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ABSTRACT

Estimating individual treatment effects in clinical data is essential for understanding
how different patients uniquely respond to treatments and identifying the most ef-
fective interventions for specific patient subgroups, thereby enhancing the precision
and personalization of healthcare. However, counterfactual data are not accessible,
and the true calculation of causal effects cannot be performed at the individual
level. This paper proposes a linear algebraic framework to generate counterfac-
tual longitudinal data that exactly matches pre-treatment factual data. Because
causation travels forward in time, not in reverse, counterfactual predictability is
further strengthened by blocking causal effects from flowing back to the past, thus
limiting counterfactual dependence on the future. Using simulated LDL cholesterol
datasets, we show that our method significantly outperforms the most cited meth-
ods of counterfactual generation. We also provide a formula that can estimate the
time-varying variance of individual treatment effects, interpreted as a confidence
level in the generated counterfactuals compared to true values.

1 INTRODUCTION

Estimating individual treatment effects (ITE) within clinical data is pivotal in advancing healthcare
towards more personalized and effective treatment strategies (Simon & Perlis, 2010; Kent et al.,
2018; Hoogland et al., 2021; Berchialla et al., 2022). It allows a nuanced understanding of how
diverse patient populations uniquely respond to various treatments. This detailed insight is crucial
for pinpointing the most beneficial interventions for specific patient subgroups, thereby significantly
enhancing the precision and personalization of medical care. By tailoring treatments to patients’
individual characteristics and conditions, healthcare providers can improve treatment outcomes,
minimize adverse effects, and ultimately elevate patient satisfaction and quality of life.

However, a significant challenge in this endeavor is the inaccessibility of counterfactual
data—information on what would have happened to a patient had a different treatment been adminis-
tered. Without this data, accurately calculating the true causal effects of treatments at the individual
level remains an infeasible task (Holland, 1986). This limitation hinders our ability to make definitive
statements about the efficacy of one treatment over another for a specific patient. The absence of
counterfactual scenarios in clinical data necessitates the development of sophisticated statistical
models and methodologies (Shalit et al., 2017; Lu et al., 2018; Yoon et al., 2018) that can estimate
these effects as closely as possible, using the available factual data and making informed assumptions
about the unseen counterfactuals.

This paper proposes a generative model that can predict counterfactual data given observed longi-
tudinal data, including multiple pre-treatment measurements. The use of multiple pre-treatment
measurements in randomized clinical trials has been proposed in recent years (Van Patten et al., 2002;
Vickers, 2003; Ma & Wang, 2023). Pre-treatment data are measured multiple times before participants
enter a clinical trial for several key reasons (Friedman et al., 2015). Firstly, collecting data at various
points can help establish a more accurate baseline of the participant’s health status. By averaging these
measurements, researchers can mitigate the effects of anomalies or fluctuations in individual health
metrics, providing a clearer picture of the participant’s condition before the intervention. Secondly,
multiple pre-treatment measurements allow for the assessment of the stability or progression of a
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condition over time, offering valuable insights into the natural history of the disease being studied.
This information is crucial for interpreting the effectiveness of the treatment, as it helps to distinguish
between changes caused by the treatment and those that might have occurred naturally. Lastly, but
more importantly for our approach, these repeated measurements before intervention can improve the
precision of the study’s outcomes. By using these baseline values as covariates in analytical models,
such as ANCOVA (Frison & Pocock, 1992), researchers can control for individual differences at
the outset, thereby increasing the study’s statistical power. This approach helps make more accurate
inferences about the treatment’s effect, ensuring that the observed changes are indeed attributable to
the treatment rather than to pre-existing trends or variability in participant’s conditions.

There have been efforts to use multiple pre-treatment measurements and their inherent temporal
structure for counterfactual predictions (Abadie & Gardeazabal, 2003; Xu, 2017; Amjad et al.,
2018; Qian et al., 2021; Doudchenko et al., 2021; Shao et al., 2022). However, most do not
find counterfactual data whose pre-treatment data exactly matches the pre-treatment factual data.
This paper introduces a linear algebraic framework to create counterfactual longitudinal data that
aligns perfectly with observed pre-treatment factual data. The essence of this approach lies in
its acknowledgment of the fundamental principle that causation operates in a forward temporal
direction, not backward. This framework significantly enhances the predictability and reliability
of counterfactual outcomes by preventing causal effects from retroactively altering past data, thus
limiting the influence of future events on counterfactual scenarios. This methodological advance helps
accurately model outcomes under various treatment scenarios, enhancing causal relationship insights.
Such a framework is valuable not only in understanding clinical data but also in any field where
understanding the precise impact of interventions over time is critical, enabling a more informed
approach to decision-making based on the potential future effects of actions taken in the present.

2 METHODS

2.1 LEARNING STATIC-STATE REPRESENTATION FROM OBSERVATIONAL DATA

Our framework of counterfactual generation starts with simple assumptions.
Assumption 1 (State). A real-world unit subject to an action, treatment, or regime is represented by
a static state s ∈ RM .

Examples of a real-world unit may include a physical object, a firm, a patient, an individual person,
or a collection of objects or persons, such as a classroom or a market. The same unit exposed to
an alternative action, treatment, or regime has a different static state. For our purposes, the same
physical object or person at a different time remains the same unit.1 Instead, a unit is observed in a
time-varying form by the next assumption.
Assumption 2 (Observation). A real-world unit represented by a static state s can be observed by a
time-varying observer W(t),

x(t) = W(t)s+ η(t) (1)
where η(t) is a measurement noise.

This state-space representation model may fall under the specific category2 (explicit discrete time-
variant systems) of the general state-space representation of a linear system in the control theory
(Brogan, 1991).

The measurements made by linear observers are referred to as observational data.
Definition 2.1 (Observational Data). x(t) ∈ RD is the observational data of s at time t. D is a sum
of the number of outcomes of interest and the number of time-independent or -dependent covariates.

Suppose that we have N units’ longitudinal data, D = {x(t)
n,ωn ∈ RD|ωn ∈ {0, 1}; t =

1, · · · , T ; n = 1, · · · , N}, where xn,ωn
is observed data of the n-th unit who received a treat-

ment ωn ∈ {0, 1}. The number of units that received ωn = 0 is N0 and the number of units that
1It was assumed that the same object or person at a different time is a different unit by Imbens & Rubin

(2015); Yao et al. (2021).
2Specifically, the system matrix A(t), the input matrix B(t), and the feedthrough matrix D(t) are zero while

the output matrix C(t) is W(t).
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received ωn = 1 is N1, which sum to N = N0 + N1. ωn = 0 or ωn = 1 can mean that the n-th
unit belongs to a control or treatment group, respectively. Generally, each treatment may involve
a fixed combination of multiple medications. For example, ωn = 0 or ωn = 1 with three different
medications of {A,B,C} and T = 5 can mean that the n-th patient takes ABCBA or ABABC,
respectively, where the first different medication is found at t = 3 and then we say the intervention
time 3 is T0 = 3. If the n-th patient took treatment ωn = 0 meaning ABCBA and we obtained
its factual outcomes, what would be probable outcomes if the patient had taken treatment ωn = 1
meaning ABABC? We can regard the first T0 outcomes as the same to the observational data, but
it is challenging to predict the next outcomes. The binary treatment cases are an example of the
counterfactual generation problems that we try to solve, and it is straightforward to extend it to three
or more treatments cases.

Assumption 2 raises a representational learning problem of how to find static states from those N
units’ observational data by solving a system of T equations given by Eq. (1). In this paper, we
propose to use an ω-conditional Gaussian mixture model (GMM) as a prior probability distribution
over the static states by

p(s|ω) =
Kω∑
k=1

πk,ωN (s|µk,ω,Σk,ω) (2)

where πk,ω, µk,ω, and Σk,ω are the mixing proportion, mean vector, and covariance matrix of the
k-th mixture component, respectively, for ω ∈ {0, 1}. Eq. (1) implies a probability distribution over
x(t)-space for a given s of the form

p(x(t)|s) = (2π)−
D
2 |Ψo|−

1
2 exp

{
−1

2
(x(t) −W(t)s)TΨ−1

o (x(t) −W(t)s)

}
(3)

where Ψo ∈ RD×D is a diagonal noise covariance matrix such that η ∼ N (0,Ψo). We can estimate
those parameters of Q = {πk,ω,µk,ω,Σk,ω,W

(t),Ψo|ω ∈ {0, 1}; t = 1, · · · , T ; k = 1, · · · ,Kω}
and static states s by the EM algorithms for maximization of the complete data log-likelihood

LC =

N∑
n=1

T∑
t=1

ln p(x(t)
n,ωn

, sn,ωn
). (4)

where the n-th unit’s state sn,ωn
is regarded as missing data and given as an expectation ⟨sn,ωn

⟩ by
the EM algorithms derived in Appendix A. We refer to solving Eq. (1) by using the EM algorithms
as a static state analysis with priors of ω-conditional Gaussian mixture model or SSA-GMM.

Equation (2) is replaceable by any other model as long as it can universally approximate the underlying
data distributions, but in this paper we use a GMM as a universal approximator of the state densities.
Assumption 3 (Universal Approximator). A Gaussian mixture model is a universal approximator
of densities, in the sense that any smooth density can be approximated with any specific nonzero
amount of error by a Gaussian mixture model with enough components (Goodfellow et al., 2016).

2.2 GENERATING COUNTERFACTUAL DATA

Counterfactual thinking is imagining how things could have been different if something had changed
in the past or future. If a different action, treatment, or regime had changed the state s of a unit by
Assumption 1, the observational data would have been different through the observation of state s by
Assumption 2. To get the counterfactual data, we need to imagine that the unit had been observed
under the same-world conditions from which the observational data were obtained.
Assumption 4 (Counterfactual Thinking in State-Space Model). When a unit received treatment ω,
we obtained its observational data x

(t)
ω by observing its state sω at time t, i.e,

x(t)
ω = W(t)sω + η(t).

If the unit had received an alternative treatment ω̄, we would have obtained its observational data x(t)
ω̄

through the same observational process for its state sω̄ , i.e.,

x
(t)
ω̄ = W(t)sω̄ + η(t),

which is a counterfactual conditional statement for the unit.
3The same notation, T0, for intervention time was used in Abadie et al. (2010); Abadie (2021).
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Since effects do not precede their causes, any counterfactual data observed from different treatments
at time T0 cannot differ from the factual data prior to T0. We should ensure the independence of an
intervention made at T0 by using the first T0 observers. Given a sequence of the first T0 observers
{W(t) ∈ RD×M |D < M, 1 ≤ t ≤ T0}, we let N(T0) ∈ RM×J be an orthonormal basis for the null
space such that W(t)N(T0) = O for t ≤ T0. To ensure no backward causation (Lewis, 1979), i.e.,
x
(t)
ω = x

(t)
ω̄ for t ≤ T0, we need W(t)(sω̄ − sω) = 0, which means that the difference of two states

must lie in the null space spanned by N(T0).
Definition 2.2 (Counterfactual State). Suppose that we generate sω̄ ∼ p(s|ω̄) from Equation (2)
subject to

sω̄ − sω = N(T0)ξ (5)
with an arbitrary vector ξ ∈ RJ . Then, we call sω̄ a counterfactual state that the unit would have if it
had received the alternative treatment ω̄.

By the nature of a counterfactual state defined by Definition 2.2, counterfactual state reasoning is a
random process defined as a sequence of independent and ω̄-conditionally distributed random states
sω̄ of Definition 2.2. Generating counterfactual data under each treatment ω̄ are a deterministic
process of the observation of each random state, as described in Assumption 4. To understand Eq.
(5), let us recall:
Definition 2.3 (Affine Subspace). A subset U ⊂ RM is called an affine subspace of RM if all affine
combinations of vectors in U remain also in U:

u1, · · · ,uJ+1 ∈ U, λ1, · · · , λJ+1 ∈ R with
J+1∑
j=1

λj = 1 =⇒
J+1∑
j=1

λjuj ∈ U.

If we put uj ≡ [N(T0)]j + sω for j = 1, · · · , J and uJ+1 ≡ sω with λj ≡ ξj for j = 1, · · · , J and
λJ+1 ≡ 1−

∑J
j=1 ξj , we can find that sω̄ ∈ U from Eq. (5).

The use of a GMM in Eq. (2) enables us to directly generate a counterfactual state. For that, we need
two lemmas:
Lemma 2.1 (Conditional Distribution of a Multivariate Normal Distribution). Given a multivariate
normal distribution N (s|µ,Σ) and an affine subspace U0 = {s | s − s0 = W0ξ, ξ ∈ RJ} with
W0 ∈ RM×J and M > J , the conditional probability density function p(ξ|s ∈ U0) is also a normal
distribution and is given by N (ξ|m,C) where the conditional mean and variance are

m = (WT
0 Σ

−1W0)
−1WT

0 Σ
−1(µ− s0)

C = (WT
0 Σ

−1W0)
−1.

Lemma 2.2 (Conditional Distribution of a Mixture of Multivariate Normal Distributions). Given
a mixture of multivariate normal distributions

∑
k πkN (s|µk,Σk) with

∑
k πk = 1 and an affine

subspace U0 = {s | s − s0 = W0ξ, ξ ∈ RJ} with W0 ∈ RM×J and M > J , the conditional
probability density function p(ξ|s ∈ U0) is also a mixture of normal distributions and is given by∑

k pkN (ξ|mk,Ck) where the conditional proportions are

pk =
πkN (W0mk + s0|µk,Σk)|Ck|

1
2∑

k′ πk′N (W0mk′ + s0|µk′ ,Σk′)|Ck′ | 12

with

mk = (WT
0 Σ

−1
k W0)

−1WT
0 Σ

−1
k (µk − s0)

Ck = (WT
0 Σ

−1
k W0)

−1.

Finally, we make our main contribution to counterfactual generation:
Theorem 2.3 (Gasussian Mixture Counterfactual Generator). Let Q be a maximizer of Equation (4)
for a factual dataset D. Adding W(t)N(T0)ξn,ω̄n

to x
(t)
n,ωn generates counterfactual data of the n-th

unit,
x
(t)
n,ω̄n

= x(t)
n,ωn

+W(t)N(T0)ξn,ω̄n
(6)
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Figure 1: A conceptual view of how synthetic counterfactual longitudinal data are generated.

where ξn,ω̄n
is a random vector such that

ξn,ω̄n
∼

Kω̄n∑
k=1

pk,ω̄n
N (ξ|mk,ω̄n

,Ck,ω̄n
) (7)

with

Ck,ω̄n = (N(T0)TΣ−1
k,ω̄n

N(T0))−1 (8)

mk,ω̄n
= Ck,ω̄n

N(T0)TΣ−1
k,ω̄n

(µk,ω̄n
− ⟨sn,ωn

⟩) (9)

pk,ω̄n
=

πk,ω̄n
N (N(T0)mk,ω̄n

+ ⟨sn,ωn
⟩|µk,ω̄n

,Σk,ω̄n
)|Ck,ω̄n

| 12∑Kω̄n

k′=1 πk′,ω̄nN (N(T0)mk′,ω̄n + ⟨sn,ωn⟩|µk′,ω̄n
,Σk′,ω̄n)|Ck′,ω̄n |

1
2

. (10)

Corollary 2.3.1 (No Backward Causation). Any counterfactual data x
(t)
n,ω̄ do not deviate from the

factual data x
(t)
n,ω until the alteration of treatments at t = T0.

Figure 1 shows a conceptual summary view of counterfactual generation. Curved data manifolds
denoted by Scontrol and Streat are estimated as p(s|ω = 0) and p(s|ω = 1) of Eq. (2), respectively,
by maximizing the log-likelihood function of Eq. (4) in terms of GMM parameters – proportions
πk,ω, means µk,ω, and covariances Σk,ω. We can generate synthetic factual data using their own
GMM parameters, which is not of primary interest in this paper. For a counterfactual generation,
from the (blue) factual point on Streat, for example, we need to sample out a new (red) point
sn,ωn from a GMM of the opposite manifold Scontrol, which is annotated with "sampling along null
space" and performed by using Eq. (5). Eq. (5) includes a random variable ξ sampled from the
conditional distribution, Eq. (7). After randomly generating a counterfactual state sn,ω̄n , we can
finally obtain the time-varying counterfactual data by projecting the fixed point sn,ω̄n

onto the moving
lower-dimensional observational space spanned by W(t) or, equivalently, using Eq. (1). Here, any
generated counterfactual data are equal to the observed factual data at t ≤ T0, which is stated in
Corollary 2.3.1. After t = T0, it may deviate from the factual data.

2.3 ESTIMATING INDIVIDUALIZED TREATMENT EFFECT

In order to estimate an ITE, we need to read out the outcomes-only difference because x
(t)
n,ωn ∈ RD

includes covariates as well as outcomes of interest for the n-th unit at time t. The individualized
treatment effect (ITE) for the n-th subject after the treatment time t = T0 with ωn ∈ {0, 1} is defined
as:

ITE(t)
n = (1− 2ωn)w

T
effect(x

(t)
n,ω̄n

− x(t)
n,ωn

) (11)
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where x
(t)
n,ω̄n

is a synthetic counterfactual data of the n-th subject’s factual data, x(t)
n,ωn . weffect is a

column vector to return an ITE selecting one of the differences between factual and counterfactual
data. For example, it could be [1, 0, · · · , 0]T if the first component of x(t)

n is the outcome of interest.
Corollary 2.3.2 (Individualized Treatment Effect). Let Q be a maximizer of Equation (4) for a
factual dataset D. The individualized treatment effect through an effect operator weffect is given by

ITE(t)
n = (1− 2ωn)w

T
effectW

(t)N(T0)ξn,ω̄n
(12)

where ξn,ω̄n
is given by Eq. (7).

Remark 1. Equation (12) can be read as

ITE(t) = wT
effect ·W(t) · (1− 2ω)N(T0)ξ = (readout) ◦ (observer) ◦ (treatment effect).

Equation (12) gives a random value. We can also calculate its mean and variance.
Theorem 2.4 (Expectation-Variance of ITE). Let Q be a maximizer of Equation (4) for a factual
dataset D, the expected value and variance of individualized treatment effects for the n-th unit are
given by

E[ITE(t)
n ] = (1− 2ωn)w

T
effectW

(t)N(T0)

Kωn∑
k=1

pk,ω̄n
mk,ω̄n

 (13)

Var[ITE(t)
n ] = wT

effectW
(t)N(T0)

Kωn∑
k=1

pk,ω̄n
Ctotal

k,ω̄n

N(T0)TW(t)Tweffect (14)

where

Ctotal
k,ω̄n

= Cwithin
k,ω̄n

+Cbetween
k,ω̄n

≡ Ck,ω̄n
+ (mk,ω̄n

−mω̄n
)(mk,ω̄n

−mω̄n
)T

mω̄n
=

∑
k′

pk′,ω̄n
mk′,ω̄n

.

3 EXPERIMENTS

3.1 CALIFORNIA CIGARETTE SALES DATA

We demonstrate Corollary 2.3.1 and Theorem 2.4 by using a public example: the problem of
estimating the effect of cigarette taxation on per-capita cigarette consumption. In 1988, California
introduced the first modern-time large-scale anti-tobacco legislation in the United States. To analyze
the effect of California’s legislation after 1988, we use the annual per-capita cigarette consumption at
the state level for 38 states not adopting anti-tobacco legislation programs between 1970 and 2000.

The data set has T = 31 (years of observation), N = N0 + N1 = 38 (untreated states) + 1
(California), and D = 1. For analysis, we set (M,K0) to be (30, 2) and trained our SSA-GMM
method for only control group data of 38 untreated states. The expectation curve of the synthetic
counterfactual data of California is estimated by using Eq. (13) and is plotted in Fig. 2. We can
observe that the pretreatment synthetic California data exactly matches the factual California data
between 1970 and 1988, as described in Corollary 2.3.1. Our method is a random generation, and the
standard deviations are plotted with pink filling, which is computed using Eq. (14).

The mean counterfactual curve comes from the convex combination of K0 centers, denoted by mω̄k,
with nonnegative and sum-to-one weights, denoted by pω̄k, as described in Eq. (13). Interestingly,
using a convex combination of nonnegative and sum-to-one weights is also the original key idea of
the synthetic control method (Abadie & Gardeazabal, 2003). Accurate pretreatment reconstruction by
the synthetic control method (SC) or any SC-based method usually gives an overfitted post-treatment
result. In contrast, our post-treatment result shows no overfitting despite the pretreatment fitting and a
convex combination.

There are slight differences between our post-treatment prediction and the results of the synthetic
control method after 1994. Which is more true cannot be determined; it agrees with the Bayesian
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Figure 2: Application of SSA-GMM to California cigarette consumption data.

approach result of Amjad et al. (2018) showing that it may be possible that the synthetic control
method overestimated the effect of California’s legislation. Evaluating how much true synthetic coun-
terfactuals are in ITE estimation requires a simulated dataset, including ground truth counterfactual
data, as in the following section.

3.2 SIMULATED LDL CHOLESTEROL DATA

To evaluate our counterfactual generation method provided by Theorem 2.3, we used the simulated
LDL cholesterol dataset that had been used to evaluate the SyncTwin algorithm (Qian et al., 2021).
We aimed to estimate the LDL cholesterol-lowering effect of statins, a drug commonly prescribed to
hypercholesterolaemic patients. The dataset is created using the widely adopted pharmacology model
in the literature (Faltaos et al., 2006; Kim et al., 2011). For more information about the simulation
study, refer to the paper of Qian et al. (2021).

Table 1: Mean absolute errors (MAE) on ITE under different levels of confounding bias p0 and data
size N0. It is assumed that every unit received treatment at T0 = 25 and there are no missing data.
Estimated standard deviations are shown in parentheses. The best performer is in bold.

Method N = N0 +N1 = 200 + 200 = 400 N = N0 +N1 = 1000 + 200 = 1200

p0 = 0.1 p0 = 0.25 p0 = 0.5 p0 = 0.1 p0 = 0.25 p0 = 0.5

SSA-GMM 0.072(.004) 0.072(.004) 0.076(.004) 0.070(.004) 0.073(.004) 0.069(.004)
SyncTwin 0.308 (.037) 0.150 (.013) 0.116 (.008) 0.178 (.012) 0.106 (.006) 0.094 (.005)
SC 0.341 (.042) 0.151 (.024) 0.150 (.018) 0.231 (.033) 0.172 (.031) 0.158 (.023)
RSC 0.846 (.046) 0.357 (.021) 0.299 (.018) 0.296 (.016) 0.284 (.014) 0.292 (.015)
MC-NNM 1.160 (.060) 0.613 (.032) 0.226 (.012) 0.526 (.029) 0.177 (.010) 0.124 (.006)
CFRNet 0.888 (.076) 0.466 (.043) 0.279 (.027) 0.236 (.018) 0.139 (.008) 0.113 (.007)
CRN 0.530 (.035) 0.631 (.048) 0.343 (.023) 0.456 (.027) 0.404 (.028) 0.371 (.030)
RMSN 0.646 (.043) 0.608 (.040) 0.538 (.038) 0.720 (.053) 0.635 (.046) 0.601 (.043)
CGP 0.674 (.043) 0.619 (.039) 0.552 (.035) 0.825 (.055) 0.690 (.046) 0.602 (.038)

To explain how and why our algorithm is robust to bias, we analyzed an outlier sample, which is
shown as the black dashed line in Fig. 3, in the test dataset of ω = 1. The dashed curve is represented
by the yellow point of ⟨sn⟩. There are no similar curves in the ω = 0 group test data, and the In
our notation, the pre-treatment time steps go from t = 1 through t = 25, where T0 = 25, and the
post-treatment effects are estimated at t = 26 through t = 30. The dataset includes two covariates
and one outcome, which yields D = 3. The big difference between our approach and the SyncTwin
method is that we also use the post-treatment data of covariates and pre-treatment data of outcomes.
In contrast, SyncTwin uses only pre-treatment data of covariates and post-treatment data of outcomes.
To produce Table 1 as a reproduction of Table 2 of the SyncTwin paper (Qian et al., 2021), we trained
our model with K0 = K1 = 2 and M = 85 from a dataset of N0 = N1 = 200 and a dataset of
N0 = 1000 and N1 = 200. We also introduced confounding bias denoted by pn for the n-th patient:

7



Published as a conference paper at ICLR 2024

Figure 3: Outlier sample analysis. (upper) A conceptual view of the k-th Gaussian component and
sampling points A-I; (center) Test outcome datasets of ω = 0 group and ω = 1 group; (lower)
Outcome curves generated by SSA-GMM from the points.

pn = p0 for ωn = 0 and pn = 1 for ωn = 1. The constant p0 controls the degree of confounding
bias (smaller p0, larger bias).

Table 1 shows our method’s improved performance compared to the methods of SC (Abadie et al.,
2010), RSC (Amjad et al., 2018), MC-NNM (Athey et al., 2021), CFRNet (as a SyncTwin-combined
form of Shalit et al. (2017)), CRN (Bica et al., 2020), RMSN (Lim, 2018), CGP (Schulam & Saria,
2017), and SyncTwin. Our model is especially robust to confounding bias p0. As exemplified in
supplementary Fig. 4, counterfactual pretreatment curves generated randomly by Eq. (6) and Eq. (7)
exactly match their pretreatment factual data. Moreover, those generated counterfactual curves are
not susceptible to post-treatment overfitting. A family of synthetic control methods directly exploring
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a convex combination of real controls or transformed controls (e.g., Equation (4) of the SyncTwin
paper) does not achieve this property.

To explain how and why our algorithm is robust to bias, we analyzed an outlier sample, which
is shown as the black dashed line in Fig. 3, in the test dataset of ω = 1. The dashed curve is
represented by the yellow point of ⟨sn⟩. There are no similar curves in the ω = 0 group test data,
and the probability density along the null space is extremely thin. In our model, it is given by
N (⟨sn⟩+N(T0)ξ|µk,ω̄n

,Σk,ω̄n
) for any ξ, which is extremely thin. Most algorithms listed in Table

1 fail to generate a counterfactual to this outlier. However, the cut and normalized (or, equivalently,
conditional) probability distribution N (ξ|mk,ω̄n

,Ck,ω̄n
), as given by Lemma 2.2 and cut by the

null space (pink arrow), can generate a good counterfactual (see the subplot E). Generally, cutting a
probability density function by the null space and normalizing the cross-sectional density function
make it robust to bias. For comparison, we generated curves on the in-sample points of A-F over the
null space and the out-sample points of G-I.

Table 2: Mean absolute errors by SSA-GMM on ITE under different noise levels σ. The second row
is the same as the first row of Table 1.

Method N = N0 +N1 = 200 + 200 = 400 N = N0 +N1 = 1000 + 200 = 1200

p0 = 0.1 p0 = 0.25 p0 = 0.5 p0 = 0.1 p0 = 0.25 p0 = 0.5

σ = 0.01 0.029 (.001) 0.019 (.001) 0.097 (.002) 0.026 (.001) 0.016 (.001) 0.014 (.001)
σ = 0.1 0.072 (.004) 0.072 (.004) 0.076 (.004) 0.070 (.004) 0.073 (.004) 0.069 (.004)
σ = 0.2 0.183 (.011) 0.144 (.008) 0.146 (.008) 0.177 (.010) 0.143 (.008) 0.139 (.008)

The dataset used for producing Table 1 was created by adding additional noise N (0, σ = 0.1)
to a dataset made by solving the PK/PD model. Table 2 shows results by different noise effects
with σ = 0.01 and σ = 0.2. Our algorithm’s MAE (0.183 and 0.144) at σ = 0.2 are better than
SyncTwin’s MAE (0.308 and 0.150) at σ = 0.1, which strongly suggests that our method is robust to
additional noise.

4 CONCLUSION

We have introduced the static state analysis with a Gaussian mixture model (SSA-GMM) and its use
as a generative model for synthetic counterfactual longitudinal data. We have also demonstrated its
ability to generate a counterfactual of individual-level observed data. Importantly, it can estimate the
individual treatment effects (ITE) that change only after treatment using the synthetic counterfactual
outcomes data or the formulas of expectation and variance of ITE. Using LDL cholesterol datasets
that we simulated from a PK/PD model, we have shown that our method is robust to confounding
bias and noise, greatly outperforming the most cited methods of counterfactual generation and ITE
estimation.
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A DERIVATION OF EXPECTATION-MAXIMIZATION ALGORITHMS

A.1 STATIC STATE ANALYSIS WITH A GAUSSIAN MIXTURE MODEL

For the case of having noise η ∼ N (0,Ψo) with a diagonal matrix Ψo ∈ RD×D, Eq. (1) implies a
probability distribution over x(t)-space for a given s ∈ RM of the form

p(x(t)|s) = (2π)−
D
2 |Ψo|−

1
2 exp

{
−1

2
(x(t) −W(t)s)TΨ−1

o (x(t) −W(t)s)

}
. (15)

With a Gaussian mixture prior over s defined by

p(s) =

K∑
k=1

πkN (s|µk,Σk), (16)

we obtain the marginal distribution of x(t) in the form

p(x(t)) =

K∑
k=1

πk · |2πC(t)
k |− 1

2 exp

{
−1

2
(x(t) −W(t)µk)

TC
(t)
k

−1
(x(t) −W(t)µk)

}
, (17)

where the model covariance is C(t)
k = Ψo +W(t)ΣkW

(t)T .

However, the joint distribution of all the observations {x(1), · · · ,x(T )} is intractable with

p(x(1), · · · ,x(T )) = p(x(1), · · · ,x(T−1)|x(T ))p(x(T ))

= p(x(1), · · · ,x(T−2)|x(T−1),x(T ))p(x(T−1)|x(T ))p(x(T ))

...

Let us define x and W by

x =
[
(x(1))T (x(2))T · · · (x(T ))T

]T
∈ RTD (18)

W =
[
(W(1))T (W(2))T · · · (W(T ))T

]T
∈ R(TD)×M . (19)

Then, we obtain the conditional distribution and the marginal distribution in the form of

p(x|s) = |2πΨ|− 1
2 exp

{
−1

2
(x−Ws)TΨ−1(x−Ws)

}
(20)

p(x) =
∑
k

p(x|k)p(k)

=
∑
k

πk · |2πCk|−
1
2 exp

{
−1

2
(x−Wµk)

TC−1
k (x−Wµk)

}
. (21)

where Ck = Ψ+WΣkW
T and Ψ = IT×T ⊗Ψo ∈ R(TD)×(TD) by the Kronecker product ⊗. By

Bayes’ rule, this leads to the posterior distribution of the form

p(s|x) =
∑
k

p(s|x, k)p(k|x) =
∑
k

p(k|x) · p(x|s)p(s|k)/p(x|k)

=
∑
k

p(k|x) · |2πMk|−
1
2 exp { − 1

2

(
(s− µk)−MkW

TΨ−1(x−Wµk)
)T

×M−1
k

(
(s− µk)−MkW

TΨ−1(x−Wµk)
)
} (22)
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where Mk = (Σ−1
k +WTΨ−1W)−1.

Now suppose that we have observational data {x(t)
n } for n = 1, · · · , N and t = 1, . . . , T . We can

maximize the log-likelihood function of Eq. (4) for the joint distribution of observational data x
(t)
n

and the latent variables sn in the form of

p(xn, sn) = |2πΨ|− 1
2 exp

{
−1

2
(xn −Wsn)

TΨ−1(xn −Wsn)

}
×

K∑
k=1

πk|2πΣk|−
1
2 exp

{
−1

2
(sn − µk)

TΣ−1
k (sn − µk)

}
. (23)

By calculating the expectation values

γnk ≡ p(k|xn) (24)

⟨sn⟩k =

∫
p(s|xn, k) s |ds| (25)

⟨sn⟩ =

∫
p(s|xn) s |ds| (26)

⟨(sn − ⟨sn⟩)(sn − ⟨sn⟩)T ⟩ =
∑
k

p(k|xn)Mk, (27)

we can obtain the expectation of the complete data log-likelihood in the form of

⟨LC⟩ =

N∑
n=1

K∑
k=1

γnk{lnπk − 1

2
ln |Σk| −

1

2
tr(Σ−1

k ⟨snsTn ⟩) + µT
kΣ

−1
k ⟨sn⟩ −

1

2
µT
kΣ

−1
k µk

−1

2
ln |Ψ| − 1

2
xT
nΨ

−1xn + xT
nΨ

−1W⟨sn⟩ −
1

2
tr(WTΨ−1W⟨snsTn ⟩)}

−λ(
K∑

k=1

πk − 1) (28)

where the expectation values are given by

E-steps:

γnk =
πkN (xn|Wµk,Ck)∑
k′ πk′N (xn|Wµk′ ,Ck′)

(29)

⟨sn⟩k = µk +MkW
TΨ−1(xn −Wµk) (30)

⟨sn⟩ =
∑
k

γnk⟨sn⟩k (31)

⟨snsTn ⟩ =
∑
k

γnk
(
Mk + (⟨sn⟩k − ⟨sn⟩)(⟨sn⟩k − ⟨sn⟩)T

)
+ ⟨sn⟩⟨sn⟩T (32)

with Ck = Ψ+WΣkW
T and Mk = (Σ−1

k +WTΨ−1W)−1.

Equation (28) is maximized by the following M-step formulas
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M-steps:

πk =

∑
n γnk
N

(33)

µk =
1∑
n γnk

∑
n

γnk⟨sn⟩ (34)

Σk =
1∑
n γnk

∑
n

γnk(⟨snsTn ⟩ − µk⟨sn⟩T − ⟨sn⟩µT
k + µkµ

T
k ) (35)

W(t) =

[∑
n

x(t)
n ⟨sn⟩T

][∑
n

⟨snsTn ⟩

]−1

(36)

Ψo =
1

NT

N∑
n=1

trD
[
xnx

T
n − 2W⟨sn⟩xT

n +W⟨snsTn ⟩WT
]

(37)

where trD[Ψ] is a d× d diagonal matrix defined in this paper as returning a diagonal matrix

trDΨ ≡


ψo,11 0 0 0
0 ψo,22 0 0

0 0
. . . 0

0 0 0 ψo,DD

 (38)

with ψo,dd ≡
∑T−1

t=0 Ψ(Dt+d)(Dt+d). Notice that tr1[Ψ] is equal to the trace of Ψ.

A.2 STATIC STATE ANALYSIS WITH A CONDITIONAL GAUSSIAN MIXTURE MODEL

Now, we are ready to derive the ω-conditional EM algorithms. Eq. (28) should be rewritten as

⟨LC⟩ =

N∑
n=1

Kωn∑
k=1

γnk{lnπk,ωn − 1

2
ln |Σk,ωn | −

1

2
tr(Σ−1

k,ωn
⟨sn,ωns

T
n,ωn

⟩) + µT
k,ωn

Σ−1
k,ωn

⟨sn,ωn⟩

−1

2
µT
k,ωn

Σ−1
k,ωn

µk,ωn
− 1

2
ln |Ψ| − 1

2
xT
n,ωn

Ψ−1xn,ωn
+ xT

n,ωn
Ψ−1W⟨sn,ωn

⟩

−1

2
tr(WTΨ−1W⟨sn,ωn

sTn,ωn
⟩)} − λ(

Kωn∑
k=1

πk,ωn
− 1) (39)

where the E-steps are given as:

E-steps:

γnk =
πk,ωn

N (xn,ωn
|Wµk,ωn

,Ck,ωn
)∑Kωn

k′=1 πk′,ωnN (xn,ωn |Wµk′,ωn
,Ck′,ωn)

(40)

⟨sn,ωn⟩k = µk,ωn
+Mk,ωnW

TΨ−1(xn,ωn −Wµk,ωn
) (41)

⟨sn,ωn
⟩ =

Kωn∑
k=1

γnk⟨sn,ωn
⟩k (42)

⟨sn,ωns
T
n,ωn

⟩ =

Kωn∑
k=1

γnk
(
Mk,ωn + (⟨sn,ωn⟩k − ⟨sn,ωn⟩)(⟨sn,ωn⟩k − ⟨sn,ωn⟩)T

)
+⟨sn,ωn⟩⟨sn,ωn⟩T (43)

with Ck,ω = Ψ + WΣk,ωW
T and Mk,ω = (Σ−1

k,ω + WTΨ−1W)−1 for k = 1, · · · ,Kω with
ω ∈ {0, 1}.

Equation (39) can be maximized by
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M-steps:

πk,ω =

∑
n δωωn

γnk∑
n′ δωωn′

(44)

µk,ω =

∑
n δωωnγnk⟨sn,ωn⟩∑

n′ δωωn′γn′k
(45)

Σk,ω =

∑
n δωωn

γnk(⟨sn,ωn
sTn,ωn

⟩ − µk,ω⟨sn,ωn
⟩T − ⟨sn,ωn

⟩µT
k,ω + µk,ωµ

T
k,ω)∑

n′ δωωn′γn′k
(46)

W =

[∑
n

xn,ωn
⟨sn,ωn

⟩T
][∑

n

⟨sn,ωn
sTn,ωn

⟩

]−1

(47)

Ψo =
1

NT

N∑
n=1

trD
[
xn,ωn

xT
n,ωn

− 2W⟨sn,ωn
⟩xT

n,ωn
+W⟨sn,ωn

sTn,ωn
⟩WT

]
(48)

where δωωn is 1 for ω = ωn or 0 for ω ̸= ωn.

A.3 STATIC STATE ANALYSIS WITH INCOMPLETE DATA

Suppose that x defined by Eq. (18) is incomplete data and we separate it into

x = Γobsxobs + Γmisxmis (49)

where xobs and xmis are observed data and missing data, respectively, with dim(xobs) + dim(xmis) =

TD. We assume that Γobs and Γmis are constant matrices only having elements of 0 or 1 such that

xobs = ΓobsTx (50)

xmis = ΓmisTx (51)

or, equivalently, ΓobsTΓobs = I, ΓmisTΓmis = I, and ΓobsTΓmis = O.

The noise covariance matrix Ψ is diagonal, and the conditional distribution is separated as p(x|s) =
p(xobs|s)p(xmis|s) in the form of

p(xobs|s) = |2πΨobs|− 1
2 exp

{
−1

2
(xobs −Wobss)TΨobs−1

(xobs −Wobss)

}
(52)

p(xmis|s) = |2πΨmis|− 1
2 exp

{
−1

2
(xmis −Wmiss)TΨmis−1

(xmis −Wmiss)

}
(53)

where Ψobs = ΓobsTΨΓobs, Ψmis = ΓmisTΨΓmis, Wobs = ΓobsTW, and Wmis = ΓmisTW. With
a Gaussian mixture prior over the latent variables defined by Eq. (16), we obtain the marginal
distribution of observed data in the form of

p(xobs) =

K∑
k=1

πk · |2πCobs
k |− 1

2 exp

{
−1

2
(xobs −Wobsµk)

TCobs
k

−1
(xobs −Wobsµk)

}
(54)

where Cobs
k = Ψobj +WobjΣk,ωnW

objT . By Bayes’ rule, this leads to the posterior distribution of
the form

p(s|xobs) =
∑
k

p(k|xobs) · |2πMobs
k |− 1

2 exp

{
−1

2
(s− ⟨s⟩k)T Mobs

k

−1
(s− ⟨s⟩k)

}
(55)

where

Mobs
k = (Σ−1

k +WobsTΨobs−1
Wobs)−1 (56)

⟨s⟩k = µk +Mobs
k WobsTΨobs−1

(xobs −Wobsµk). (57)
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Equation (28) is rewritten as

⟨LC⟩ =

N∑
n=1

Kωn∑
k=1

{lnπk,ωn − 1

2
ln |Σk,ωn | −

1

2
tr(Σ−1

k,ωn
⟨sn,ωns

T
n,ωn

⟩) + µT
k,ωn

Σ−1
k,ωn

⟨sn,ωn⟩

−1

2
µT
k,ωn

Σ−1
k,ωn

µk,ωn
− 1

2
xobsT
n,ωn

Ψobs
n

−1
xobs
n,ωn

+ xobsT
n,ωn

Ψobs
n

−1
Wobs

n ⟨sn,ωn
⟩

−1

2
tr(Ψobs

n

−1
Wobs

n ⟨sn,ωn
sTn,ωn

⟩Wobs
n

T
)− 1

2
ln |Ψ|} × γnk − λ(

K∑
k=1

πk,ωn
− 1) (58)

where xobs
n,ωn

= Γobs
n

T
xn,ωn , Wobs

n = Γobs
n

T
W, Ψobs

n = Γobs
n

T
ΨΓobs

n , and Ψ = I⊗Ψo.

Equation (58) is calculated by using

E-steps:

γnk =
πk,ωnN (xobs

n,ωn
|Wobs

n µk,ωn
,Cobs

k,ωn
)∑

k′ πk′,ωnN (xobs
n,ωn

|Wobs
n µk′,ωn

,Cobs
k′,ωn

)
(59)

⟨sn,ωn
⟩k = µk,ωn

+Mobs
k,ωn

Wobs
n

T
Ψobs

n

−1
(xobs

n,ωn
−Wobs

n µk,ωn
) (60)

⟨sn,ωn
⟩ =

Kωn∑
k=1

γnk⟨sn,ωn
⟩k (61)

⟨sn,ωns
T
n,ωn

⟩ =

Kωn∑
k=1

γnk
(
Mobs

k,ωn
+ (⟨sn,ωn⟩k − ⟨sn,ωn⟩)(⟨sn,ωn⟩k − ⟨sn,ωn⟩)T

)
+⟨sn,ωn⟩⟨sn,ωn⟩T (62)

with Cobs
k,ωn

= Ψobj
n +Wobj

n Σk,ωnW
obj
n

T
and Mobs

k,ωn
= (Σ−1

k,ωn
+Wobs

n
T
Ψobs

n

−1
Wobs

n )−1.

Equation (58) is maximized by using M-steps:

πk,ω =

∑
n δωωnγnk∑
n′ δωωn′

(63)

µk,ω =

∑
n δωωn

γnk⟨sn,ωn
⟩∑

n′ δωωn′γn′k
(64)

Σk,ω =

∑
n δωωnγnk(⟨sn,ωns

T
n,ωn

⟩ − µk⟨sn,ωn⟩T − ⟨sn,ωn⟩µT
k + µkµ

T
k )∑

n′ δωωn′γn′k
(65)

wr =

[∑
n

λn,rΓ
obj
n,rx

obj
n,ωn

⟨sn,ωn
⟩T

][∑
n

λn,r⟨sn,ωn
sTn,ωn

⟩

]−1

(66)

Ψo = trD

[
N∑

n=1

Γobj
n ∆nΓ

obj
n

T

]
trD

[
N∑

n=1

Γobj
n Γobj

n

T

]−1

(67)

where wr and Γobs
n,r are the r-th rows of W and Γobs

n , respectively, and

Λn ≡ Γobs
n Γobs

n

T
= diag(λn,1, · · · , λn,r, · · · ) (68)

∆n ≡ xobj
n,ωn

xobjT
n,ωn

−Wobs
n ⟨sn,ωn

⟩xobjT
n,ωn

− xobj
n,ωn

(Wobs
n ⟨sn,ωn

⟩)T

+Wobs
n ⟨sn,ωns

T
n,ωn

⟩Wobs
n

T
. (69)
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The posterior distribution of xmis is given by

p(xmis|xobs) =

∫
|ds|p(xmis, s|xobs) =

∫
|ds|p(xmis|xobs, s)p(s|xobs)

=

∫
|ds|p(xmis|s)p(s|xobs) =

∫
|ds|p(xmis|s)

∑
k

p(k|xobs)p(s|xobs, k)

=

K∑
k=1

p(k|xobs) · |2πZmis
k |− 1

2 exp { − 1

2
(xmix − ⟨xmix⟩k)TZmis

k

−1

(xmix − ⟨xmix⟩k) } (70)

where

Mobs
k,red ≡ (WmisTΨmis−1

Wmis +Mobs
k

−1
)−1 (71)

Zmis
k = Ψmis

(
Ψmis −WmisMobs

k,redW
misT

)−1

Ψmis (72)

⟨xmix⟩k = Zmis
k Ψmis−1

WmisMobs
k,redM

obs
k

−1⟨s⟩k. (73)

We can also estimate the missing data by

⟨xmis
n,ωn

⟩k = Zmis
k,ωn

Ψmis−1
WmisMobs

k,redM
obs
k

−1⟨sn,ωn
⟩k (74)

⟨xmis
n,ωn

⟩ =

Kωn∑
k=1

γnk⟨xmis
n,ωn

⟩k (75)

⟨xmis
n,ωn

xmisT
n,ωn

⟩ =

Kωn∑
k=1

γnk
(
Zmis

k,ωn
+ (⟨xmis

n,ωn
⟩k − ⟨xmis

n,ωn
⟩)(⟨xmis

n,ωn
⟩k − ⟨xmis

n,ωn
⟩)T

)
+⟨xmis

n,ωn
⟩⟨xmis

n,ωn
⟩T . (76)
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B SUPPLEMENTARY RESULTS AND DISCUSSION

Supplementary Results.

Table 1 is a reproduced one of Table 2 of the SyncTwin paper. Table 1 itself shows our state-of-
art results across different biases and data sizes. The training/testing dataset used was added by
independent white noise ∼ N (0, 0.1). Our results of mean absolute error are at the level of 0.07,
which means the ideal performance that cannot be algorithmically more improved when we notice

(numpy.abs(np.random.randn(10000000) * 0.1)).mean() = 0.07979.

Tables 3 and 2 are also supporting that our method is robust to data missingness and noises. As
requested by the Reviewer, we performed more experiments (including the suggested MC-NMM and
CGP) under diverse treatment times and over prolonged post-treatment durations as follows:

We also tested algorithms for incomplete data of 50% missingness, and Table 3 shows that our method
is robust to data missingness. SyncTwin’s performance gradually decreases by the missingness rate
and the training data size, whereas SSA-GMM keeps its performance (compare N0 = 1000 results
of Table 1 and Table 3) and drops at around N0 = 200. The EM algorithms for incomplete data are
derived in Appendix A.

Table 3: Mean absolute errors by SSA-GMM, SyncTwin, and SC on ITE for incomplete data of 50%
missingness. The best performer is in bold.

Method N = N0 +N1 = 200 + 200 = 400 N = N0 +N1 = 1000 + 200 = 1200

p0 = 0.1 p0 = 0.25 p0 = 0.5 p0 = 0.1 p0 = 0.25 p0 = 0.5

SSA-GMM 0.327(.028) 0.232 (.016) 0.141(.009) 0.091(.006) 0.054(.004) 0.061(.004)
SyncTwin 0.351 (.038) 0.180(.014) 0.148 (.011) 0.202 (.018) 0.142 (.010) 0.113 (.007)
SC 0.441 (.044) 0.272 (.024) 0.252 (.030) 0.424 (.041) 0.298 (.028) 0.228 (0.021)

Table 4: Mean absolute errors (MAE) on ITE under different lengths of the temporal covariates (or
intervention times) T0 and data sizes N0 with no missing data and p0 = 0.5 confounding bias level.
Estimated standard deviations are shown in parentheses. The best performer is in bold.

Method N = N0 +N1 = 200 + 200 = 400 N = N0 +N1 = 1000 + 200 = 1200

T0 = 15
T = 20

T0 = 25
T = 30

T0 = 45
T = 50

T0 = 15
T = 20

T0 = 25
T = 30

T0 = 45
T = 50

SSA-GMM 0.092(.005) 0.076(.004) 0.081(.004) 0.065(.003) 0.069(.004) 0.081(.004)
SyncTwin 0.121 (.009) 0.128 (.008) 0.120 (.007) 0.097 (.005) 0.094 (.005) 0.085 (.004)
SC 0.140 (.019) 0.149 (.018) 0.138 (.021) 0.190 (.029) 0.214 (.036) 0.215 (.044)
RSC 0.348 (.023) 0.322 (.019) 0.228 (.011) ∗ 0.302 (.014) ∗
MC-NNM 0.454 (.023) 0.226 (.011) 0.159 (.008) 0.140 (.007) 0.124 (.006) 0.109 (.005)
CFRNet 0.316 (.025) 0.291 (.003) 0.143 (.008) 0.353 (.035) 0.104 (.007) 0.095 (.005)
CRN 0.307 (.022) 0.335 (.023) 0.316 (.022) 0.282 (.018) 0.563 (.035) 0.457 (.028)
RMSN 0.311 (.028) 0.334 (.027) 0.493 (.032) 0.342 (.032) 0.390 (.032) 0.557 (.036)
CGP 0.561 (.036) 0.561 (.035) 0.549 (.035) 0.578 (.037) 0.602 (.038) 0.611 (.038)
1NN 1.356 (.072) 1.614 (.078) 1.575 (.078) 1.322 (.072) 1.384 (.083) 1.744 (.098)

Pretreatment Match. In the original synthetic control method and its variant models (e.g., robust
synthetic control, SyncTwin, etc.), a synthetic control is defined as a weighted average of the units in
the donor pool (control group). The post-treatment values of the weighted average are regarded as
the counterfactual prediction of post-treatment outcomes. However, the pre-treatment values of the
weighted average are not the same as the observed pre-treatment data because the problem of finding
the optimal (nonnegative) weights is basically an over-determined linear system of equations or a
linear system of equations that has no unique solution due to nonnegativity regularization, and it only
finds an approximated solution.

Empirically, Figure 3 shows that there are gaps between the black line (factual data) and the blue line
(SCM prediction) in the pre-treatment periods, which suggests the infringement that the pre-treatment
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Table 5: Mean absolute errors by SSA-GMM, SyncTwin, and SC on ITE over prolonged
post-treatment durations with no missing data and p0 = 0.5 confounding bias level. The best
performer is in bold.

Method N = N0 +N1 = 200 + 200 = 400 N = N0 +N1 = 1000 + 200 = 1200

T0 = 25
T = 30

T0 = 25
T = 35

T0 = 25
T = 40

T0 = 25
T = 30

T0 = 25
T = 35

T0 = 25
T = 40

SSA-GMM 0.076(.004) 0.094(.005) 0.122(.005) 0.069(.004) 0.056(.003) 0.045(.002)
SyncTwin 0.120 (.008) 0.118 (.009) 0.125 (.009) 0.089 (.005) 0.093 (.005) 0.092 (.005)
SC 0.150 (.018) 0.189 (.032) 0.192 (.032) 0.158 (.023) 0.142 (.020) 0.222 (.037)

predictions (blue line) are also affected reversely by the policy in 1988. Furthermore, Figure 4 of
the SyncTwin paper also shows the infringement. The authors say the synthetic twin matches its
pre-treatment outcomes "closely," but our SSA-GMM results "exactly" match any pre-treatment
outcomes. Figure 2 of the CGP paper (Schulam & Saria, 2017) also shows the gaps between the
observed pre-treatment measurements (green points) and the model prediction (blue curves). Even
a very small difference in the pre-treatment periods usually can make a big difference in the post-
treatment prediction, and the restriction cannot be ignored. Our contribution to the self-evident
constraint is clear and not limited.

EM algorithm. When the number of mixture components is K = 1, we can ensure the unique
solution of target parameters under rotational and scaling ambiguity (i.e., WS = (WR)(R−1S) =
W′S′) that gives a global maximization of the likelihood function. However, a Gaussian mixture
model with K > 1 is not free of local maxima issues, and EM algorithms only find local optimal
solutions of the likelihood function. Our model also does not give the same unique parameters every
time it is trained. Normally, however, as we are not too concerned about non-unique solutions from
the conventional use of a Gaussian mixture model for density estimation, the authors do not think it
is a concerning issue for the generative task. Empirically, we observe that the probability of getting
some worse solutions is very low.

Linear Observers. Our method is a unique algorithm distinguished from the SCM-based framework.
SCM (synthetic control method) algorithms do find a convex combination of the control group data
to generate a synthetic control. Originally, SCM does not use linear observers like our W(t) and
does not use a latent representation of data like our state vector representation S. It is true that
SyncTwin uses a latent representation (as shown in Figure 2 of their paper), which makes it look
similar to ours, but SyncTwin also finds a convex combination in the latent representation space (as
shown by Equation 4 of their paper) like the SCM-based methods. Our method does not solve such a
combinatorial problem to generate counterfactuals. Our method is a probabilistic generative model
that can randomly generate counterfactuals from the null space (spanned by W

(T0)
⊥ ) to pretreatment

observers, which ensures the pretreatment causality restriction.

Additive intervention. This paper emphasizes the restriction on the counterfactual generation that
receiving treatment at a time cannot cause any difference reversely to pretreatment observation data.
The restriction is obeyed in this paper by assuming such linear and additive intervention. Because the
linear and additive intervention is made only in the null space to pretreatment observers (as shown
in Assumption 4 and Definition 2.2), the intervention does not cause any effect on pretreatment
observation data. If we decided to use nonlinear observers, we would have to assume a nonlinear
intervention to keep the restriction. In a bigger frame, we can consider two equally qualified options:
one is that we assume a linear observer system and employ a Gaussian mixture model, and the other
is that we assume a nonlinear observer system and use a single Gaussian model. This paper takes the
first option and, in the first option, the assumption of linear and additive intervention is reasonable.
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Figure 4: Results from a complete dataset ofN0 = 200 and p0 = 0.1. We used parameters ofK0 = 2
and M = 85. All the factual data are given from the statins treatment group.
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C PROOFS

Proof of Lemma 2.1. The cross-sectional probability density function is given as

N (s ∈ P0|µ,Σ)∫
s∈P0

N (s|µ,Σ)
=

N (W0ξ+ s0|µ,Σ)∫
ξ
N (W0ξ+ s0|µ,Σ)

=
N (W0ξ|µ− s0,Σ)

N (0|µ− s0,Σ) / N (0|WT
0 Σ

−1(µ− s0),WT
0 Σ

−1W0)

= N
(
ξ | (WT

0 Σ
−1W0)

−1WT
0 Σ

−1(µ− s0), (W
T
0 Σ

−1W0)
−1

)
.

Proof of Lemma 2.2. The cross-sectional Gaussian mixture distribution is given as∑
k πkN (s ∈ P0|µk,Σk)∫

s∈P0

∑
k′ πk′N (s|µk′ ,Σk′)

=

∑
k πkN (W0ξ+ s0|µk,Σk)∫

ξ

∑
k′ πk′N (W0ξ+ s0|µk′ ,Σk′)

=

∑
k πkN (W0ξ|µk − s0,Σk)∑

k′ πk′N (0|µk′ − s0,Σk′) / N (0|WT
0 Σ

−1
k′ (µk′ − s0),WT

0 Σ
−1
k′ W0)

=
∑
k

πkN (0|µk − s0,Σk) / N (0|WT
0 Σ

−1
k (µk − s0),W

T
0 Σ

−1
k W0)∑

k′ πk′N (0|µk′ − s0,Σk′) / N (0|WT
0 Σ

−1
k′ (µk′ − s0),WT

0 Σ
−1
k′ W0)

×

N (W0ξ|µk − s0,Σk)

πkN (0|µk − s0,Σk) / N (0|WT
0 Σ

−1
k (µk − s0),WT

0 Σ
−1
k W0)

=
∑
k

πkN (W0mk + s0|µk,Σk)|Ck|
1
2∑

k′ πk′N (W0mk′ + s0|µk′ ,Σk′)|Ck′ | 12
N (ξ|mk,Ck)

where mk = (WT
0 Σ

−1
k W0)

−1WT
0 Σ

−1
k (µk − s0) and Ck = (WT

0 Σ
−1
k W0)

−1 by applying Lemma
2.1 to each Gaussian.

Proof of Theorem 2.3. From Definitions 2.2 and 4, we have for the n-th unit with treatment ωn

x
(t)
n,ω̄n

− x(t)
n,ωn

= W(t)(sn,ω̄n
− ⟨sn,ωn

⟩)

= W(t)N(T0)ξn,ω̄n

where ξn,ω̄n is given by Lemma 2.2 at W0 = N(T0), πk = πk,ω̄n , µk = µk,ω̄n
, Σk = Σk,ω̄n ,

s0 = ⟨sn,ωn⟩.

Proof of Corollary 2.3.1. From Definitions 2.1, 2.2, and Assumption 2, we have

x(t)
ω = W(t)sω + η(t) = W(t)(sω̄ +N(T0)ξ) + η(t) = W(t)sω̄ + η(t) ≡ x

(t)
ω̄

where t = 1, · · · , T0.

Proof of Corollary 2.3.2. ITE is the difference of treated outcome from untreated outcome. From
Definitions 2.2 and 4,

ITE(t) = wT
effect

[
(2ω − 1)W(t)s+ (1− 2ω)W(t)(s+N(T0)ξ)

]
= (1− 2ω)wT

effectW
(t)N(T0)ξ

where ξ is a random variable from Lemma 2.2 by substituting W0 with N(T0) and weffect is explained
in the main paper.

Proof of Theorem 2.4. From Theorem 2.3.2 and Eq. (7),

E[ITE(t)] = (1− 2ω)wT
effectW

(t)N(T0)E[ξ]

= (1− 2ω)wT
effectW

(t)N(T0) ·
∑
k

pω̄kmω̄k,
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Cov[ξ] = E[ξξT ]− E[ξ]E[ξ]T

=
∑
k

pω̄k(Cω̄k +mω̄km
T
ω̄k)− (

∑
k

pω̄kmω̄k)(
∑
k

pω̄kmω̄k)
T

=
∑
k

pω̄k(Cω̄k + (mω̄k −
∑
k′

pω̄k′mω̄k′)(mω̄k −
∑
k′

pω̄k′mω̄k′)T )

≡
∑
k

pω̄k(C
within
ω̄k +Cbetween

ω̄k ),

and

E[(ITE(t) − E[ITE(t)])2]

= (1− 2ω)2wT
effectW

(t)N(T0) · Cov[ξ] ·N(T0)TW(t)Tweffect

= wT
effectW

(t)N(T0) ·
∑
k

pω̄k(C
within
ω̄k +Cbetween

ω̄k ) ·N(T0)TW(t)Tweffect.
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