
Under review as a conference paper at ICLR 2024

APPENDIX

A ACTIVE EXPLORATION WITH INTRINSIC MOTIVATION

Intuitively, our active exploration process in ALP needs to explore the environment to gather in-
formative and diverse observations for both representation learning and downstream tasks. In our
experiments, we adopt two existing methods that measure novelty of state visitations as intrinsic
rewards and use reinforcement learning (RL) algorithm to train our agent.

Novelty-based Reward. To efficiently compute intrinsic reward from high dimensional pixel space,
we measure novelty in lower dimensional feature space from visual representation as an empirical
estimate. We use a visual encoder f to extract features from RGB observations and use them to
compute reward.

Random Network Distillation (RND) Burda et al. (2018) contains a randomly initialized fixed target
network g and optimizes a trainable prediction network g trained on data collected by the agent to
minimize MSE regression error. Intuitively, function approximation error is expected to be higher
on novel unseen states and thus encourages the agent to gather diverse observations. Given a visual
encoder f , its novelty-based reward on observation at timestep t is computed by r(ot) = kg(f(ot))�
g(f(ot))k2.

Curious Representation Learning (CRL) Du et al. (2021) designs a reward function specifically ben-
eficial for contrastive loss on visual inputs. Given a family of data augmentations T , its novel-based
reward is computed by r(ot) = 1 � sim

�
g(f(õ1t)), g(f(õ

2
t))

�
, where

�
õ1t , õ

2
t

�
are two transformed

pairs of ot sampled from transformations T and sim(u, v) is the dot product similarity metric. Vi-
sual encoder f and projection network g is trained on observations visited by the agent to minimize
popular InfoNCE loss Chen et al. (2020a) with data augmentations. Following previous works Du
et al. (2021); Chen et al. (2020a), we define T to consist of horizontal flips, random resized crops,
and color saturation using their default hyperparameters.

Learning Policy. In practice, we use DD-PPO Wijmans et al. (2019), a distributed version of PPO
Schulman et al. (2017) to better scale training in high dimensional complex visual environments.
Following previous works Burda et al. (2019), we normalize rewards by the standard deviation of
past observed rewards to ensure that reward magnitudes are relatively stable. We train agents with
20 parallel threads, where each environment thread is randomly sampled from training split scenes
as specified in Table B.2. The agent is initialized from a randomly sampled location with a random
rotation at the beginning of each training episode.

14

Under review as a conference paper at ICLR 2024

B EXPERIMENTAL DETAILS

B.1 ALGORITHM DETAILS

We present pseudocode describing the process of our ALP framework in Algorithm 1.

B.2 ENVIRONMENT DETAILS

We provide the list of scenes in train split and test split from Gibson Xia et al. (2018) dataset as
follows:

Train Split Test Split

Allensville Forkland Leonardo Newfields Shelbyville Collierville
Beechwood Hanson Lindenwood Onagac Stockmanc Corozal
Benevolence Hiteman Marstons Pinesdale Tolstoy Darden

Coffeen Klickitat Merom Pomaria Wainscott Markleeville
Cosmos Lakeville Mifflinburg Ranchester Woodbine Wiconisco

Algorithm 1 ALP

Input: Environment E, Online rollout buffer B, Data buffer D, Intrinsic reward r(o), Policy ⇡✓

with its visual encoder Mrepr as representation learning model
Output: Representation learning model Mrepr, Downstream training samples D
Initialize B,D ;, ;
while not converged do

// Collect observations from environments using policy ⇡✓

for each timestep t do

ot = get obs(E), at = ⇡✓(ot), ot+1 = step(E, ot, at)
// Relabel transitions with intrinsic rewards r(ot)
B B [{⌧t = (ot, at, ot+1, r(ot))}

end for

// Update representation learning model Mrepr and exploration policy ⇡✓

Update Mrepr with LIDM(Mrepr,B)
Update ⇡✓ with LPPO(⇡✓,B)
Update reward network r(o) with Lreward(B) (we optimize either RND loss or CRL loss in our
experiments)
// Collect training samples for downstream tasks

if record labeled data then

Randomly sample a small subset from current rollout buffer {(ximage, ylabel)} ⇠ B
D D [{(ximage, ylabel)}

end if

Empty online rollout buffer B ;
end while

15

Under review as a conference paper at ICLR 2024

B.3 IMPLEMENTATION DETAILS

To train exploration policy, we use the open-source implementation of DD-PPO baseline Wij-
mans et al. (2019) from the Habitat simulator https://github.com/facebookresearch/
habitat-lab. To train downstream perception models, we use the open-source implementation
from Detectron2 library https://github.com/facebookresearch/detectron2 with
its default architectures and supervised learning objectives. We provide implementation details of
each method and baseline as follows and a full list of hyperparameters can be found in Table 14:

Implementation details for ALP:

• Model architectures. In exploration policy, following previous works Wijmans et al.
(2019), we use a simplified version of agent architecture without the navigation goal en-
coder. For RGB observations we use a first layer of 2 ⇥ 2-AvgPool to reduce resolution,
essentially performing low-pass filtering and down-sampling, before passing into the visual
encoder Mrepr with output dimension of 2048. This visual feature is concatenated with
an embedding of the previous action taken and is then passed into LSTM. The output of
LSTM is used as input to a fully connected layer, resulting in a soft-max distribution of the
action space as policy and an estimate of the value function.
In IDM, our projection head hproj is a 2-layer MLP network with an input dimension of
2048, a hidden dimension of 512, and an output dimension of 512; our prediction network
hIDM is a MLP with an input dimension of 512 ⇥ (num-steps + 1), 2 hidden layers with
512 units, and an output dimension of 3⇥ num-steps. Then the output layer is chunked by
every 3 units, same as dimension of our action space, as predicted logits of IDM.
We adopt commonly used architectures for each perception task: for object detection and
instance segmentation, we use a Mask-RCNN He et al. (2017) using Feature Pyramid Net-
works Lin et al. (2017) with a ResNet-50 He et al. (2016) as Mrepr; for depth estima-
tion, we use a Vit-B/16 vision transformer encoder-decoder architecture Dosovitskiy et al.
(2020) with its encoder as Mrepr.

• Pre-training details. To train exploration policy, we use Generalized Advantage Estima-
tion (GAE) Schulman et al. (2015), a discount factor of � = 0.99, and a GAE parameter
of � = 0.95. Each individual episode has a maximum length of 512 steps. Each parallel
worker collects 64 frames of rollouts and then performs 4 epochs of PPO with 2 mini-
batches per epoch. We use Adam optimizer Kingma & Ba (2014) with a learning rate of
2.5 ⇥ 10�4. Following previous work Wijmans et al. (2019), we do not normalize advan-
tages as in baseline implementations.
To train IDM, we use Adam optimizer Kingma & Ba (2014) with a learning rate of 2.5 ⇥
10�4. Given 64 frames of rollouts, we perform 4 epochs of gradient updates by using all
frames to compute the average prediction loss at each iteration.

• Fine-tuning details. To sample a small subset of annotated images from all explored
trajectories, we randomly sample 100 annotated images per scene from online batches of
rollouts 100 times equally spreaded throughout policy training. We then save them as a
fixed static dataset to further train downstream perception models.
For Mask-RCNN, we use batch size of 32, learning rate of 0.02, resolution of 256 for
supervised learning until convergence, roughly around 120k training steps and pick the
model checkpoint with better performance. For ViT, we use a transformer decoder with 8
attention heads and 6 decoder layers, and train for 10 epochs using the AdamW optimizer
with a learning rate of 0.0001 and cosine annealing.

Implementation details for visual representation learning baselines:

• CRL. Our CRL Du et al. (2021) baseline as visual representation learning method are based
on open source implementation available at https://github.com/yilundu/crl.
For Matterport3D CRL baseline, we use its publicly released pretrained weights in ResNet-
50 architecture. For Gibson CRL baseline, we use the same set of hyperparameters as re-
ported in its original setups and pretrain in our environments for 8M frames. We found that
given the fixed downstream dataset, pretrained representation from our reproduced experi-
ments in Gibson generally achieve better performance, possibly due to more in-distribution

16

https://github.com/facebookresearch/habitat-lab
https://github.com/facebookresearch/habitat-lab
https://github.com/facebookresearch/detectron2
https://github.com/yilundu/crl

Under review as a conference paper at ICLR 2024

training data. We thus report all experimental results using our pretrained weights from
Gibson environments.

• ImageNet SimCLR. For Mask-RCNN results, we tried both SimCLRv1 Chen et al.
(2020a) and SimCLRv2 Chen et al. (2020b) checkpoints from https://github.com/
google-research/simclr with ResNet-50 architecture same as ours and found that
SimCLRv2 achieves better performance. We thus report all experiment results from Sim-
CLRv2 pretrained weights. For transformers, we pretrain on ImageNet ILSVRC-2012 Rus-
sakovsky et al. (2015) with a batch size of 256 for 30 epochs. We use the Adam optimizer
Kingma & Ba (2014) with a learning rate of 0.0003 and cosine annealing Loshchilov &
Hutter (2016).

• ImageNet Supervised. We use ResNet-50 and ViT-B/16 weights pretrained
for ImageNet classification task available at https://dl.fbaipublicfiles.
com/detectron2/ImageNetPretrained/MSRA/R-50.pkl and https://
download.pytorch.org/models/vit_b_16-c867db91.pth, respectively.

• Architectures in self-supervised contrastive learning baselines. For self-supervised con-
trastive learning baselines compared to ALP, we train a separate network with same archi-
tecture as visual backbone in ALP for baseline comparison. For SimCLR, we use a 2-layer
MLP projection head with hidden dimensions of 256 and output dimensions of 128 and
temperature hyperparameter ⌧ = 0.07 to compute contrastive loss. For CPC, we use a
MLP projection head and a forward prediction MLP both with hidden dimension of 256
and output dimension of 128 to compute contrastive loss. We use same learning rate as
ALP framework 2.5⇥ 10�4 to optimize contrastive loss.

Implementation details for downstream data collection baselines:

• RND. Our RND Burda et al. (2018) baseline is based on open sourced implementa-
tion available at https://github.com/rll-research/url_benchmark and
extends to pixel input. We train separate networks for exploration policy and reward model,
both with ResNet-50 architecture. For both RND-ALP and RND, we use a 2-layer MLP
projection head with hidden dimensions of 512 and output dimensions of 64 to compute
reward and to minimize MSE loss. We use the same sampling scheme as in ALP to ran-
domly sample a small subset of annotated images per scene from its explored trajectories
as downstream task dataset.

• CRL. CRL Du et al. (2021) could also be interpreted as an exploration strategy in addition
to an active visual representation learning approach. As proposed in its original setups, we
train separate networks for exploration policy and representation learning model, both with
ResNet-50 architecture. For both CRL-ALP and CRL, we use a 2-layer MLP projection
head with hidden dimensions of 128 and output dimensions of 128 and temperature hyper-
parameter ⌧ = 0.07 to compute reward and to minimize contrastive loss. We use the same
sampling scheme as in ALP to randomly sample a small subset of annotated images per
scene from its explored trajectories as downstream task dataset.

• ANS. ANS Chaplot et al. (2020a) is a hierarchical modular policy for coverage-based ex-
ploration. It builds a spatial top-down map and learns a higher-level global policy to select
waypoints in the top-down map space to maximize area coverage. Note that ANS per-
forms depth-based occupancy mapping and assumes sensor pose readings, instead of using
only RGB as in our case. Our ANS baseline is based on open sourced implementation
available at https://github.com/devendrachaplot/Neural-SLAM. For bet-
ter adaptations, we finetune its pretrained ANS policy in our train split scenes as specified
in Table B.2 using its original hyperparameters. We randomly sample a small subset of
annotated images from its explored trajectories as downstream task dataset. We generally
found that finetuning improves downstream performance of self-supervised visual repre-
sentations (RND-ALP and ImagNet SimCLR), except that for ImageNet supervised pre-
trained weights, using pretrained policy achieves better performance (+5.91 in Test Split).

17

https://github.com/google-research/simclr
https://github.com/google-research/simclr
https://dl.fbaipublicfiles.com/detectron2/ImageNetPretrained/MSRA/R-50.pkl
https://dl.fbaipublicfiles.com/detectron2/ImageNetPretrained/MSRA/R-50.pkl
https://download.pytorch.org/models/vit_b_16-c867db91.pth
https://download.pytorch.org/models/vit_b_16-c867db91.pth
https://github.com/rll-research/url_benchmark
https://github.com/devendrachaplot/Neural-SLAM

Under review as a conference paper at ICLR 2024

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 QUANTITATIVE RESULTS

Compare to self-supervised contrastive learning methods. We provide additional experimental
results comparing CRL-ALP with self-supervised contrastive learning methods on the same unla-
beled pretraining and labeled downstream dataset. Note that CRL exploration policy is trained to
maximize reward inverse proportional to contrastive loss and thus able to find images that are par-
ticularly useful for SimCLR. Table 7 however shows that CRL-ALP improves performance from
baseline by only learning from action information.

Train Split Test Split

Method ObjDet InstSeg ObjDet InstSeg

SimCLR (FrScr) 77.90 75.06 40.65 36.44
CRL-ALP (ours) 83.14 79.24 42.42 36.89

Table 7: Results of comparing to self-supervised contrastive learning methods. CRL-ALP out-
performs self-supervised learning baselines under same pretraining and downstream dataset, without
including any form of contrastive loss.

Compare visual representation learning qualities. We provide additional experimental results
comparing our method to visual representation learning baselines. In Table 8 , perception models
initialized from all visual representations are trained on the same downstream dataset collected from
random policy or from Active Neural SLAM policy. We also include performance of CRL-ALP in
addition to RND-ALP.

While ImageNet pretrained model generally performs the best compared to simulator pretraining,
ALP still performs better than other simulator-pretrained visual representations. This is significant
since we do not use any form of contrastive loss to learn visual representations but only consider
different forms of supervisions from active movements.

Train Split Test Split

Downstream Data Pretrained Representation ObjDet InstSeg ObjDet InstSeg

ANS

From Scratch 73.65 70.87 28.10 22.99
CRL (MP3D) 77.30 73.81 40.78 36.12
CRL (Gibson) 76.60 73.10 50.72 43.79
ImageNet SimCLR 77.47 74.86 47.92 41.42
RND-ALP (ours) 75.59 71.37 47.95 41.09
CRL-ALP (ours) 76.98 73.05 51.56 46.43

ImageNet Supervised 80.08 76.14 43.79 36.31

Random Policy

From Scratch 56.22 53.31 29.67 27.28
CRL (MP3D) 58.30 53.52 33.82 30.90
CRL (Gibson) 60.52 56.39 37.45 32.12
ImageNet SimCLR 64.94 61.26 43.29 37.84

RND-ALP (ours) 60.36 55.74 38.46 34.16
CRL-ALP (ours) 62.16 57.20 40.16 33.14
ImageNet Supervised 65.58 62.66 43.59 39.80

RND-ALP (ours) RND-ALP (ours) 87.95 84.56 50.34 46.74
CRL-ALP (ours) 88.73 84.78 49.32 43.06

Table 8: Results of comparing visual representation baselines. Performance of finetuning RND-
ALP, CRL-ALP, and all pretrained visual representation baselines on the same downstream dataset.

18

Under review as a conference paper at ICLR 2024

Compare downstream data collection qualities. We provide additional experimental results
comparing our method with various downstream data collection baselines. In particular, we finetune
ImageNet SimCLR or supervised pretrained models and on different downstream data collection
baselines. Table 9 shows that RND-ALP collects better downstream data for perception models
initialized with different pretrained weights.

Since ANS uses a hierarchical modular architecture and trains a global and a local policy, this is dif-
ferent from training a single policy architecture end-to-end in learning-based exploration methods.
We generally found that there are fewer object masks corresponding to samples collected from ANS
(257k) compared to RND (284k) or CRL (302k), among 250k image-label pairs collected from each
exploration policy.

Train Split Test Split

Pretrained Representation Downstream Data ObjDet InstSeg ObjDet InstSeg

ImageNet SimCLR

RND 85.55 82.17 42.89 40.86
CRL 82.51 79.05 42.49 38.93
ANS 77.47 74.86 47.92 41.42
RND-ALP (ours) 87.22 83.50 50.66 46.55

ImageNet supervised

RND 87.15 83.34 48.13 42.20
CRL 84.28 80.79 46.95 41.75
ANS 80.08 76.14 43.79 36.31
RND-ALP (ours) 88.75 85.51 52.78 46.94

Table 9: Results of comparing downstream data collection baselines. Performance of finetuning
the same pretrained representations from ImageNet SimCLR (top) and ImageNet supervised (bot-
tom) on each data collection method.

Number of timesteps in inverse dynamics prediction. We provide additional experimental re-
sults by varying number of timesteps in IDM when training with CRL-ALP and observe its effects
on downstream performance in Table 10.

Train Split Test Split

Number of Steps ObjDet InstSeg DepEst ObjDet InstSeg DepEst

4 80.63 77.30 0.259 43.97 37.09 0.352
8 83.14 79.24 0.261 42.42 36.89 0.350

Table 10: Number of timesteps in inverse dynamics model (IDM). We vary lengths of input ob-
servation sequence and predicted action sequence when training inverse dynamics model to observe
its effect on downstream performance of CRL-ALP.

Variance across multiple runs. We try to understand variance across multiple runs given the

same pretrained representation and the same downstream data. Specifically, we initialize Mask-
RCNN with the pretrained representation and finetune on the labeled dataset both from RND-ALP.
Results over 3 runs in Table 11 shows consistent evaluation performance.

C.2 QUALITATIVE EXAMPLES

In Figure 3, we provide additional visualizations of episode trajectories; each line represents policy
rollout trajectories in the same house of Habitat environment. We observe that learned exploration
policy learned from RND and CRL baseline shows wider coverage of maps and longer movements
when combined with ALP, visually demonstrating better exploration policy from ALP framework.
We include corresponding videos in the supplementary material.

19

Under review as a conference paper at ICLR 2024

Train Split Test Split

ObjDet InstSeg ObjDet InstSeg

87.95 84.56 50.34 46.74
87.30 83.05 49.35 47.65
88.19 84.06 50.79 46.36

87.81 ± 0.46 83.89 ± 0.77 50.16 ± 0.74 46.92 ± 0.67

Table 11: Variance across multiple runs. We report downstream model performance with their
mean and standard deviation over 3 runs, given the same pretrained representation and the same

downstream dataset from RND-ALP.

(a) CRL (b) RND (c) CRL-ALP (d) RND-ALP

Figure 3: Episode trajectories of policies trained with exploration baselines and combined with our
method on a Habitat environment. Both RND and CRL shows wider coverage of maps and longer
movements when combined with ALP.

D CONTRASTIVE LEARNING AS PART OF TRAINING OBJECTIVE

We also investigated including contrastive loss as self-supervised visual representation learning ob-
jective and provide more details below.

D.1 METHOD

In principle, we could use any representation learning objective suitable for learning visual represen-
tations in a self-supervised manner. In particular, we utilize CPC Oord et al. (2018) when combining
with RND exploration method, one of popular contrastive learning approaches Chen et al. (2020a);
Stooke et al. (2021), since observations from temporally closer frames should be closer in visual
representation space than further frames or observations from different environments. We utilize
SimCLR Chen et al. (2020a) with data augmentations when combined with CRL, since this is easier
to integrate with its original framework that already introduces a self-supervised loss.

Given our representation learning model Mrepr and projection head hcon, we encode each obser-
vation frame o into its latent representation z = hcon(Mrepr(o)), and minimize InfoNCE loss as
training objective:

Lcontrast = �
1

N

NX

i=1

log
exp (sim(zi, zi+))PN
j=1

exp (sim(zi, zj+))

20

Under review as a conference paper at ICLR 2024

where sim(u, v) = vTu is dot product similarity metric between feature vectors. For CPC, pos-
itive samples come from temporally close frames within 4 steps and negative samples come from
observations in other paralleled training environments. For SimCLR, positive samples come from
two augmented pairs of the same image and negative samples come from augmented views from
different images.

We modify a few design choices when including contrastive loss in order to improve compute and
memory efficiency. To train inverse dynamics model, we optimize cross-entropy loss based on pre-
dicted action between two consecutive frames, i.e. hIDM(at|ot, ot+1), instead of training on sequence
of observations and actions. The visual encoder f to compute intrinsic rewards is a momentum en-
coder He et al. (2020) that parameterizes a slow moving average of weights from our representation
learning model Mrepr. We leave more complicated architectures as future investigations.

Train Split Test Split

Method ObjDet InstSeg DepEst ObjDet InstSeg DepEst

CRL 79.61 76.42 0.265 40.81 34.24 0.352

CRL-ALP (ours) 80.84 77.44 0.262 44.23 37.60 0.354

RND 83.65 81.01 0.251 37.13 34.10 0.366
RND-ALP (ours) 87.78 84.12 0.239 48.63 45.80 0.308

Table 12: Results of combining ALP (including contrastive loss) with different exploration methods.
We combine our method with two exploration strategies, RND and CRL, and compare performance
of downstream perception model with baselines.

D.2 EXPERIMENTAL RESULTS

We perform similar sets of experiments on ALP framework including contrastive loss. We show that
including contrastive loss as self-supervised training objective achieves similarly good performance.
In Table 12, we report results when combining our framework with two learning-based exploration
methods, RND and CRL. We observe much improvements in downstream performance compared
to baselines, and are consistent under different exploration strategies. In Table 13, we report full re-
sults comparing our framework RND-ALP with visual representation baselines and data collection
baselines respectively. RND-ALP outperforms other baselines in downstream perception tasks; it
performs similar or even better than ImageNet supervised pretraining without access to any super-
visions from semantic labels. Thus this indicates significant benefits of learning signals from active
environment interactions in learning better visual representations.

Pretrained Downstream Train Split Test Split
Representation Data ObjDet InstSeg DepEst ObjDet InstSeg DepEst

From Scratch

RND-ALP

83.50 79.65 0.327 36.05 30.57 0.524
CRL 85.06 81.54 0.263 45.95 42.53 0.351
ImgNet SimCLR 86.38 83.40 0.257 45.26 37.07 0.349
ImgNet Sup 86.99 84.28 0.244 48.53 43.40 0.340
RND-ALP 87.78 84.12 0.239 48.63 45.80 0.308

RND-ALP

RND 86.36 82.03 0.245 42.37 36.10 0.342
CRL 83.12 79.43 0.274 40.76 34.43 0.365
ANS 75.35 71.73 - 48.43 42.62 -
RND-ALP 87.78 84.12 0.239 48.63 45.80 0.308

Table 13: Results of comparing pretrained visual representations and downstream data collection
baselines. We fix either visual representation or labeled dataset from RND-ALP (ours including
contrastive loss) and compare downstream performance to all baselines respectively.

21

Under review as a conference paper at ICLR 2024

Hyperparameter Value

Observation (256, 256), RGB
Downsample layer AveragePooling (2, 2)
Hidden size (LSTM) 512
Optimizer Adam
Learning rate of ⇡✓ 2.5⇥ 10�4

Learning rate annealing Linear
Rollout buffer length 64
PPO epochs 4
PPO mini-batches 2
Discount � 0.99
GAE � 0.95
Normalize advantage False
Entropy coefficient 0.01
Value loss term coefficient 0.5
Maximum norm of gradient 0.5
Clipping ✏ 0.1 with linear annealing

Learning rate of reward network 1⇥ 10�4

Optimizer Adam

Learning rate of IDM 2.5⇥ 10�4

Optimizer Adam
Number of timesteps 8
IDM epochs 4
Projection network [512]
Prediction network [512, 512]

Table 14: Hyperparameters for training exploration policy and representation learning model. We
follow previous works Wijmans et al. (2019); Du et al. (2021) as close as possible.

22

	Introduction
	Related Work
	Method
	Action-aware embodied learning for task-agnostic visual representations
	Transfer to downstream perception tasks

	Experiments
	Experimental Setups
	Experimental Results
	Benefits from Including Action for Perception
	Disentangling the Effect of Visual Representation and Data Collection Quality
	Ablations

	Qualitative Examples

	Discussion
	Active Exploration with Intrinsic Motivation
	Experimental Details
	Algorithm Details
	Environment Details
	Implementation Details

	Additional Experimental Results
	Quantitative Results
	Qualitative Examples

	Contrastive Learning as part of Training Objective
	Method
	Experimental Results

