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1. Introduction

Table 1: Data statistics.

Dataset # Proteins Avg. PTM Avg. pLDDT

GB1 8,733 0.65 78.4
Fluorescence 54,025 0.92 92.4
AAV 82,583 0.72 84.9

GB1 0 (PAE) aav 142 (pLDDT)Fluorescence 42 (pLDDT)

Fig. 1: Visualization of protein 3D structure, with
PAE and pLDDT prediction errors.

Proteins existing today have evolved over billions
of years through natural selection, undergoing con-
tinuous refinement via a vast evolutionary sieve [1].
This evolutionary process has resulted in proteins
optimized to perform diverse functions essential for
life, shaped by countless incremental mutations and
selective pressures. Inspired by these natural evolu-
tionary dynamics, contemporary protein engineer-
ing employs directed evolution methods that itera-
tively mutate a naturally occurring protein, referred
to as wild-type, to achieve desirable properties [2].
Such mutations create families of related proteins,
knownashomologous protein families, providing valu-
able insights into the relationship between sequence
variations and protein functionalities.
Recent work, notably EvolMPNN [3], has lever-

aged neural networks to effectivelymodel evolution-
ary patterns and predict mutational effects within
homologous protein families. However, EvolMPNN
considers exclusively sequence-level data, omitting
the essential 3D structural context. Protein func-
tions are inherently determined by their 3D struc-
tures; therefore, the integration of structural infor-
mation is essential for a complete understanding of
mutational effects. Protein structural insights en-
able a deeper exploration into how mutations influ-
ence protein behaviors at the molecular level.
Latest advancements in computational protein

structure prediction, particularly via deep learning
models including AlphaFold [4] and ESMFold [5],
have enabled researchers to generate accurate pro-
tein 3D structures at large scales. Despite these tech-
nological breakthroughs, the research community
still lacks extensive and systematically annotated
datasets integrating sequence information, 3D struc-
ture predictions, and functional annotations specif-
ically tailored for homologous protein families.
To bridge this gap, we introduce EVOL3D1, a large-

scale open-source dataset comprising around 150K
AlphaFold 3 [6] predicted protein 3D structures de-
rived from three extensively studied homologous
protein families [7, 8]: GB1 [9], Fluorescence [10], and
AAV [11]. Dataset statistics are provided in Table 1
and some example predicted 3D structures are illus-
trated in Figure 1. EVOL3D integrates high-quality 3D
structural predictionswith detailed functional anno-
tations, offering researchers the ability to system-
atically analyze how structural variations induced
by mutations impact protein function from an evo-
lutionary standpoint. Initial statistical assessments
validate the reliability and quality of the dataset, set-
ting the stage for future extensive analyses.

2. EVOL3D Dataset Overview
The EVOL3D dataset is explicitly designed to facil-

itate detailed investigations of themutational effects
on protein function and structure froman evolution-
ary perspective. Each protein structure within this
dataset is systematically annotated with functional
labels, allowing comprehensive analyses of the rela-
tionship between structural changes induced bymu-
tations and corresponding protein functionalities.
The dataset comprises proteins from three well-

studied homologous families:

GB1 family. The GB1 protein family [9] has
emerged as a gold standard in studying epistatic
interactions. GB1 refers to the binding domain
of protein G, an immunoglobulin-binding protein
derived from Streptococcal bacteria. Wu et al. [9]
originally measured the fitness landscape for 149
protein variants, providing a foundational resource
for examining epistatic interactions and adaptive
protein evolution.

1https://github.com/zhiqiangzhongddu/Evol3D
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(a) GB1 (b) Fluorescence (c) AAV

Fig. 2: Distribution of mean pLDDT scores for the GB1, Fluorescence, and AAV homologous protein families,
indicating structural confidence of predicted 3D structures.

Fluorescence family. The green fluorescent pro-
tein has been extensively investigated due to its im-
portance as a fluorescentmarker in biological exper-
iments. The mutational landscape of green fluores-
cent protein provides insights into how specific mu-
tations can enhance or diminish its fluorescence, of-
fering insights into underlying mutational patterns
affecting biological function [12].

Adeno-associated Virus (AAV) family. AAV capsid
proteins facilitate the integrationof genetic payloads
into target cells and hold significant potential for
gene therapy applications [13]. Bryant et al. [11] ex-
plored the mutational landscape of the VP-1 cap-
sid protein, specifically mutagenizing a 28-amino
acidwindow (positions 561–588), generating variants
with between 1 and 39mutations, and assessing their
fitness. These protein variants constitute a valuable
dataset for exploring mutational impacts relevant to
therapeutic protein engineering.

3D Structure Prediction Procedure. To enrich the
dataset with structural information, we employ Al-
phaFold 3 [5] 2, the state-of-the-art deep learning
model for protein structure prediction. Each protein
sequence is predicted using three distinct random
seeds (42, 2024, and 3407), and five structures are
generated per seed, resulting in a total of 15 predic-
tions per protein. This ensemble approach increases
reliability and robustness. This extensive predic-
tion effort required approximately 36,000 A100 GPU
hours. Statistics summarizing the dataset, including
the average predicted template modeling (PTM) and
predicted Local Distance Difference Test (pLDDT)
scores, are provided in Table 1. Representative pre-
dicted structures are visualized in Figure 1.

Preliminary Analysis. Table 1 summarizes key
statistics for each protein family, indicating that
the Fluorescence family achieves the highest av-
erage PTM (0.92) and pLDDT (92.4) scores, reflect-
ing very high confidence in its predicted structures.
GB1 exhibits relatively lower average scores (PTM:
0.65, pLDDT: 78.4), suggesting greater complexity or
variability in structural prediction within this fam-

2https://github.com/google-deepmind/alphafold3

ily. Figure 2 further highlights these distinctions,
showing narrower and higher-confidence score dis-
tributions for Fluorescence and AAV families, while
GB1 displays broader distributions indicating vari-
able prediction reliability across different proteins.
Additionally, we plot pLDDT scores for different re-
gions of sampled proteins (see Appendix ). The pre-
liminary observations confirm that the majority of
regions in all families are predicted with high confi-
dence (pLDDT >90), although certain challenging re-
gions remain, emphasizing opportunities for deeper
structural investigations.

3. FutureWork
While our preliminary analyses validate the qual-

ity and potential of EVOL3D, several avenues for fur-
ther investigation remain open:

• Evaluate and benchmark EVOL3D dataset utility
in enhancingmutational effect prediction through
downstream tasks involving machine/deep learn-
ing models.

• Cross-validationwith structures predictedby other
deep learning models and traditional computa-
tional methods to benchmark and improve struc-
tural reliability.

• Collaborations with domain experts to validate the
structural and functional predictions experimen-
tally and computationally.

• Analyze detailed correlations between structural
variations and specific functional outcomes, iden-
tifying critical structural motifs.

• Develop interactive visualization tools for easier
exploration and analysis of mutational effects on
protein structures.

• Integrate experimentally derived mutational fit-
ness data to validate and refine computational pre-
dictions.

• Utilize EVOL3D as a training dataset to develop or
improve generative models for protein design.

• Benchmark protein design strategies using
EVOL3D to evaluate mutational pathways and
structural constraints.

https://github.com/google-deepmind/alphafold3
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(a) GB1

(b) Fluorescence

(c) AAV

Fig. A1: Illustration of pLDDT scores of randomly selected proteins from GB1, Fluorescence, and AAV. Higher
scores indicate increased confidence in predicted 3D protein structures.
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(a) GB1

(b) Fluorescence

(c) AAV

Fig. A2: Illustration of pLDDT score heatmaps of randomly selected proteins fromGB1, Fluorescence, andAAV.
Higher scores indicate increased confidence in predicted 3D protein structures.
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Fig. A3: Visualization of GB1 protein 3D structure, with PAE and pLDDT prediction errors.

Fluorescence 0
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Fluorescence 42 Fluorescence 142

Fig. A4: Visualization of Fluorescence protein 3D structure, with PAE and pLDDT prediction errors.
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Fig. A5: Visualization of aav protein 3D structure, with PAE and pLDDT prediction errors.
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