1,Head2)/2 Concat(Head1,Head2)/2]

[
WO

WO

]
= Y

(15)

D PARAMETER SHARING FOR BATCH NORMALIZATION

Batch normalization plays a crucial role in alleviating the vanishing gradient problem during the
training of deep neural networks, ensuring stable convergence. However, since the student and dy-
namic teacher models may exhibit different data distributions during the training process, directly
sharing the running statistics (i.e., running mean and running variance) of the batch normalization
layers would lead to mutual interference between the two models, potentially causing training insta-
bility. To avoid this issue, we propose maintaining independent running means and variances (µ̃s,
σ̃2
s ) and (µ̃t, σ̃2

t ) for the student and dynamic teacher models, rather than sharing the statistics.

As illustrated in Figure 6, each model independently calculates its batch mean and batch variance
from the input data, denoted as (µs, σ2

s ) for the student model and (µt, σ2
t ) for the dynamic teacher

model. Subsequently, normalization is performed using these statistics, and the respective running
statistics (µ̃s, σ̃2

s ) and (µ̃t, σ̃2
t ) are updated accordingly. The normalized outputs are then scaled
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Figure 6: Illustration of parameter sharing for batch normalization in the student and dynamic
teacher models. We maintain a separate set of running statistics for each model due to the dis-
tribution difference.

and shifted using the learnable parameters γ and β, which are shared across the two models through
the channel ensemble strategy. This design effectively eliminates potential instabilities arising from
sharing statistics, thereby guaranteeing the robustness of the entire training process.

E EXPERIMENTAL SETTINGS

E.1 DISTILLATION WITH A STATIC TEACHER

In this experiment, we adopt the standard data pre-processing pipeline, including random cropping,
resizing to 224×224, random horizontal flipping, and normalization. By default, we employ the
SGD optimizer with an initial learning rate of 0.1 and a momentum of 0.9. For convolutional neural
networks, the batch size is set to 256 on 4 Nvidia Tesla V100 GPUs, while for vision transformers
(ViTs), the batch size is set to 256 on 8 Nvidia Tesla V100 GPUs. The models are trained for 100
epochs with a learning rate decay factor of 0.1 applied every 30 epochs. The weight decay is set to
1e-4, and the weight for the KD loss between the student and the dynamic teacher is set to 3.0, while
the weights for the other KD losses and the cross-entropy loss are both set to 1.0. For convolutional
neural networks, we strictly follow the settings from Zhao et al. (2022a); Chen et al. (2021b). For the
same architecture family, the teacher model is ResNet-34, and the student model is ResNet-18. For
different architecture families, the teacher model is ResNet-50, and the student model is MobileNet-
V1. Additionally, we explore the vision transformer architecture RVT Mao et al. (2022), employing
RVT-S as the teacher model and RVT-Ti as the student model. Notably, in our RVT experiments, we
did not apply branch reparameterization. We found that channel reparameterization alone performed
better than when branch reparameterization was included.

E.2 TRAIN FROM SCRATCH

To further evaluate the efficacy of our approach, we conducted experiments without the reliance
on a pre-trained static teacher model. Instead, we construct the dynamic teacher model via Inverse
Reparameterization of the student model, as described in Sec. 3.2. Both the dynamic teacher and the
student model are trained simultaneously from random initialization. During training, we leverage
the additional loss terms introduced by our GPD, given by Eq. 2, to facilitate knowledge transfer
from the dynamic teacher to the student model. We adopt the same data preprocessing and opti-
mization strategies as described in Sec. 4.1.

E.3 MODEL FINE-TUNING

In this part, we begin with pre-trained student models and aim to further improve their performance
through our proposed approach. The pre-trained models are fine-tuned for 50 epochs, with the
initial learning rate set to 0.1x the initial learning rate used during the pretraining stage. For the
standard fine-tuning baseline, we fine-tune the pre-trained models with cross entropy loss. Regarding
our proposed GPD* method, we leverage the dynamic teacher model for distillation-based fine-
tuning. Benefiting from Inverse Reparameterization, the dynamic teacher model initially exhibits the
same accuracy as the student model. During the fine-tuning process, the dynamic teacher maintains
a slightly higher accuracy than the student due to its increased capacity. We used the same loss
function as in the experiment of training from scratch.
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F ADDITIONAL COMPARISONS WITH RELATED WORK

Comparison with Teacher Assistant Methods. We compare with the state-of-the-art teacher-
assistant-based KD methods. As shown in Table 10, GPD consistently achieves superior perfor-
mance compared to these methods on ResNet18, demonstrating its effectiveness.

Comparison with Self-Distillation Methods. To provide more comparisons when training without
static teachers, we evaluate GPD* against state-of-the-art self-distillation methods. As shown in Ta-
ble 11, GPD* consistently achieves superior performance compared to these methods on ResNet18,
further demonstrating its effectiveness.

Table 10: Comparison with KD methods us-
ing teacher assistants on ImageNet.

Method ResNet18

Student 69.75
TAKD (Mirzadeh et al., 2020) 71.37
DGKD (Son et al., 2021) 71.73
RKD (Gao et al., 2021) 71.46
TDS (Li et al., 2024a) 72.29
ESKD+AT (Cho & Hariharan, 2019) 71.39
TLLM (Zhu et al., 2022) 72.6
DKD + GPD 72.71

Table 11: Comparison with Self-
Distillation Methods on ImageNet.

Method ResNet18

SSKD (Xu et al., 2020) 71.62
USKD (Yang et al., 2023) 70.79
FRSKD (Ji et al., 2021) 70.17
BYOT (Zhang et al., 2019) 68.93
ONE (Lan et al., 2018) 70.55
SD (Zhang et al., 2021) 70.63
RSD (Zheng et al., 2024) 70.70
GPD* 71.87

G EFFECT OF TEACHER-STUDENT CAPACITY GAP ON MODEL
PERFORMANCE

As visualized in Figure 7, increasing teacher capacity within an appropriate range can bring per-
formance gains. However, DKD shows a clear declining trend as the teacher-student gap grows
larger, suffering significant accuracy degradation with extremely large teachers like ViT-L. In con-
trast, GPD shows only minor performance decline and effectively alleviates the large-gap challenge,
consistently outperforming DKD by more than 1% across all teacher models, even with the largest
teacher ViT-L.

Figure 7: Performance comparison with increasingly larger teacher models. DKD peaks with
ResNet101 but suffers significant degradation with excessively large teachers, while GPD effectively
mitigates performance degradation and maintains consistent improvements (+>1%).

H PERFORMANCE GAP EVOLUTION DURING DISTILLATION

The dynamic teacher often has higher accuracy during most of the training process except the very
early stage. As shown in Figure 8 (distill ResNet18 from ResNet34), the dynamic teacher has
lower/similar accuracy than the student in the first 3% epochs but outperforms it in the following
training stages. Since our GPD maintains a reasonable performance gap in most of the training
process, we are able to enhance the distillation performance by preserving a reasonable performance
gap. More critically, we observe that this phenomenon exists in all the considered experiments.
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Figure 8: Convergence of student and dynamic teacher during ResNet18 distillation with GPD. The
dynamic teacher shows lower/similar accuracy in the first 3% of epochs but outperforms the student
in the following training stages.

I ANALYSIS OF COMPUTATIONAL OVERHEAD IN GPD

We highlight that the re-parameterization operation is very efficient and the time cost is negligible.
To be specific, for a convolutional layer with 128 input channels and 256 output channels, it only
takes 0.021 milliseconds, which is negligible compared to the overall computation cost. Our GPD
slightly increases the training cost but comes with significant performance improvement. For exam-
ple, from Table 12, GPD only introduces 33% extra overhead while yielding a large performance
improvement of 1.58%. In fact, the additional training cost primarily arises from training the dy-
namic teacher model. Interestingly, the extra training overhead is marginal due to two reasons: 1)
Since KD often relies on a large static teacher, conducting forward propagation through this model
at each iteration already greatly increases the training cost; 2) Training both the student and dynamic
teacher can increase the utilization ratio of GPU and benefits from its high parallelism in computa-
tion. Interestingly, we observe that merely training a small student model tends to come with a very
low utilization ratio, e.g., often lower than 50%. Because our GPD consistently obtains significant
performance improvement across diverse architectures and settings (see Table 1), we believe that it
is a good trade-off between performance and training cost. From this point of view, our GPD could
be a very strong baseline for distillation.

Table 12: Comparison of computation cost on the experiment of ResNet50 → MobileNet distillation.
We measure the training time on 4 A100 GPUs with a batch size of 512 on ImageNet.

Method Acc. (%) Training Time per Epoch (min)

DKD 72.05 12
DKD + GPD 73.63 (+1.58) 16 (+33%)

J ADVANTAGES OVER EXISTING METHODS

Our GPD has specific advantages and is essentially different from existing distillation meth-
ods (Wang et al., 2022; Mirzadeh et al., 2020; Cho & Hariharan, 2019; Yang et al., 2019a; Son
et al., 2021; Zhao et al., 2022b) in several aspects. First, they maintain different performance gaps.
Existing methods (Dong et al., 2024; Mirzadeh et al., 2020; Son et al., 2021) utilize fixed-accuracy
pre-trained teachers assistant models, which may hinder knowledge transfer as the gap still be too
large, particularly in early training stages when student accuracy is low. GPD initializes the dy-
namic teacher with the same accuracy as the student and trains both simultaneously, maintaining a
small, dynamic gap throughout the process. Second, they construct the teacher assistants in differ-
ent ways. Unlike methods (Mirzadeh et al., 2020; Son et al., 2021) that construct and train multiple
intermediate-size teacher assistants separately, which can be computationally expensive, GPD builds
a single dynamic teacher. We propose a novel IR technique for model expansion that maintains the
same initial accuracy as the student. This approach is both computationally efficient and ensures a
controlled start point for the distillation process. Third, they transfer knowledge in different ways.
Existing methods (Mirzadeh et al., 2020; Son et al., 2021) follow the standard distillation paradigm
by incorporating a KD loss for transferring knowledge. Besides this, our GPD enforces parameter
sharing between the student and dynamic teacher, allowing direct inheritance of parameters. This
process is facilitated by our CBR, enabling a more direct and effective knowledge transfer.
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