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1 ANNOTATION SAMPLE
We store the text data of our ECGF dataset in JSON files. The
attached file “ECGF_samples.json” contains annotation samples
of 20 conversations, where 111 emotion utterances are annotated
with abstractive causes.

Figure 1: An annotated conversation in our ECGF dataset.

2 DETAILS OF OUR FRAMEWORK
Figure 4 illustrates the model architecture of our proposed frame-
work ObG. Both ECCap and CGM are encoder-decoder models
that take multimodal inputs and output text sequences. Detailed
descriptions are provided in Section 5 of the main paper.

3 INSTRUCTION TEMPLATES FOR LLMS
To investigate the capability of Large Language Models (LLMs) in
emotion cause generation, we utilize GPT-3.5 and Gemini under
a few-shot setting to make inferences on the test set of our ECGF
dataset, with the instruction templates shown in Figure 2 and Figure
3. Specifically, we concatenate the task prompt, three annotated
samples as demonstrations, and the input sample to be tested to-
gether and feed them to the model, instructing it to generate the
emotion cause for the given emotion in the input sample. GPT-3.5
and Gemini take only text input, to limit the input length, we retain
only the conversation context within a window range of [-5,2], i.e.,
between the five utterances preceding and the two succeeding the

target emotion utterance (as clues to the cause typically appear near
the emotion utterance [1, 2]). For Gemini-Pro, we add one keyframe
from the video of each utterance to the input and use a smaller
window range of [-3,0] to meet its maximum input limitation of 16
images. To conserve space, some context is omitted in the figures.

Given a conversation with multiple utterances, each including a speaker and the text, 
please write a sentence of no more than 40 words to describe what triggered the given 
emotion based on the context.

Task Prompt

Annotation Demonstrations
…
U8. Joey: Where do you think, Zelda?
U9. Rachel: You found my book?!
U10. Joey: Yeah I did!
U11. Rachel: Joey, what... what are you doing going into my bedroom?!
…
In U11, Rachel shows anger because: Joey went into Rachel's room and found her book.

U1. You got the clothes clean. Now that is the important part.
U2. Oh, I guess. Except everything looks like jammies now.
U3. Whoa, I am sorry. Excuse me. We had this cart.
In U3, Rachel shows anger because:

Input Sample

…

…

Figure 2: The instruction template for GPT-3.5 / Gemini to
generate emotion causes in a few-shot learning setting.

Given a conversation with multiple utterances, each including a speaker, the text, and a 
key frame from the video, please write a sentence of no more than 40 words to describe 
what triggered the given emotion based on the multimodal context.

Task Prompt

Annotation Demonstrations

Input Sample
…

…

In U5, Joy shows sadness because: 

…
U3. Joey: What the matter? 
U4. Rachel: Nothing. 
U5. Joey: What is it? Hey!
…

In U3, Rachel shows surprise because: Barry invites Rachel to come in while he has a
patient.

U1. Rachel: Barry?
U2. Barry: C’mon in.
U3. Rachel: Are you sure?
…

Figure 3: The instruction template for Gemini-Pro to gener-
ate emotion causes in a few-shot learning setting.

To highlight the benefits of the emotion-cause aware video cap-
tions generated by our trained model ECCap, we additionally lever-
age the image captioning capability of Gemini-Pro to generate plain
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Rachel: Barry? Barry: C’mon in. Rachel: Are you sure?

Why does Rachel feel surprise in U3?Q2

U3. <A3> <V3> Rachel: Are you sure?U3

<s> ques5on: \\ context:Q1 U1 U2 U3 </s> <s> question: \\ context:Q2 U1 U2 U3 </s>\\ cap5on: C

A woman opens the door and sees the
den5st working on a pa5ent’s teeth.

Barry invites Rachel to come
in while he has a patient.Predicted

Cap-on

Step 2：Multimodal Emotion Cause Generation

😲

🔥Multimodal Encoder

🔥Decoder

🔥Multimodal Encoder

🔥Decoder

Text

🔥Linear layerVision

Audio 🔥Linear layer

Step 1: Emo-on-Cause aware Video Cap-oning

What video caption suggests the emotion 
causes for Rachel’s surprise in U3?Q1

ECCap CGM

Visual
Feature

Audio
Feature

Figure 4: The model architecture of our framework ObG.

video captions and then use them to assist in emotion cause gen-
eration (the experimental results are presented in Table 5 of the
main paper). Figure 5 illustrates the instruction template. For each
sample, we input one keyframe from each utterance within the
window range of [-3,0] surrounding the emotion utterance, i.e., four
images in total, and instruct the model to output a video caption.

video caption: Several friends meet near the slot machines and talk. A man and 
a woman begin kissing.

Given several frames from a video, briefly describe the scene in sentences of no 
more than 40 words.

Task Prompt

Human-written Demonstrations

Input Sample
…

…

video caption:

Figure 5: The instruction template for Gemini-Pro to gener-
ate plain captions in a few-shot learning setting.

As mentioned in Section 6.5 of the main paper, we also explore
the effect of utterance-level captions (generating a video caption
for each utterance, different from generating a conversation-level
caption for the entire context), and conduct comparative experi-
ments. Specifically, for each utterance within the window range of
[-5, 2] around the emotion utterance, we input all the keyframes

(no more than 4 frames) from its video into Gemini-Pro to generate
an emotion-cause aware video caption. The instruction template is
shown in Figure 6. After training ECCap to obtain the utterance-
level emotion-cause aware video captions, we concatenate each
utterance with its caption and feed them into CGM for emotion
cause generation, with the input template as follows: “question:
Why does [Rachel] feel [surprise] in U[3]? context: U1. <A1> <V1>
Rachel: Barry? [caption: ...] U2....”.

(emotion utterance: dia14utt4; test utterance: dia14utt4)

emotion cause: All show anger because Chandler is smoking. 
video caption: A man lights a cigarette, and the nearby people seem unhappy.

Given several frames from a video, briefly describe the scene according to the 
emotion cause in one sentence.

Task Prompt

Human-written Demonstrations

Input Sample
…

…

(emotion utterance: dia19utt6; test utterance: dia19utt4)

emotion cause: Monica shows surprise because Phoebe nodded off. 
video caption:

Figure 6: The instruction template for Gemini-Pro to gener-
ate utterance-level emotion-cause aware video captions in a
few-shot learning setting.
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