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ABSTRACT

Retrieval-Augmented Generation (RAG) has proven its effectiveness in mitigating
hallucinations in Large Language Models (LLMs) by retrieving knowledge from
external resources. To adapt LLMs for the RAG systems, current approaches use
instruction tuning to optimize LLMs, improving their ability to utilize retrieved
knowledge. This supervised fine-tuning (SFT) approach focuses on equipping
LLMs to handle diverse RAG tasks using different instructions. However, it trains
RAG modules to overfit training signals and overlooks the varying data prefer-
ences among agents within the RAG system. In this paper, we propose a Dif-
ferentiable Data Rewards (DDR) method, which end-to-end trains RAG systems
by aligning data preferences between different RAG modules. DDR works by
collecting the rewards to optimize each agent in the RAG system with the roll-
out method, which prompts agents to sample some potential responses as pertur-
bations, evaluates the impact of these perturbations on the whole RAG system,
and subsequently optimizes the agent to produce outputs that improve the perfor-
mance of the RAG system. Our experiments on various knowledge-intensive tasks
demonstrate that DDR significantly outperforms the SFT method, particularly for
LLMs with smaller-scale parameters that depend more on the retrieved knowl-
edge. Additionally, DDR exhibits a stronger capability to align the data preference
between RAG modules. The DDR method makes the generation module more
effective in extracting key information from documents and mitigating conflicts
between parametric memory and external knowledge. All codes are available at
https://github.com/OpenMatch/RAG-DDR.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated impressive capabilities in language under-
standing, reasoning, and planning across a wide range of natural language processing (NLP)
tasks (Achiam et al., 2023; Touvron et al., 2023; Hu et al., 2024). However, LLMs usually gen-
erate incorrect responses due to hallucination (Ji et al., 2023; Xu et al., 2024c). To alleviate this
problem, existing studies employ Retrieval-Augmented Generation (RAG) (Lewis et al., 2020; Shi
et al., 2023; Peng et al., 2023) to enhance the ability of LLMs and help LLMs access long-tailed
knowledge and up-to-date knowledge from different data sources (Trivedi et al., 2023; He et al.,
2021; Cai et al., 2019; Parvez et al., 2021). However, the conflict between retrieved knowledge and
parametric memory usually misleads LLMs, challenging the effectiveness of the RAG system (Li
et al., 2022; Chen et al., 2023; Asai et al., 2024).

To ensure the effectiveness of RAG systems, existing research has focused on developing various
agents to obtain high-quality external knowledge (Gao et al., 2024; Xu et al., 2024a; Jiang et al.,
2023; Xu et al., 2024b), which can refine retrieval documents through query reformulation, reranking
candidate documents, summarizing the retrieved documents, or performing additional actions to
obtain more relevant information for LLMs (Yan et al., 2024; Trivedi et al., 2023; Asai et al., 2023;
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Yu et al., 2023a). To further optimize the RAG system, some methods independently optimize
different RAG modules by using the EM method (Singh et al., 2021; Sachan et al., 2021) or build the
instruction tuning dataset for Supervised Fine-Tuning (SFT) these LLMs-based RAG modules (Lin
et al., 2023; Asai et al., 2023). However, these SFT-based methods usually make LLMs overfit the
training signals and face the catastrophic forgetting problem (Luo et al., 2023b).

Furthermore, current research aims to optimize RAG modules by aligning their data preferences and
primarily focuses on optimizing a two-agent RAG system, which consists of retrieval and generation
modules. Typically, these methods train only the retrieval module by using the preference signals
from the generation module, making the retrieval module supply more accurate documents to satisfy
the data preference of the generation module (Shi et al., 2023; Yu et al., 2023b). However, these
methods only optimize the retrieval module and overlook that the generation module still faces the
knowledge conflict (Xie et al., 2024), making the generation module’s outputs do not align with the
data preferences of the RAG system. Thus, optimizing and aligning the data preferences of each
module in the RAG system is essential for building a more tailored RAG system.

This paper introduces a Differentiable Data Rewards (DDR) method for end-to-end optimizing
each agent in the RAG system using the DPO (Rafailov et al., 2024) method. DDR uses a roll-
out method (Kocsis & Szepesvári, 2006) to collect the reward from the overall system for each
agent and optimizes the agent according to the reward. Specifically, we follow Asai et al. (2023) and
build a typical RAG system to evaluate the effectiveness of DDR model. This RAG system consists
of a knowledge refinement module for selecting retrieved documents and a generation module for
producing responses based on the query and refined knowledge. Then we conduct the RAG-DDR
model by optimizing the two-agent based RAG system using DDR. We use the reward from the en-
tire RAG system and iteratively optimize both the generation and knowledge refinement modules to
align data preferences across both agents, enabling the RAG system to generate accurate responses.

Our experiments on various Large Language Models (LLMs) demonstrate that Differentiable Data
Rewards (DDR) outperforms all baseline models, achieving significant improvements over the pre-
vious method (Lin et al., 2023) in a range of knowledge-intensive tasks. DDR can effectively retrofit
LLMs for the RAG modeling and help LLMs generate higher-quality responses of an appropriate
length. Our further analyses show that the effectiveness of our RAG-DDR model primarily derives
from the generation module, which is optimized by the reward from the RAG system. The DDR-
optimized generation module is more effective in capturing crucial information from retrieved doc-
uments and alleviating the knowledge conflict between external knowledge and parametric memory.
Further analyses show that the effectiveness of DDR-optimized RAG systems can be generalized
even when additional noisy documents are incorporated during response generation.

2 RELATED WORK

Retrieval-Augmented Generation (RAG) is widely used in various real-world tasks, such as open-
domain QA (Trivedi et al., 2023), language modeling (He et al., 2021), dialogue (Cai et al., 2019),
and code generation (Parvez et al., 2021). RAG models retrieve documents from external cor-
pus (Karpukhin et al., 2020; Xiong et al., 2021) and then augment the LLM’s generation by incor-
porating documents as the context of input (Ram et al., 2023) or aggregating the output probabilities
from the encoding pass of each retrieved document (Shi et al., 2023). They help LLMs alleviate
hallucinations and generate more accurate and trustworthy responses (Jiang et al., 2023; Xu et al.,
2023; Luo et al., 2023a; Hu et al., 2023; Kandpal et al., 2023). However, retrieved documents
inevitably incorporate noisy information, limiting the effectiveness of RAG systems in generating
accurate responses (Xu et al., 2024a;b; Longpre et al., 2021; Liu et al., 2024b).

Some studies have demonstrated that the noise from retrieved documents can mislead LLMs, some-
times resulting in degraded performance even on some knowledge-intensive tasks (Foulds et al.,
2024; Shuster et al., 2021; Xu et al., 2024b). This issue primarily derives from the knowledge con-
flict between the parametric knowledge of LLMs and external knowledge (Jin et al., 2024; Longpre
et al., 2021; Chen et al., 2022; Xie et al., 2024; Wu et al., 2024). Xie et al. (2024) have demon-
strated that LLMs are highly receptive to external evidence when external knowledge conflicts with
the parametric memory (Xie et al., 2024). Thus, lots of RAG models focus on building modular
RAG pipelines to improve the quality of retrieved documents (Gao et al., 2024). Most of them aim
to conduct more accurate retrieval models by employing a retrieval evaluator to trigger different
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knowledge refinement actions (Yan et al., 2024), prompting LLMs to summarize the query-related
knowledge from retrieved documents (Yu et al., 2023a) or training LLMs to learn how to retrieve
and utilize knowledge on-demand by self-reflection (Asai et al., 2023).

Optimizing the RAG system is a crucial research direction to help LLMs generate more accurate re-
sponses. Previous work builds a RAG system based on pretrained language models and conducts an
end-to-end training method (Singh et al., 2021; Sachan et al., 2021). They regard retrieval decisions
as latent variables and then iteratively optimize the retriever and generator to fit the golden answers.
Recent research primarily focuses on optimizing the LLMs in RAG systems. INFO-RAG (Xu et al.,
2024a) focuses on enabling LLMs with the in-context denoising ability by designing an unsuper-
vised pretraining method to teach LLMs to refine information from retrieved contexts. RA-DIT (Lin
et al., 2023) builds a supervised training dataset and then optimizes the retriever and LLM by in-
struction tuning. However, these training methods focus on training LLMs to fit the training signals
and face the issue of catastrophic forgetting during instruction tuning (Luo et al., 2023b).

Reinforcement Learning (RL) algorithms (Schulman et al., 2017), such as Direct Preference Opti-
mization (DPO) (Rafailov et al., 2024), are widely used to optimize LLMs for aligning with human
preferences and enhancing the consistency of generated responses (Putta et al., 2024). Agent Q inte-
grates MCTS and DPO to allow agents to learn from both successful and unsuccessful trajectories,
thereby improving their performance in complex reasoning tasks (Putta et al., 2024). STEP-DPO
further considers optimizing each inference step of a complex task as the fundamental unit for pref-
erence learning, which enhances the long-chain reasoning capabilities of LLMs (Lai et al., 2024).
While these models primarily target the optimization of individual agents to improve response ac-
curacy at each step, they do not focus on the effectiveness of data alignment within the multi-agent
system. Instead of using SFT methods for RAG optimization (Lin et al., 2023), this paper focuses on
using the DPO method to avoid overfitting the training signals and aligning data preferences across
different agents, which is different from the above RL-based optimization methods.

3 RAG TRAINING WITH DIFFERENTIABLE DATA REWARDS

This section introduces the Differentiable Data Rewards (DDR) method. We first introduce the
DDR method, which optimizes the RAG system by aligning the data preferences between different
agents (Sec. 3.1). Then, we employ knowledge refinement and generation modules to build the RAG
system and utilize the DDR method to optimize the agents in this RAG system (Sec. 3.2).

3.1 DATA PREFERENCE LEARNING WITH DIFFERENTIABLE DATA REWARDS

In a RAG system V = {V1, . . . , Vt, . . . , VT }, agents exchange and communicate data. To optimize
this system, we first forward-propagate data among agents and then evaluate the performance of the
RAG system. Then we backward-propagate rewards to refine the data preferences of each agent.

Data Propagation. During communication, the t-th agent, Vt, acts as both a sender and a receiver.
Agent Vt receives data from agent Vt−1 and simultaneously passes data to agent Vt+1:

x⇝ V1 . . . Vt
yt−→ Vt+1 . . . VT−1

yT−1−−−→ VT ⇝ yT , (1)

where Vt
yt−→ Vt+1 denotes that the agent generates one response yt of the maximum prediction

probability and sends it to the agent Vt+1. x⇝ and⇝ yT represent sending the input x to the RAG
system V and getting the final output yT from V . The performance of the RAG system V can be
evaluated by calculating the quality score S(yT ) of the final output yT .

Differentiable Data Reward. Unlike conventional supervised fine-tuning approaches (Lin et al.,
2023), DDR tries to optimize the agent Vt to align its data preference with Vt+1:T , making the RAG
system produce a better response with a higher evaluation score S(yT ).

To optimize the agent Vt, DDR aims to propagate the system reward to train the targeted agent.
Specifically, we first instruct Vt to sample multiple outputs ỹt, which incorporate some perturbations
into the RAG system. Then, we calculate the reward r(x, ỹt) with a rollout process (Kocsis &
Szepesvári, 2006). In detail, we regard the agents Vt+1:T as the evaluation model, feed ỹt to this
subsystem Vt+1:T and calculate the evaluation score S(yT ) of the final output yT :

ỹt ⇝ Vt+1
yt−→ Vt+2 . . . VT−1

yT−1−−−→ VT ⇝ yT , r(x, ỹt) = S(yT ). (2)
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Figure 1: The Illustration of End-to-End Retrieval-Augmented Generation (RAG) Training with Our
Differentiable Data Reward (DDR) Method. During training, we iteratively optimize the Generation
module (VGen) and Knowledge Refinement module (VKR).

Finally, we maximize the probability of generating ỹ+t over ỹ−t , where ỹ+t wins higher reward than
ỹ−t (r(x, ỹ+t ) > r(x, ỹ−t )):

P (ỹ+t > ỹ−t |x) = σ(r(x, ỹ+t )− r(x, ỹ−t )), (3)

where σ is the Sigmoid function. The parameters of Vt can be trained using the DPO (Rafailov et al.,
2024) training loss, aiding the DDR model in identifying optimization directions by contrastively
learning from the positive (ỹ+t ) and negative (ỹ−t ) outputs:

L(Vt;V
ref
t ) = −E(x,ỹ+

t ,ỹ−
t )∼D[log σ(β log

Vt(ỹ
+
t | x)

V ref
t (ỹ+t | x)

− β log
Vt(ỹ

−
t | x)

V ref
t (ỹ−t | x)

)], (4)

where β is a hyperparameter. D is the dataset containing the input x and its corresponding preference
data pairs (ỹ+t , ỹ

−
t ). V

ref
t is the reference model, which is frozen during training.

3.2 OPTIMIZING A SPECIFIC RAG SYSTEM THROUGH DDR

Given a query q and a set of retrieved documents D = {d1, . . . , dn}, we build a RAG system
by employing a knowledge refinement module (VKR) to filter unrelated documents and a generation
module (VGen) to answer the question. These two modules can be represented by a two-agent system:

{q,D}⇝ VKR
{q,D̃}−−−−→ VGen ⇝ yGen, (5)

where D̃ ⊆ D and VKR produces the select actions to filter out the noise documents in D to build
D̃. VGen generates the answer according to the query q with filtered documents D̃. As shown in
Figure 1, we iteratively tune different modules to conduct the RAG-DDR model, beginning with
the generation module optimization and subsequently focusing on tuning the knowledge refinement
module during training this RAG system. In the rest of this subsection, we will explain the details
of how to optimize VKR and VGen using DDR.

Knowledge Refinement Module. We follow Asai et al. (2023) and build the knowledge refinement
module VKR to estimate the relevance of each document di to the query q for refinement. We feed
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both query q and document di to the VKR and ask it to produce the action yiKR ∈ {“YES”, “NO”},
which indicates whether di is retained (yiKR = “YES”) or discarded (yiKR = “NO”):

yiKR = LLM(InstructKR, di ⊕ q), (6)

where ⊕ denotes the concatenation operation, and InstructKR is a prompt designed for knowledge
refinement. Then the refined document collection D̃ = {d1, . . . , dk} is constructed, where k <= n.
The document di in D̃ leading the RAG system to achieve the highest evaluation reward r(x, yiKR =

“YES”) is considered positive, while the document dj that results in the lowest reward r(x, yjKR =
“YES”) is regarded as negative. VKR is trained to maximize the probability P (yiKR = “YES” >

yiKR = “NO”|q, di) to retain the positive document and maximize the probability P (yjKR = “NO” >

yjKR = “YES”|q, dj) to filter out irrelevant documents.

Generation Module. After knowledge refinement, the query q and filtered documents D̃ =
{d1, . . . , dk} are fed to the generation module VGen. The response ỹGen is sampled from VGen:

ỹGen ∼ LLM(InstructGen, d1 ⊕ · · · ⊕ dk ⊕ q), (7)

where InstructGen is a prompt for generating a tailored response. To reduce the misleading knowl-
edge from the retrieved documents, we also sample responses using only the query as input:

ỹGen ∼ LLM(InstructGen, q). (8)

The response that achieves the highest evaluation score S(ỹGen) is considered positive (ỹ+Gen), while
the lowest evaluation score is considered negative (ỹ−Gen). The generation module VGen is optimized
to maximize the probability of generating the positive response P (ỹ+Gen > ỹ−Gen|q, D̃) to win a higher
reward. By generating responses ỹGen based on documents or only the query, LLMs can learn to
balance internal and external knowledge, alleviating the knowledge conflict problem.

4 EXPERIMENTAL METHODOLOGY

This section first describes datasets, evaluation metrics, and baselines. Then, we introduce the im-
plementation details of our experiments. More experimental details are shown in Appendix A.1.

Dataset. In our experiments, we follow RA-DIT (Lin et al., 2023) and use the instruction tuning
datasets for training and evaluating RAG models. For all datasets and all baselines, we use bge-
large (Xiao et al., 2023) to retrieve documents from the MS MARCO 2.1 (Bajaj et al., 2016).

During the training of DDR, we collect ten datasets covering two tasks, open-domain QA and rea-
soning. Specifically, we randomly sample 32,805 samples for the training set and 2,000 samples for
the development set in our experiments. Following previous work (Lin et al., 2023; Xu et al., 2024a),
we select the knowledge-intensive tasks for evaluation, including open-domain question answering,
multi-hop question answering, slot filling, and dialogue tasks. The open-domain QA tasks consist of
NQ (Kwiatkowski et al., 2019), MARCO QA (Bajaj et al., 2016) and TriviaQA (Joshi et al., 2017),
which require models to retrieve factual knowledge to help LLMs answer the given question. For
more complex tasks, such as multi-hop QA and dialogue, we use HotpotQA dataset (Yang et al.,
2018) and Wikipedia of Wizard (WoW) (Dinan et al., 2019) for evaluation. Besides, we also employ
T-REx (Elsahar et al., 2018) to measure one-hop fact look-up abilities of models.

Evaluation. Following Xu et al. (2024a), we utilize Rouge-L and F1 as evaluation metrics for the
MARCO QA task and WoW task, respectively. For the rest tasks, we use Accuracy.

Baselines. In our experiments, we compare DDR with five baseline models, including zero-shot
models and supervised finetuning models. We first treat the LLM as a black box and conduct three
baselines, including LLM w/o RAG, Vanilla RAG and REPLUG. For the LLM w/o RAG model,
we directly feed the query to the LLM and ask it to produce the answer according to its memorized
knowledge. To implement the vanilla RAG model, we follow previous work (Lin et al., 2023), use
retrieved documents as context and leverage the in-context learning method to conduct the RAG
modeling. REPLUG (Shi et al., 2023) is compared, which ensembles output probabilities from dif-
ferent passage channels. Self-RAG (Asai et al., 2023) is employed as a baseline, which trains the
LLMs to retrieve documents on-demand and reflect on the retrieved documents, and generate re-
sponses using a reflection token. RA-DIT (Lin et al., 2023) is also compared in our experiments,
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Table 1: Overall Performance of Different RAG Models. The best and second best results are
highlighted. In our experiments, we employ Llama3-8B as the knowledge refinement module and
utilize LLMs of varying scales (Llama3-8B and MiniCPM-2.4B) as the generation module.

Method Open-Domain QA Multi-Hop QA Slot Filling Dialogue
NQ TriviaQA MARCO QA HotpotQA T-REx WoW

MiniCPM-2.4B
LLM w/o RAG 20.1 45.0 17.1 17.7 22.6 14.9
Vanilla RAG (2023) 42.2 79.5 16.7 26.7 22.1 14.4
REPLUG (2023) 39.4 77.0 19.4 24.7 26.7 15.7
Self-RAG (2023) 28.8 48.6 18.2 15.2 23.9 13.4
RA-DIT (2023) 41.8 78.6 19.6 26.1 25.2 15.7
RAG-DDR (w/ 1-Round) 47.0 82.7 28.1 32.5 32.6 17.2
RAG-DDR (w/ 2-Round) 47.6 83.6 29.8 33.2 32.1 18.2
Llama3-8B
LLM w/o RAG 35.4 78.4 17.0 27.7 16.0 14.6
Vanilla RAG (2023) 46.2 84.0 20.6 30.1 26.9 12.5
REPLUG (2023) 45.1 83.1 22.5 29.4 23.1 14.0
Self-RAG (2023) 39.6 78.2 12.5 24.3 29.5 14.2
RA-DIT (2023) 46.2 87.4 20.3 34.9 41.7 14.8
RAG-DDR (w/ 1-Round) 50.7 88.2 25.1 37.3 37.3 14.9
RAG-DDR (w/ 2-Round) 52.1 89.6 27.3 39.0 40.6 16.8

which optimizes the RAG system using the instruct-tuning method. In our experiments, we reim-
plement REPLUG and RA-DIT baselines and don’t finetune the retriever during our reproduction
process, as the retriever we use has already been trained with massive supervised data and is suffi-
ciently strong.

Implementation Details. In our experiments, we employ Minicpm-2.4B-sft (Hu et al., 2024) and
Llama3-8B-Instruct (Touvron et al., 2023) as backbone models to construct the generation modules
and employ Llama3-8B-Instruct (Touvron et al., 2023) to build the knowledge refinement module.
More training implementation details of RAG-DDR are presented in Appendix A.1.

5 EVALUATION RESULTS

In this section, we first evaluate the performance of different RAG methods and then conduct abla-
tion studies to show the effectiveness of different training strategies. Then, we examine the effec-
tiveness of DDR training strategies on the generation module (VGen) and explore how it balances
internal and external knowledge through DDR. Finally, we present several case studies.

5.1 OVERALL PERFORMANCE

The performance of various RAG models is presented in Table 1. As shown in the evaluation results,
RAG-DDR significantly outperforms these baseline models on all datasets. It achieves improve-
ments of 7% compared to the Vanilla RAG model when using MiniCPM-2.4B and Llama3-8B to
construct the generation module (VGen).

Compared with LLM w/o RAG, Vanilla RAG and REPLUG significantly enhance LLM perfor-
mance on most knowledge-intensive tasks, indicating that external knowledge effectively improves
the accuracy of generated responses. However, the performance of RAG models decreases on di-
alogue tasks, showing that LLMs can also be misled by the retrieved documents. Unlike these
zero-shot methods, RA-DIT provides a more effective approach for guiding LLMs to filter out noise
from retrieved content and identify accurate clues for answering questions. Nevertheless, RA-DIT
still underperforms compared to Vanilla RAG on certain knowledge-intensive tasks, such as NQ and
HotpotQA, showing that overfitting to golden answers is less effective for teaching LLMs to capture
essential information for generating accurate responses. In contrast, RAG-DDR surpasses RA-DIT
on almost all tasks, particularly with smaller LLMs (MiniCPM-2.4B), achieving a 5% improvement.
This highlights the generalization capability of our DDR training method, enabling LLMs of varying
scales to utilize external knowledge through in-context learning effectively.
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Table 2: Ablation Study. Both Vanilla RAG (w/o VKR) and Vanilla RAG are evaluated in a zero-shot
setting without any fine-tuning. We then use DDR to optimize the knowledge refinement module
(VKR), the generation module (VGen), and both modules, resulting in three models: RAG-DDR (Only
Training VKR), RAG-DDR (Only Training VGen) and RAG-DDR (All Training).

Method Open-Domain QA Multi-Hop QA Slot Filling Dialogue
NQ TriviaQA MARCO QA HotpotQA T-REx WoW

MiniCPM-2.4B
Vanilla RAG (w/o VKR) 42.1 78.0 16.6 24.9 22.0 15.1
Vanilla RAG 42.2 79.5 16.7 26.7 22.1 14.4
RAG-DDR (Only Training VKR) 42.5 79.6 16.8 27.3 21.9 15.8
RAG-DDR (Only Training VGen) 46.8 81.7 28.3 31.2 32.2 17.0
RAG-DDR (All Training) 47.0 82.7 28.1 32.5 32.6 17.2
Llama3-8B
Vanilla RAG (w/o VKR) 45.4 83.2 20.8 28.5 26.6 12.3
Vanilla RAG 46.2 84.0 20.6 30.1 26.9 12.5
RAG-DDR (Only Training VKR) 46.8 84.7 20.7 30.7 28.5 12.5
RAG-DDR (Only Training VGen) 50.2 87.8 25.2 36.9 36.2 14.8
RAG-DDR (All Training) 50.7 88.2 25.1 37.3 37.3 14.9

5.2 ABLATION STUDIES

As shown in Table 2, we conduct ablation studies to explore the role of different RAG modules and
evaluate different training strategies using DDR.

This experiment compares five models, utilizing MiniCPM-2.4B and Llama3-8B to construct the
generation module. The Vanilla RAG (w/o VKR) relies solely on the generation module (VGen) to
produce answers based on the query and retrieved documents. The Vanilla RAG adds a knowledge
refinement module (VKR) to filter the retrieved documents and then feeds query and filtered docu-
ments to the generation module (VGen). RAG-DDR (Only Training VKR) indicates that we tune the
Vanilla RAG model using DDR by only optimizing the knowledge refinement module (VKR). RAG-
DDR (Only Training VGen) only optimizes the generation module (VGen). RAG-DDR (All Training)
optimizes both VKR and VGen modules.

Compared with the Vanilla RAG (w/o VKR), Vanilla RAG improves the performance on almost all
evaluation tasks, demonstrating the effectiveness of the knowledge refinement module in improving
the accuracy of LLM responses. In contrast, RAG-DDR (Only Training VGen) shows greater im-
provements over than Vanilla RAG, indicating that the primary effectiveness of RAG-DDR comes
from optimizing the generation module (VGen) through DDR. When we begin with the RAG-DDR
(Only Training VGen) model and subsequently optimize the knowledge refinement module, the per-
formance is further improved. It shows that filtering noise from retrieved documents using feedback
from the generation module is effective, which is also observed in previous work (Yu et al., 2023b;
Izacard & Grave, 2020). However, the improvements from optimizing the knowledge refinement
modules are limited, highlighting that enhancing the generation module’s ability to leverage exter-
nal knowledge is more critical for the existing RAG system.

5.3 CHARACTERISTICS OF THE GENERATION MODULE IN RAG-DDR

In this experiment, we explore the characteristics of the generation module (VGen) by employing
various training strategies, including zero-shot (Vanilla RAG), the SFT method (RA-DIT), and DDR
(RAG-DDR). As illustrated in Figure 2, we present the performance of VGen w/o RAG and VGen
w/ RAG. These experiments evaluate VGen’s ability to memorize knowledge and utilize external
knowledge. Additionally, we report the average length of responses generated by VGen module.

As shown in Figure 2(a), we compare the performance of the generation module that relies solely on
internal knowledge of parametric memory. Compared to the Vanilla RAG model, RA-DIT demon-
strates a decline in performance on the NQ and HotpotQA tasks. Such a phenomenon reveals that
the model loses previously acquired knowledge while learning new information during SFT (Luo
et al., 2023b). In contrast, DDR not only outperforms the RA-DIT method but also achieves con-
sistent improvements over the Vanilla RAG model across all evaluation tasks. This indicates that
DDR can help LLMs learn more factual knowledge during training while also preventing the loss of
previously memorized information through a reinforcement learning-based training approach. Then
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(a) VGen w/o RAG. (b) VGen w/ RAG. (c) Average Length of Responses
Generated by VGen.

Figure 2: Characteristics of the Generation Module in RAG Optimized with Different Training
Strategies. We use MiniCPM-2.4B to build the generation module (VGen) and then train it using dif-
ferent strategies. The performance of VGen is shown in a zero-shot setting, along with the generation
module optimized using the RA-DIT and DDR methods.

Table 3: Experimental Results on Evaluating the Knowledge Usage Ability of the Generation
Module (VGen) of Different RAG Models.

Method Has-Answer Miss-Answer Internal Knowledge
NQ HotpotQA T-REx NQ HotpotQA T-REx NQ HotpotQA T-REx

MiniCPM-2.4B
LLM w/o RAG 27.6 26.7 36.6 2.6 11.7 4.1 100.0 100.0 100.0
Vanilla RAG 59.1 51.7 36.8 1.1 9.1 2.5 71.1 70.1 60.9
RA-DIT 58.3 47.6 41.7 1.7 10.8 4.2 76.9 73.7 73.4
RAG-DDR (w/ 1-Round) 65.5 56.9 52.6 2.4 10.8 5.9 82.9 81.0 78.5
RAG-DDR (w/ 2-Round) 65.3 59.4 51.7 2.4 14.2 5.5 84.0 82.3 74.8
Llama3-8B
LLM w/o RAG 46.4 44.7 25.5 6.7 15.9 3.7 100.0 100.0 100.0
Vanilla RAG 64.2 58.0 45.5 2.9 10.5 3.0 80.0 67.3 66.3
RA-DIT 64.1 59.7 65.3 3.4 17.9 10.8 81.0 79.2 77.9
RAG-DDR (w/ 1-Round) 69.5 64.3 59.9 4.1 18.0 5.4 88.4 82.0 79.2
RAG-DDR (w/ 2-Round) 71.6 66.2 65.4 5.6 18.9 7.7 89.3 83.9 89.7

we feed retrieved documents to the generation module and show the generation performance in
Figure 2(b). The evaluation results indicate that RA-DIT marginally outperforms the Vanilla RAG
model, while RAG-DDR significantly improves generation accuracy by utilizing factual knowledge
from the retrieved documents. Additional experiments showing the general capabilities of RAG-
DDR are presented in Appendix A.7.

Finally, we show the average length of responses generated by VGen in Figure 2(c). Compared to the
Vanilla RAG model, the average length of responses generated by RA-DIT decreases significantly,
indicating that the SFT training method tends to cause LLMs to overfit the training dataset. On the
contrary, RAG-DDR shows a more similar length distribution with the Vanilla RAG model, enabling
the model to generate responses of a more appropriate length. It demonstrates that training LLMs
to learn data preferences from generated responses can help align the output format of RAG models
more closely with that of the original LLMs.

5.4 EFFECTIVENESS OF RAG-DDR IN USING EXTERNAL KNOWLEDGE

In this section, we investigate the capability of the generation module VGen in the RAG model to
leverage external knowledge for response generation. We first evaluate the ability of VGen to bal-
ance the internal and external knowledge. Next, we evaluate the denoising ability by VGen feeding
additional unrelated documents as the external knowledge.

As shown in Table 3, we first show the effectiveness of VGen in balancing internal and external knowl-
edge during producing responses. We compare three training strategies: zero-shot (Vanilla RAG),
SFT (RA-DIT), and DDR (RAG-DDR). Our experiment establishes three testing scenarios to evalu-
ate the effectiveness of different RAG models by categorizing the evaluation data into three distinct
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(a) NQ. (b) HotpotQA. (c) WoW. (d) T-REx.

Figure 3: Effectiveness of Different RAG Models in Defending Noisy Information. We use
MiniCPM-2.4B to build the generation module (VGen). Then we retain one informative document
and randomly replace n top-retrieved documents with noisy ones.

scenarios: Has-Answer, Miss-Answer, and Internal Knowledge. The Has-Answer scenario indicates
that the retrieved documents contain the golden answer, which can help the generation module to
answer the question accurately. The Miss-Answer scenario indicates that the retrieved documents do
not contain the golden answer and fail to provide sufficient support for LLMs to generate accurate
responses. Lastly, the Internal Knowledge scenario further evaluates the ability of LLMs in dealing
with the conflict between internal and external knowledge. The test cases of the Internal Knowledge
scenario indicate that LLMs can generate accurate answers using only parametric memory, whereas
RAG models may produce incorrect responses.

In the Has-Answer scenario, RAG-DDR and RA-DIT outperform the Vanilla RAG model on all
datasets. This indicates that training the generation module enables it to capture essential knowledge
facts, improving the accuracy of the generated responses. Compared with RA-DIT, RAG-DDR
achieves consistent improvements over the Vanilla RAG model, which shows that DDR can better
generalize the external knowledge usage ability to different tasks. In the Miss-Answer scenario,
all RAG models perform significantly worse compared to the Has-Answer scenario, showing that
the retrieved knowledge fails to provide sufficient information for generating accurate responses.
Compared to the Vanilla RAG, RAG-DDR and RA-DIT mitigate the performance drop caused by
incorporating retrieved documents by fine-tuning the generation module, illustrating their ability
to effectively leverage internal knowledge and avoid being misled by irrelevant information. For
the Internal Knowledge scenario, we evaluate the ability of RAG models in handling the conflict
from external knowledge. The Vanilla RAG model decreases the generation accuracy more than
20% on all tasks, showing that the knowledge conflict can significantly affect the generation result.
DDR exhibits strong effectiveness in mitigating the knowledge conflict in the Vanilla RAG model,
resulting in a reduction of more than 10% in performance drop. This indicates that DDR effectively
balances the internal and external knowledge, facilitating the robustness of the RAG model.

In the second experiment, we extend the Has-Answer setting and further investigate the denoising
effectiveness of VGen by adding the different number of noise documents. As shown in Figure 3,
we increase the noise by randomly replacing n documents from the top-5 retrieved set with the last
n documents from the top-100 retrieved candidates, while ensuring that the ground truth document
remains in the set. RA-DIT exhibits inconsistent performance and degrades in some RAG scenarios.
In contrast, RAG-DDR consistently outperforms the Vanilla RAG model, maintaining a consistent
improvement even as the number of noisy documents increases. It further confirms the effectiveness
of our RAG-DDR approach in defending noise.

5.5 CASE STUDIES

In Table 4, we present three randomly selected examples from the NQ, HotpotQA, and TriviaQA
datasets to show the generated responses and evaluate the effectiveness of the RAG-DDR model.

For the first case, the query asks about the “daylight savings time of Canada” and the retrieved
documents contain detailed information about when the daylight savings time begins each year in
Canada. However, since the exact date of daylight savings time changes annually, the most accurate
answer is “the second Sunday in March”. RAG-DDR shows its effectiveness in accurately answer-
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Table 4: Case Studies. These matching phrases are indicated in Red if the model answers correctly
and in Blue if it answers incorrectly. We present the generated responses of different RAG models,
which use MiniCPM-2.4B to build the generation module (VGen).

Case 1: When does Canada switch to daylight savings time
Document: Daylight Saving Time Canada. Daylight Saving Time in Canada. In most of Canada Daylight
Saving Time begins at 2:00 a.m. local time on the second Sunday in March. ... Canada Daylight Saving
Time Start and End Dates 2020 March 8 November 1 2019 March 10 November ... November 6 2010
March 14 November 7 2009 March 08 November 1 ...

Vanilla LLMs: Canada does not switch to or from daylight savings time. Instead, the clocks are
automatically set forward by one hour during the spring.
Vanilla RAG: March 14 RA-DIT: March 8
RAG-DDR: Canada switches to Daylight Saving Time on the second Sunday of March and returns to
Standard Time on the first Sunday of November.
Case 2: The manager who recruited David Beckham managed Manchester United during what timeframe
Document: Ferguson’s unprecedented achievements at Aberdeen led to managerial offers from some of the
most prestigious clubs in Europe over the years, and he signed with Manchester in November 1986. ...
Ferguson retired at the end of the 2012–13 Premier League season but stayed on with Man U in a...

Vanilla LLMs: 1992–2003 Vanilla RAG: 1986–1993 RA-DIT: 1992 to 2013
RAG-DDR: The football manager who recruited David Beckham was Sir Alex Ferguson, and he
managed Manchester United from 1986 to 2013.
Case 3: Following success at the 1979 election whose party conference speeech included the lines
’you turn if you want to, the lady’s not for turning’?
Document: The lady’s not for turning - Wikipedia The lady’s not for turning From Wikipedia, the free
encyclopedia Jump to navigation Jump to search 1980 Margaret Thatcher speech ... a phrase used by
Margaret Thatcher, then Prime Minister, in her speech to the Conservative Party Conference...

Vanilla LLMs: The speaker in question is Margaret Thatcher, who was the leader of the
Conservative Party and later became the Prime Minister of the United Kingdom.
Vanilla RAG: Conservative Party Conference RA-DIT: The Conservative Party
RAG-DDR: The 1979 Conservative Party conference speech by Margaret Thatcher included the lines
”you turn if you want to, the lady’s not for turning”.

ing the question, while both Vanilla RAG and RA-DIT are misled by noisy information such as
“14th March” and “10th March”, leading to incorrect responses. This demonstrates that RAG-DDR
model has the ability to distinguish the most accurate knowledge from ambiguous or misleading in-
formation in the retrieved documents. In the second case, the model must integrate multiple pieces
of knowledge from the provided documents to answer the question. While the Vanilla RAG model
and RAG-DIT only correctly answer half of the questions using partial knowledge, RAG-DDR suc-
cessfully identifies the correct start time and end time. This indicates that RAG-DDR has a stronger
capacity to integrate factual knowledge from different document segments. As shown in the third
case, Vanilla LLM can answer the question correctly only depending on the parametric memory.
Nevertheless, both Vanilla RAG and RA-DIT are misled by the confusing information from these
retrieved documents and generate the response “the Conservative Party Conference”, which is en-
tirely unrelated to the given question. In contrast, RAG-DDR accurately follows the intent of the
question for generating the response, demonstrating the ability of RAG-DDR to mitigate the negative
influence of external knowledge.

6 CONCLUSION

This paper proposes Differentiable Data Rewards (DDR), aiming at end-to-end optimizing the
Retrieval-Augmented Generation (RAG) model using the DPO method. DDR optimizes each agent
by collecting the reward in a rollout way and aligns data preferences among these communicative
agents. We build a two-agent RAG system and optimize it using DDR to implement the RAG-DDR
model. Our experiments demonstrate that DDR helps the generation module produce responses of
an appropriate length and avoids overfitting the training signals during SFT. Our further analyses
reveal that the DDR optimized generation model can better capture key information from retrieved
documents and mitigate the conflict between external knowledge and parametric memory.
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Table 5: Data Statistics.
Split Task Dataset Metric Total

Training

Open-Domain QA

Commonsense QA (2019) Accuracy 4,200
Math QA (2019) Accuracy 4,200
Web Questions (2013) Accuracy 3,778
Wiki QA (2015) Rouge-L 1,040
Yahoo! Answers QA Rouge-L 4,200
MARCO QA (2016) Rouge-L 4,200

Reasoning

Algebra QA with Rationales (2017) Accuracy 2,727
Explanations for CommonsenseQ (2021) Accuracy 4,200
Grade School Math 8K (2021) Accuracy 4,200
StrategyQA (2021) Accuracy 2,060

Evaluation

Open-domain QA
Natural Questions (2019) Accuracy 2,837
TriviaQA (2017) Accuracy 5,359
MARCO QA (2016) Rouge-L 3,000

Multi-Hop QA HotpotQA (2018) Accuracy 5,600
Slot Filling T-REx (2018) Accuracy 5,000
Dialogue Wizard of Wikipedia (2019) F1 3,000

A APPENDIX

A.1 ADDITIONAL EXPERIMENTAL DETAILS

In this subsection, we first outline the process of constructing the training data. Then we show
the prompt templates used in our experiments. Then, we describe the maximum generation length
of RAG-DDR during inference. Finally, we provide details on the implementation of RAG-DDR
training. To ensure a fair comparison, we train both RA-DIT and RAG-DDR using the same dataset,
hyperparameters, and number of epochs. For Self-RAG, we adhere to it respective training data
formats and hyperparameter settings.

Data Preprocessing for DDR. The quantity of our training and evaluation data, along with the
corresponding evaluation metrics, are presented in Table 5. Then we describe the details of data
preprocessing during training both knowledge refinement (VKR) and generation (VGen) modules using
our DDR method.

Optimizing the knowledge refinement module is a rollout process, which individually feeds
the top-100 retrieved documents into the generation module (VGen) with the query to calcu-
late the reward. Then, we apply the evaluation metrics shown in Table 5 to calculate the
reward scores, identifying the documents that result in the highest scores as positive docu-
ments and those with the lowest scores as negative ones. Finally, we obtain the triplet data
{query, positive/negative documents, “YES”/“NO”}. To construct the dataset for training the gen-
eration module, we concatenate the refined documents with the query and then feed them into
the generation module for sampling responses. We apply five different temperature settings
(0.5, 0.6, 0.7, 0.8, 0.9) to sample responses and conduct the five-round sampling for each tem-
perature. Afterward, we compute the reward score for each output using evaluation metrics to
identify the positive and negative responses for each query. This process yields the triplet data
{query, positive response, negative response}.

Maximum Generation Length. For the evaluation dataset, we set the maximum generation length
for MARCO QA task to 100, while the maximum generation length for the rest tasks is set to 32.

Prompt Templates. For RA-DIT, we use the same instruction tuning template as Lin et al. (2023)
and leverage top-5 retrieved documents as augmented knowledge during training. For Self-RAG,
we use the same instruction tuning template as Asai et al. (2023) during training. Then we de-
scribe the prompt templates used in RAG-DDR. As shown in Figure 4, we refer to the prompt
designs of RA-DIT (Lin et al., 2023) and Self-RAG (Asai et al., 2023) to conduct tailored task
prompts for different LLMs, helping LLMs generate better responses. In addition, we design sepa-
rate prompts for LLMs w/ RAG and LLMs w/o RAG:{Background:{Documents}\n {Instruction}}
and {Instruction}, where Documents indicates the external documents provided for LLMs and In-
struction represents the task instructions. As illustrated in Figure 5, we design the prompts for
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(a) MiniCPM-2.4B. (b) Llama3-8B.

Figure 4: Prompt Templates of Different Training and Evaluating Tasks.

Figure 5: Prompt Templates Used for Knowledge Refinement.

the knowledge refinement tasks by referring to LangChain1, enabling LLMs to correctly generate
“YES” or “NO” to retain or discard retrieved documents.

Training Details. For DDR training, we use automatic metrics such as Rouge-L and Accuracy to
calculate the reward and set β = 0.1. The learning rate is set to 5e-5, and each model is trained
for one epoch. For the generation module, we feed 5 retrieved passages as external knowledge
for augmenting the generation process. To optimize both the knowledge refinement module and
generation module, we use LoRA (Hu et al., 2022) for efficient training.

1https://github.com/langchain-ai/langchain
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Table 6: Overall Performance of RAG-DDR and Additional Baselines. The evaluation scores of
InstructRAG on the MARCO QA and WoW tasks are usually low. The reason may lie in that the
responses generated by InstructRAG are long and contain complex reasoning processes, making it
difficult to conduct a fair evaluation for these string matching based evaluation metrics.

Method Open-Domain QA Multi-Hop QA Slot Filling Dialogue
NQ TriviaQA MARCO QA HotpotQA T-REx WoW

Short Generation Length
Filco (2023) 46.6 81.9 14.6 25.3 44.1 14.4
InstructRAG (2024) 4.2 21.1 14.3 11.0 17.1 9.2
RAG-DDR (w/ 2-Round) 52.1 89.6 27.3 39.0 40.6 16.8
Long Generation Length
InstructRAG (2024) 60.8 92.0 12.4 42.3 43.1 5.3
RAG-DDR (w/ 2-Round) 58.0 91.9 26.1 43.9 45.6 10.9

Table 7: Additional Ablation Study Results on RAG-DDR.

Method Open-Domain QA Multi-Hop QA Slot Filling Dialogue
NQ TriviaQA MARCO QA HotpotQA T-REx WoW

MiniCPM-2.4B
Independent Tuning 46.6 82.0 28.0 32.3 31.7 17.3
RAG-DDR (VKR First) 47.4 83.2 27.2 33.3 35.0 17.3
RAG-DDR (VGen First) 47.0 82.7 28.1 32.5 32.6 17.2
Llama3-8B
Independent Tuning 49.9 88.3 25.1 37.4 37.0 14.9
RAG-DDR (VKR First) 50.4 88.6 25.6 36.9 36.7 14.9
RAG-DDR (VGen First) 50.7 88.2 25.1 37.3 37.3 14.9

A.2 ADDITIONAL BASELINE COMPARISON RESULTS

This section presents the comparison results between RAG-DDR (w/ 2-Round) and other baseline
models. We employ InstructRAG (Wei et al., 2024) and Filco (Wang et al., 2023) as baseline models.
InstructRAG guides the LLM to self-synthesize denoising instruction tuning data and trains the
generation module to denoise the retrieved documents. Filco finetunes Flan-T5-XL (Chung et al.,
2024) as a context filtering module to refine the retrieved documents. Specifically, the responses
generated by InstructRAG include long reasoning and analysis, thus InstructRAG sets the maximum
generation length as 4,096. For a fair comparison, we compare the performance of RAG-DDR and
InstructRAG on the two maximum generation length settings: the short generation length (MARCO
QA task is 100 and the rest tasks are 32), and the Long generation length (4,096). In our experiments,
we employ Llama3-8B-Instruct as the knowledge refinement and generation modules.

As shown in Table 6, RAG-DDR outperforms Filco in almost all tasks. This suggests that the SFT
method leads modules in the RAG system to overfit the training signals, making it less effective
to optimize the entire RAG system to generate accurate responses. In contrast, in the long gen-
eration length setting, InstructRAG slightly outperforms RAG-DDR on NQ and TriviaQA tasks
but performs slightly worse than RAG-DDR on T-REX and HotpotQA tasks. This illustrates that
high-quality synthetic fine-tuning data can effectively optimize the performance of the generation
module. However, in the short generation length setting, InstructRAG performs significantly worse
than RAG-DDR, which indicates that compared to InstructRAG, RAG-DDR can generate accurate
answers with shorter responses, without complex and long reasoning processes.

A.3 ADDITIONAL ABLATION STUDIES ON RAG-DDR

As shown in Table 7, we conduct additional ablation studies to explore the effectiveness of differ-
ent training strategies: Independent Tuning, RAG-DDR (VKR First) and RAG-DDR (VGen First).
Independent Tuning indicates that the knowledge refinement module VKR and generation module
VGen are trained independently. RAG-DDR (VKR First) and RAG-DDR (VGen First) are cascaded
optimization models, indicating that we first train VKR or VGen and subsequently optimize the other
module by initializing the RAG model with the already optimized module.
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Table 8: Effectiveness of RAG-DDR with More Agents. Llama3-8B is used as the backbone model
for both the knowledge refinement and summarization modules, while MiniCPM-2.4B is used as the
backbone model for the generation module.

Method Open-Domain QA Multi-Hop QA Slot Filling Dialogue
NQ TriviaQA MARCO QA HotpotQA T-REx WoW

Vanilla RAG (w/o VSum) 42.2 79.5 16.7 26.7 22.1 14.4
Vanilla RAG 44.1 82.3 17.5 28.9 25.4 15.4
RAG-DDR (Only Training VGen) 46.6 83.6 26.9 32.1 28.3 16.9
RAG-DDR (Training VGen & VSum) 47.6 83.9 26.4 32.0 28.6 17.0
RAG-DDR (All Training) 47.9 84.8 26.4 32.9 28.7 16.9

Table 9: Effectiveness of RAG-DDR Using Large-Scale LLMs. In our experiments, we utilize
Qwen2.5-14B-Instruct as the generation module and Llama3-8B-Instruct as the refinement module.

Method Open-Domain QA Multi-Hop QA Slot Filling Dialogue
NQ TriviaQA MARCO QA HotpotQA T-REx WoW

Vanilla RAG 48.1 81.1 18.5 29.4 37.3 14.3
RAG-DDR 51.2 84.1 23.0 35.1 44.6 16.6

Compared to Independent Tuning, the effectiveness of RAG-DDR is enhanced on all tasks. It shows
that Independent Tuning results in misalignment of data preferences between the optimized modules,
thereby impacting the overall performance of the RAG system. In contrast, the performance of RAG-
DDR (VKR First) and RAG-DDR (VGen First) is indistinguishable across different datasets and VGen,
demonstrating that the DDR method is robust to the training orders.

A.4 EFFECTIVENESS OF RAG-DDR WITH MORE AGENTS

In this experiment, we extend RAG-DDR to more agents to evaluate its effectiveness in optimizing
complex RAG systems. Specifically, we utilize the knowledge refinement (VKR), summarization
(VSum), and generation (VGen) modules to construct a new RAG system. In this system, the knowl-
edge refinement module refines the retrieved documents D to get the refined documents D̃, the
summarization module summarizes the refined documents D̃ into a concise summary S̃ based on
the query q, and the generation module uses this summary S̃ to answer the query q. This system can
be represented as a three-agent system:

{q,D}⇝ VKR
{q,D̃}−−−−→ VSum

{q,S̃}−−−→ VGen ⇝ yGen, (9)

where D̃ ⊆ D. {q,D} ⇝ and ⇝ yT represent sending the input {q,D} to the RAG system and
getting the final output yT . In our implementation, we use Llama3-8B-Instruct as the backbone
model to construct the knowledge refinement and summarization modules, and Minicpm-2.4B-sft
as the backbone model to construct the generation module.

As shown in Table 8, we employ five models: Vanilla RAG (w/o VSum, Vanilla RAG, RAG-DDR
(Only Training VGen), RAG-DDR (Training VGen & VSum) and RAG-DDR (All Training) to evaluate
the effectiveness of the DDR method in RAG systems with more agents. RAG-DDR (Only Training
VGen) indicates that we tune the Vanilla RAG using DDR by only optimizing the generation module
(VGen). RAG-DDR (Training VGen & VSum) indicates that we use DDR to optimize both the gener-
ation module (VGen) and summarization module (VSum) in Vanilla RAG. RAG-DDR (All Training)
indicates that we optimize all three modules in the Vanilla RAG.

Compared to Vanilla RAG (w/o VSum), Vanilla RAG demonstrates performance improvements across
all evaluation tasks, showing the effectiveness of the summarization module in extracting relevant
information from multiple documents. In contrast, RAG-DDR (Only Training VGen) shows greater
improvements than Vanilla RAG, indicating that the primary improvements of RAG-DDR come
from optimizing the generation module (VGen). When we subsequently optimize the summarization
and knowledge refinement module based on RAG-DDR (Only Training VGen), the performance is
further improved. This indicates that DDR not only improves the performance of the RAG system
but also exhibits strong scalability, allowing it to be extended to different RAG systems.
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(a) The Accuracy of Knowledge Refinement. (b) The Accuracy of Generation Using Different Re-
fined Document Sets.

Figure 6: Effectiveness of the Knowledge Refinement Module (VKR) Optimized Using Different
Methods, Including Zero-shot (Vanilla RAG), SFT (RA-DIT), and DDR (RAG-DDR).

(a) Llama3-8B. (b) MiniCPM-2.4B.

Figure 7: The Ability of the Generation Module (VGen) in RAG-DDR.

A.5 EXTENDING RAG-DDR TO LARGER-SCALE LLMS

In this section, we explore the effectiveness of the DDR method in the RAG system that em-
ploys a larger-scale LLM as the backbone model of the generation module. Specifically, we utilize
Qwen2.5-14B-Instruct (Yang et al., 2024) as the generation module and Llama3-8B-Instruct as the
refinement module to build a new combination for the RAG system. As shown in Table 9, compared
to vanilla RAG, RAG-DDR shows significant improvements across multiple tasks, highlighting the
effectiveness of the DDR method in the RAG system with the larger-scale LLM.

A.6 CHARACTERISTICS OF THE KNOWLEDGE REFINEMENT MODULE OF RAG-DDR

As shown in Figure 6, we explore the characteristics of the knowledge refinement module (VKR)
optimized using different methods, including zero-shot (Vanilla RAG), the SFT method (RA-DIT),
and DDR (RAG-DDR).

For RA-DIT, we collect 30k pieces of data from the MARCO QA dataset to tune VKR module
where each query has labeled positive and negative documents. We sample one positive doc-
ument and one negative document for each query to construct the SFT dataset containing 60k
pieces of data and fine-tune VKR module. The number of the SFT dataset is consistent with the
amount of the RAG-DDR training dataset. The SFT dataset consists of triples in the form of
{query, positive/negative documents, “YES”/“NO”}.

As shown in Figure 6(a), we calculate the accuracy of top-5 documents by Vanilla RAG, RA-DIT,
and RAG-DDR. The retrieval accuracy evaluates whether or not the retained top-5 documents con-
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Table 10: The Effectiveness of Generation Module Optimized with Different Training Strategies.

Method Open-Domain QA Multi-Hop QA Slot Filling Dialogue
NQ TriviaQA MARCO QA HotpotQA T-REx WoW

MiniCPM-2.4B
Vanilla RAG 42.2 79.5 16.7 26.7 22.1 14.4
RA-DIT (Positive Label) 40.9 77.2 19.9 22.0 25.3 14.7
RA-DIT (Ground Truth) 41.8 78.6 19.6 26.1 25.2 15.7
RAG-DDR 46.8 81.7 28.3 31.2 32.2 17.0
Llama3-8B
Vanilla RAG 46.2 84.0 20.6 30.1 26.9 12.5
RA-DIT (Positive Label) 45.8 86.4 23.0 31.4 25.3 13.2
RA-DIT (Ground Truth) 46.2 87.4 20.3 34.9 41.7 14.8
RAG-DDR 50.2 87.8 25.2 36.9 36.2 14.8

Table 11: The Average Length of Responses Generated by Generation Module Optimized with
Different Training Strategies.

Method Open-Domain QA Multi-Hop QA Slot Filling Dialogue
NQ TriviaQA MARCO QA HotpotQA T-REx WoW

MiniCPM-2.4B
Vanilla RAG 12.5 4.7 32.4 5.6 4.4 48.5
RA-DIT (Positive Label) 19.2 8.3 34.6 13.7 6.7 32.8
RA-DIT (Ground Truth) 7.6 4.8 13.8 8.9 5.0 17.2
RAG-DDR 27.4 16.9 47.8 27.2 11.2 56.6
Llama3-8B
Vanilla RAG 49.6 25.0 85.4 43.9 34.4 98.5
RA-DIT (Positive Label) 42.1 14.8 72.2 24.0 3.9 72.2
RA-DIT (Ground Truth) 6.9 8.7 14.5 23.6 4.0 16.7
RAG-DDR 56.0 33.9 81.2 51.6 35.2 101.5

tain the ground truth. If VKR module discards all the documents retrieved, the accuracy is 0. RAG-
DDR outperforms Vanilla RAG and RA-DIT on all tasks. It indicates that the DDR method can
make VKR module accurately retain documents that contain the necessary knowledge to answer the
query. As shown in Figure 6(b), we use the refined documents by different knowledge refinement
module (VKR) to augment the DDR trained generation module (VGen). DDR-RAG also outperforms
other models, indicating that DDR can help better align data preferences between VGen and VKR
modules.

A.7 THE GENERAL LLM ABILITY OF DDR OPTIMIZED GENERATION MODULE

In this experiment, we further explore the characteristics of the generation module (VGen) optimized
using different methods, zero-shot (LLM w/o RAG) and DDR (RAG-DDR).

As shown in Figure 7, we compare the general ability of the generation module on several aspects:
Mathematical (Liu et al., 2024a), Disciplinary Knowledge (Hendrycks et al., 2020), World Knowl-
edge (Kwiatkowski et al., 2019), Logical Reasoning (Suzgun et al., 2022), and Common Sense
Reasoning (Clark et al., 2018). These tasks are commonly used as benchmarks to assess the model’s
inherent capabilities (Touvron et al., 2023; Hu et al., 2024).

As shown in Figure 7(a), DDR enables Llama3-8B to maintain its strong language understanding
and knowledge reasoning capabilities. The performance of MiniCPM-2.4B is shown in Figure 7(b).
The evaluation results show that DDR significantly enhances the performance of the smaller pa-
rameter models, MiniCPM-2.4B, particularly in mathematical and common sense reasoning tasks.
It illustrates that DDR not only preserves the original capabilities of LLMs but also offers some
potential for enhancing their performance.

A.8 THE IMPACT OF DIFFERENT TRAINING STRATEGIES ON THE GENERATION MODULE

In this experiment, we further investigate the impact of different training strategies on the generation
module VGen’s ability to utilize external knowledge and the average length of responses generated
by VGen module. We compare four models in this experiment, including Vanilla RAG, RA-DIT
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(Positive Label), RA-DIT (Ground Truth) and RAG-DDR. For RA-DIT (Positive Label), we employ
the RA-DIT method to train the Vanilla RAG and regard the positive response in DDR training data
as ground truth. For RA-DIT (Ground Truth), we employ the RA-DIT method to train the Vanilla
RAG with the annotated labels.

As shown in Table 10, RAG-DDR consistently outperforms RA-DIT (Positive Label) and RA-DIT
(Ground Truth) across different datasets, highlighting the effectiveness of the DDR method to en-
hance the ability of VGen module to utilize external knowledge. In contrast, RA-DIT (Positive Label)
performs worse than RA-DIT (Ground Truth), demonstrating that relying solely on positive samples
for supervised fine-tuning is insufficient for effectively training LLMs.

Furthermore, we analyze the average length of the responses generated by VGen module in Table 11.
Compared to the RA-DIT (Ground Truth), RAG-DDR shows a more similar generation length dis-
tribution to the Vanilla RAG model, making the LLMs generate responses with a more appropriate
length to answer the question. Notably, the response length of RA-DIT (Positive Label) is longer
than RA-DIT (Ground Truth). This observation further shows that the SFT training method may
lead LLMs to overfitting the training signals, which affects the response length of LLMs.
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