A  SUPPLEMENTARY MATERIAL

The supplementary material provides different resources complementing the main description and
evaluation of SummaryMixing:

1. Appendix A.l details the relationship between HyperMixing and SummaryMixing.

2. Appendix A.2 details an engineering enhancement associated with SummaryMixing to
reduce its number of parameters.

3. Appendix A.5 reports results showing the ASR accuracy of MHSA and SummaryMixing as
a function of the audio length.

4. Appendix A.3 describes how SummaryMixing-lite is integrated to the Branchformer.
5. Appendix A.4 describes how SummaryMixing is integrated to the Conformer.

6. Appendix A.6 list the hyperparameters of all conducted ASR experiments.

A.1 RELATIONSHIP BETWEEN SUMMARYMIXING AND THE HYPERMIXER

The analysis of the relationship between SummaryMixing and the HyperMixer (Mai et al., 2023) is
relegated to the appendix due to its length. The following will first follow the original presentation,
and then re-write the mathematics to relate them to SummaryMixing.

The HyperMixer starts from MLP Mixer (Tolstikhin et al., 2021), which mixes “tokens”, here feature
vectors x;. The way these feature vectors are mixed is dimension by dimension. Denoted with x7
feature dimension ¢ across time. The output of MLP Mixer, again, for a single dimension, is

hj = MLP(x}) = Wy - 0(W3 -x7), @
where o() is a nonlinearity, and W; € RT*P " are weight matrices. The first dimensions of both
weight matrices are the length of the input. If the weight matrices are trained directly, the input must
therefore be of fixed length which is not common in speech processing.

The HyperMixer (Mai et al., 2023) therefore makes both weight matrices W, variable-height, by
making them functions of the input. Each row of Wy is a function of the corresponding per-time
feature vector x;:

MLP}, (x0)
Wi (X) = : . 3)
MLPy (x7)

It is also possible to add a positional encoding to x;.

The reason for Mai et al. (2023) to use the word “HyperMixer” is the analysis as an MLP Mixer with
the parameters not chosen directly, but by a “hyper-network™. This is an unusual use of the term
“hyper”, since hyper-networks are immediately dependent on the input.

Up to this point, the presentation of Mai et al. (2023) has been followed with only notational
changes, but from now the HyperMixer will be analysed differently. First, a key question is why the
HyperMixer is faster. Mai et al. (2023) cite “simplicity” as the key to their performance improvements,
which is imprecise. The answer is linear time complexity, which is not obvious from the presentation
so far. To express the output of the HyperMixer per element of the matrix H, rewrite (2), using [-;;
to denote element (4, j) of a matrix:
D/
H]; =Y Wi, - [o(W] -X)] .. )

J5
Jj=1

Now, this can be reformulated per time step by fixing ¢ and recognising the expression as a vector-
matrix product, where the vector is given by (3):

h; = [Wy], - 0(W2 - X) = MLP; (x;) - 0(W3 - X). 6)
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(b) SummaryMixing, repeated
(a) The HyperMixer, re-analysed. from Figure 1b.

Figure 3: Comparison between the HyperMixer and SummaryMixing.

It has become clear that the HyperMixer performs a per-time step transformation of x;, and then a
linear transformation by o(W3 - X). o(WZ - X)) does not have ¢ in it and therefore must be a global
projection matrix.

The elements of the global projection matrix are

[o(W2 -X)];, = U( i[wﬂt’,j ' [X]m). (6)

t'=1

Note that o(-) is a per-element nonlinearity. To make this expression’s dependency on the length T
of the input clear, this can be written more simply as the sum of a per-time cross product:

T
c(W!.X) = g< > MLPy(xy/) % xf,/). (7)

t'=1

Our re-analysis of the HyperMixer is shown in Figure 3a. To keep to linear complexity in the length
of the input, most operations are per time step. There is a local transformation of the input (f in the
figure, or MLP; in the original description). Separately, there is a per-time step contribution to a
global sum, which is given by f/(x;/) x x;» (where f” is written MLPs in the original description).
The size per-time step contribution, crucially, is independent of the length of the input. The result of
the global sum is taken through nonlinearity ¢ and used as a projection matrix for each of the local
transformations of the input.

A comparison between the re-analysed HyperMixer in Figure 3a and SummaryMixing in Figure
3b shows a similar structure. However, in the HyperMixer, only one part of the local contribution,
function f’, is trainable, and the combination of local and global information is fixed: a global
projection applied to a local vector. On the other hand, in SummaryMixing, the local contribution is a
completely trainable function s, an average is taken instead of a sum (though layer normalisation in
the HyperMixer may have led to the same effect), and the combination of local and global information,
again, a trainable function, after concatenation.

A.2 SUMMARYMIXING WITH INPUT CHUNKING

In the context of SummaryMixing, a simple trick can be applied to the different transformations to
reduce significantly the number of parameters without affecting the size of the hidden dimensions.
We refer to this trick as “input chunking”. The core idea is that each input tensor can be divided
into n chunks along the feature dimension (i.e. last dimension) and be processed independently by
smaller neural networks instead of a larger one attending to the full feature dimension. The latter
creates n smaller neural networks that will be specialized in always dealing with the same chunk of
the input tensor.

Such a process can be formally described as follows. Let x; be the input tensor of dimension
[B, T, D] with B the batch size, T' the number of time steps and D the hidden or feature dimension.
The D dimension of x; can be divided into n chunks to reduce the size of the s and f functions

14



‘ T
i Wb 1
¥
c ©
A
[

@MP) ()

Figure 4: Branchformer equipped with Sum- Figure 5: Branchformer equipped with
maryMixing. The cgMLP branch provides SummaryMixing-lite. The cgMLP branch
local information while the SummaryMixing also acts as a transformation function (f in
branch gives global information. Figure 4) for the SummaryMixing operation.

that only need to be created n times. In practice, as s and f are dense non-linear neural networks,
we will create n versions of them, but with n-times reduced input and output dimensions. The n
different outputs of s and f can then be concatenated to reproduce the original output dimension. In
our SummaryMixing, the n summary and transformation functions are untied, i.e., have different
weight parameters, to further increase the modeling capacities of the model. Therefore, the model
ends up with n different linear layers for the s and f functions. This helps to reduce the number of
neural parameters as % X % x n < D x D. For instance, the number of parameters goes from 1.2M
to 262k for a layer of 1024 neurons and four chunks.

A.3 BRANCHFORMER WITH SUMMARYMIXING AND SUMMARYMIXING-LITE

Figure 4 shows a detailed illustration for the architecture of a Branchformer layer equipped with
SummaryMixing. The inputs of each layer go to both the cgMLP branch and the SummaryMixing
branch (f, s, and c in Figure 4). In addition, since both the cgMLP branch and the Transformation
function f in the SummaryMixing branch extract local information, we also propose to merge f with
cgMLP. As shown by Figure 5, this merge makes the SummaryMixing operation fully integrated
into the Branchformer architecture, leading to a SummaryMixing-lite structure which has even less
complexity in terms of neural parameters compared to SummaryMixing.

A.4 CONFORMER WITH SUMMARYMIXING

Figure 6 shows the architecture of a Conformer layer. Between the two “macaron-like” MLP modules
is an self-attention or SummaryMixing module for the global information and a convolutional module
for the local information. The main design differences of Conformer and Branchformer is that
Conformer processes global and local information in a sequential way while the latter processes
global and local information in parallel. Our proposed SummaryMixing Conformer replaces the
self-attention module with a SummaryMixing module in each Conformer layer.

A.5 AUDIO DURATION SENSITIVITY ANALYSIS

The sensitivity of SummaryMixing, Fastformer, and self-attention to the variation of the duration
of audio files during speech recognition decoding is investigated in this section. In particular, this
experiment aims to ensure that the removal of self-attention does not harm the performance of the ASR
model for longer sentences. To achieve this, we evaluate the WER of the small Branchformers trained
on the Tedlium 2 dataset and presented in Table 2 on ten sets of sentences of increasing duration. As
a reminder, this ASR model is a Branchformer encoder with a transformer decoder trained jointly
with CTC and without any language model. These sets are designed by taking the test set of Tedlium
and splitting it into 10 partitions where sentences fall into buckets of corresponding lengths. We
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Figure 6: The Conformer. It uses an attention or SummaryMixing module for the global information
and a convolutional module for the local information.

then compute the WER of the Branchformers equipped with SummaryMixing, SummaryMixing-lite,
Fastformer, and self-attention and report the result for each bucket of increasing duration in Figure ??.
From the results, it is clear that not only both SummaryMixing and SummaryMixing-lite perform the
best, but also that longer sentences do not harm SummaryMixing more than MHSA. It appears to be
the opposite as the WER increases more rapidly for MHSA than SummaryMixing with the increase
in audio duration. Hence, we can conclude that SummaryMixing does not alter the long-term context
learning capabilities of encoder-decoder ASR systems when replacing MHSA.
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Figure 7: Evolution of the WER of different Branchformers encoder-decoder (+ CTC) ASR systems
trained on Tedlium 2 and tested on 10 sets of sentences of increasing duration coming from the
Tedlium 2 test set. The attention cell of the Branchformer encoder can either be Multi-head self-
attention, SummaryMixing, SummaryMixing-lite or Fastformer. SummaryMixing is not more
impacted by longer sentences than MHSA.

A.6 SPEECH RECOGNITION DETAILS

The following tables describe the precise set of hyperparameters used for the newly introduced models
for ASR experiments on the Librispeech, CommonVoice, Tedlium, AISHELL-1, and AMI datasets.
The parameters of the models already available in SpeechBrain are omitted as the hyperparameter
files can be found with SpeechBrain v0.5.14.
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Table 3:

Parameter Branchformer Branchformer Conformer
SummaryMixing  SummaryMixing-lite ~ SummaryMixing
Optimization
Epochs 120 120 120
GPUs 4 4 4
Batching Dynamic Dynamic Dynamic
Batch Len. 500s 500s 500s
Optimizer AdamW AdamW AdamW
LR Scheduler noAM no AM no AM
Max. LR Se-3 Se-3 5e-3
Warmup steps 30k 30k 30k
Weight Decay 0.001 0.001 0.001
CTC weight 0.3 0.3 0.3
Attention weight 0.7 0.7 0.7
Augmentations
SpecAugment True True True
Time warp window 5 5 5
Freq. Masks 2 2 2
Masks width 30 30 30
Time masks 3 3 3
Masks width 40 40 40
Speed Perturb. True True True
Speeds [95,100,105] [95,100,105] [95,100,105]
CNN FrontEnd
Input 80 FBanks 80 FBanks 80 FBanks
Type ConvlD ConvlD ConvlD
Layers 2 2 2
Filters (64,32) (64,32) (64,32)
Kernel Size (3.3) (3,3) 3.3)
Strides (2,2) (2,2) 2,2)
Encoders
Model dim. 512 512 512
Heads 4 4 4
Blocks 18 18 18
Dropout 0.1 0.1 0.1
Activation GeLU GeLU GeLU
Attention SummaryMixing SummaryMixing-lite = RelPosMHAXL
cgMLP Lin. 3072 3072 3072
cgMLP Kernel 31 31 31
Strides (2,2) (2,2) 2,2)
Decoders
Model dim. 512 512 512
Type Transformer Transformer Transformer
CTC True True True
Inp. chunk./Heads 4 4 4
Blocks 6 6 6
Dropout 0.1 0.1 0.1
Activation GeLU GeLU GeLU
Vocabulary type BPE BPE BPE
Vocabulary size 5000 5000 5000
Decoding (Transformer LM)
beam size 66 66 66
LM Weight 0.6 0.6 0.6
Temperature 1.15 1.15 1.15
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Table 4:

Parameter Conformer Conformer
Self-attention SummaryMixing
Optimization
Epochs 500 500
GPUs 4 4
Batching Dynamic Dynamic
Batch Len. 1700s 1700s
Optimizer AdamW AdamW
LR Scheduler noAM no AM
Max. LR le-3 le-3
Warmup steps 7.5k 7.5k
Steps of Keeping Max. LR 43k 43 K
Weight Decay Se-4 Se-4
Augmentations
SpecAugment True True
Time warp window 5 5
Freq. Masks 2 2
Masks width 27 27
Time masks 7 8
Masks width Se-2 x Utt. Len. 5e-2 x Utt. Len.
Speed Perturb. True True
Speeds [95,100,105] [95,100,105]
CNN FrontEnd
Input 80 FBanks 80 FBanks
Type ConvlD ConvlD
Layers 2 2
Filters (64,32) (64,32)
Kernel Size 3.,3) 3.3
Strides 2,2) 2,2)
Encoders
Model dim. 256 256
Inp. chunk./Heads 4 4
Feedforward dim. 1024 1024
Blocks 18 18
Dropout 0.1 0.1
Activation GeLU GeLU
Attention RelPosMHAXL  SummaryMixing
Conv. Module Kernel 31 31
Decoders
Type CTC-only CTC-only
Vocabulary type BPE BPE
Vocabulary size 128 128
Decoding (Greedy CTC decoding)
beam size 1 1
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Table 5:

Parameter Branchformer Branchformer Branchformer
SummaryMixing  SummaryMixing-lite Fastformer
Optimization
Epochs (nl/it/fr) 120/100/100 120/100/100 120/100/100
GPUs 2 2 2
Batching Dynamic Dynamic Dynamic
Batch Len. 400s 400s 400s
Optimizer AdamW AdamW AdamW
LR Scheduler no AM no AM no AM
Max. LR Se-3 Se-3 5e-3
Warmup steps (nl/it/fr) 10k/10k/25k 10k/10k/25k 10k/10k/25k
Weight Decay 0.001 0.001 0.001
CTC weight 0.3 0.3 0.3
Attention weight 0.7 0.7 0.7
Augmentations
SpecAugment True True True
Time warp window 5 5 5
Time warp mode bicubic bicubic bicubic
Freq. Masks 2 2 2
Masks width 30 30 30
Time masks 3 3 3
Masks width 40 40 40
CNN FrontEnd
Input 80 FBanks 80 FBanks 80 FBanks
Type ConvlD ConvlD ConvlD
Layers 2 2 2
Filters (64,32) (64,32) (64,32)
Kernel Size 3.,3) 3.,3) 3,3)
Strides 2,2) 2,2) 2,2)
Encoders
Model dim. (large,small) (512,256) (512,256) (512,256)
Inp. chunk./Heads 4 4 4
Blocks (large, small) (18,12) (18,12) (18,12)
Dropout 0.1 0.1 0.1
Activation GeLU GeLU GeLU
Attention SummaryMixing SummaryMixing-lite Fastformer
cgMLP Lin. (large, small) (3072,1536) (3072,1536) (3072,1536)
cgMLP Kernel 31 31 31
Decoders
Model dim. 256 256 256
Type Transformer Transformer Transformer
CTC True True True
Heads 4 4 4
Blocks (large, small) (6,4) (6,4) 6,4)
Dropout 0.1 0.1 0.1
Activation GeLU GeLU GeLU
Vocabulary type BPE BPE BPE
Vocabulary size (nl/it/fr) 350 1000 1000
Decoding (No LM)
beam size 10 10 10
LM Weight 0.6 0.6 0.6
Temperature 1.15 1.15 1.15
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Table 6:

Parameter Branchformer Branchformer Branchformer
SummaryMixing — SummaryMixing-lite Fastformer
Optimization
Epochs (large, small) (120, 360) (120, 360) (120, 360)
GPUs 2 2 2
Batching Dynamic Dynamic Dynamic
Batch Len. 300s 300s 300s
Optimizer one AdamW AdamW AdamW
Optimizer two SGD SGD SGD
LR Scheduler no AM no AM no AM
Max. LR one (large, small) 8e-3 8e-3 (8e-3, 8e-4)
LR two (large, small) 2e-5 2e-5 (2e-5, 2e-4)
Warmup steps 25k 25k 25k
Weight Decay 0.01 0.01 0.01
CTC weight 0.3 0.3 0.3
Attention weight 0.7 0.7 0.7
Augmentations
SpecAugment True True True
Time warp window 5 5 5
Time warp mode bicubic bicubic bicubic
Freq. Masks 2 2 2
Masks width 30 30 30
Time masks 2 2 2
Masks width 40 40 40
CNN FrontEnd
Input 80 FBanks 80 FBanks 80 FBanks
Type ConvlD ConvlD ConvlD
Layers 2 2 2
Filters (64,32) (64,32) (64,32)
Kernel Size (3,3) (3,3) 3.,3)
Strides 2,2) 2,2) (2,2)
Encoders
Model dim. (large,small) (512,256) (512,256) (512,256)
Heads 4 4 4
Blocks (large, small) (18,12) (18,12) (18,12)
Dropout 0.1 0.1 0.1
Activation GeLU GeLU GeLU
Attention SummaryMixing SummaryMixing-lite Fastformer
cgMLP Lin. (large, small) (3072,1536) (3072,1536) (3072,1536)
cgMLP Kernel 31 31 31
Decoders
Model dim. 256 256 256
Type Transformer Transformer Transformer
CTC True True True
Heads 4 4 4
Blocks (large, small) (6,4) (6,4) (6,4)
Dropout 0.1 0.1 0.1
Activation GeLU GeLU GeLU
Vocabulary type BPE BPE BPE
Vocabulary size 5000 5000 5000
Decoding (No LM)
beam size 10 10 10
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Table 7:

Parameter Branchformer Branchformer Branchformer
SummaryMixing  SummaryMixing-lite Fastformer
Optimization
epochs 120 120 120
GPUs (large,small) 2/4 2/4 2/4
Batching Dynamic Dynamic Dynamic
Batch Len. (large,small) 800s/400s 800s/400s 800s/400s
Optimizer AdamW AdamW AdamW
LR Scheduler no AM no AM no AM
Max. LR Se-4 Se-4 Se-4
Warmup steps (large,small) 30k/15k 30k/15k 30k/15k
Weight Decay (large,small) Se-2/5e-6 Se-2/5e-6 Se-2/5e-6
CTC weight 0.3 0.3 0.3
Attention weight 0.7 0.7 0.7
Augmentations
SpecAugment True True True
Time warp window 5 5 5
Time warp mode bicubic bicubic bicubic
Freq. Masks 2 2 2
Masks width 30 30 30
Time masks (large,small) 7/5 7/5 7/5
Masks width 5e-2 x Utt. Len. 5e-2 x Utt. Len. 5e-2 x Utt. Len.
CNN FrontEnd
Input 80 FBanks 80 FBanks 80 FBanks
Type ConvlD ConvlD ConvlD
Layers 2 2 2
Filters (64,32) (64,32) (64,32)
Kernel Size 3,3) 3,3) 3.,3)
Strides 2,2) (2,2) 2,2)
Encoders
Model dim. (large,small) (512,256) (512,256) (512,256)
Heads 4 4 4
Blocks (large, small) (18,12) (18,12) (18,12)
Dropout 0.1 0.1 0.1
Activation GeLU GeLU GeLU
Attention SummaryMixing SummaryMixing-lite Fastformer
cgMLP Lin. (large, small) (3072,1536) (3072,1536) (3072,1536)
cgMLP Kernel 31 31 31
Decoders
Model dim. 256 256 256
Type Transformer Transformer Transformer
CTC True True True
Heads 4 4 4
Blocks (large, small) (6,4) (6,4) (6,4)
Dropout 0.1 0.1 0.1
Activation GeLU GeLU GeLU
Vocabulary type BPE BPE BPE
Vocabulary size 500 500 500
Decoding (No LM)
beam size 20 20 20
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