
7 Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
[Yes]

(b) Did you describe the limitations of your work?
[Yes] Particularly with regards to non-2p0s settings, we discuss limitations interlaced
through the discussion of theoretical grounding and through discussion of our results
in 7-player and the conclusion.

(c) Did you discuss any potential negative societal impacts of your work?
[N/A] We do not expect near-term societal impacts from this work.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them?
[Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results?

[Yes]
(b) Did you include complete proofs of all theoretical results?

[Yes] In Appendix B that also refers to prior work that proves the main result we rely
on.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)?
[Yes] We release the code and the models 5.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)?
[Yes] Detailed parameters are provided in Appendix D.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)?
[Yes] Error bars are given on relevant measurements and statistics.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)?
[Yes] We report the requirements in Appendix D.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators?

[Yes]
(b) Did you mention the license of the assets?

[Yes] We specify the license of the model and code we use in appendix D. We plan to
release the code and the models under MIT license.

(c) Did you include any new assets either in the supplemental material or as a URL?
[Yes] We release the code and the models.

(d) Did you discuss whether and how consent was obtained from people whose data
you’re using/curating?
[Yes] We discuss data used in appendix F.

(e) Did you discuss whether the data you are using/curating contains personally identifi-
able information or offensive content?
[Yes] We do not use any data with personally identifiable information or offensive
content (see appendix F).

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable?
[Yes] We included the instructions given to participants in appendix F.

5https://github.com/facebookresearch/diplomacy_searchbot

13

https://github.com/facebookresearch/diplomacy_searchbot


(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable?
[N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation?
[N/A]

14



A Neural Network Architecture

In this appendix, we describe the neural network architecture used for our agents.

Figure 2: Transformer encoder (left) used in both policy proposal network (center) and value network (right).

Our model architecture is shown in Figure 2. It is essentially identical to the architecture in [11],
except that it replaces the specialized graph-convolution-based encoder with a much simpler trans-
former encoder, removes all dropout layers, and uses separate policy and value networks. Aside from
the encoder, the other aspects of the architecture are the same, notably the LSTM policy decoder,
which decodes orders through sequential attention over each successive location in the encoder out-
put to produce an action.

The input to our new encoder is also identical to that of [11], consisting of the same representation of
the current board state, previous board state, and a recent order embedding. Rather than processing
various parts of this input in two parallel trunks before combining them into a shared encoder trunk,
we take the simpler approach of concatenating all features together at the start, resulting in 146
feature channels across each of 81 board locations (75 region + 6 coasts). We pass this through a
linear layer, add pointwise a learnable per-position per-channel bias, and then pass this to a standard
transformer encoder architecture.6

In our final agents, we use (D,C) = (10, 224) although in Section 5.1 we also present results for
(D,C) = (5, 192) as well as for using a single combined network (i.e. shared encoder) for both
policy and value.

B Theoretical Correctness of Nash Value Iteration

In any 2p0s stochastic game with deterministic7 transition function f , we show the Deep Nash Value
Iteration (DNVI) procedure described in Section 3.1 applied over a candidate set of all legal actions
converges to a value function V̂ (s) that is the minimax value of each reachable state s, in the tabular
setting. In other words, the use of a value function rather than a Q function does not affect the
correctness.

To demonstrate this, we first show an equivalence between our procedure and Nash Q-learning in
2p0s games. At each step of DNVI, we update the value of V (s) using the value computed by RM;

6For example, https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoder.
html

7We believe this result holds for games with non-deterministic transitions as well, but that does not allow
for a direct reduction from Nash Q learning, so we do not provide a proof here.

15

https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoder.html
https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoder.html


since this stage game is 2p0s, RM converges to its unique minimax equilibrium value[13]. For each
(s,a),

Q(s,a) = r(f(s,a)) + V (f(s,a)),

therefore each time V is updated at state s it is equivalent to applying a Nash-Q update at all (s′,a)
for which f(s′,a) = s.

[14] proves that Nash Q-learning converges to the Q values of a Nash equilibrium for the full game
in the tabular setting under the following assumptions:

1. Every one-step game has an adversarial equilibrium and this equilibrium is used in the
update rule.

2. All states are visited an infinite number of times.

3. The learning rate α decays such that α→ 0 but
∑
α =∞.

If these assumptions are satisfied, then V (s) converges to the values of a Nash equilibrium.

Regarding assumption 1, in 2p0s all NEs are automatically adversarial since there is only one
opponent (adversarial equilibria are NEs that are additionally robust to joint deviations by oppo-
nents [14]).

Assumption 2 is satisfied as long as ∀a, P (a|s) > 0, which DNVI achieves via ε-Nash exploration
over the candidate set of all legal actions, which plays a random action with probability ε > 0. Note
that the modification we use in practice explores only actions that are likely under the current policy
proposal net.

Assumption 3 concerns the learning rate schedule, which can be set arbitrarily. In the Deep RL
setting we find in practice a fixed learning rate with the Adam [16] optimizer works well.

Thus, DNVI converges to a NE in a 2p0s stochastic game. In a 2p0s game all equilibria have
identical (minimax) values. Therefore playing a minimax policy in each stage game based on these
values is optimal.

We remind the reader that in Diplomacy the action space is too large to perform exact RM over the
entire action space, so in practice we perform DNVI on a small subset of candidate actions proposed
by the policy network and rely on Double Oracle to discover actions that should be added to this set.

C Variance Reduction in Diplomacy

We apply a simple form of variance reduction for our experiments playing with humans to help
compensate for the relatively low sample size.

As in many simultaneous-action games, not uncommonly in Diplomacy there are situations that
behave like a "matching pennies" subgame, where if player A plays action a1, player B prefers
to match it with an action b1, and if A plays action a2, player B prefers to match it with action
b2, whereas player A’s preferences are the other way around, preferring the outcomes (a1, b2) and
(a2, b1). Rock-paper-scissors-like or other kinds of simple subgames may also occur. In any of
these cases, both players should randomize their strategies to reduce exploitability. See Table 8 for
an example of a matching-pennies-like subgame.

b1 b2
a1 -1, 1 2,-2
a2 1,-1 -3, 3

Table 8: Example payoff matrix for a matching-pennies-like game with nonuniform payoffs. In each
cell, the payoff to the row player is listed first.

In such a subgame, once a player commits to playing a particular mixed strategy, then upon seeing
the opponent’s action, even without knowing the opponent’s probability of playing that action, one
can identify a significant component of variance due to the luck of randomization in one’s own
mixed strategy that can be subtracted out. For example, in the example in Table 8 above if player
A commits to a policy 60% a1 and 40% a2, then supposing player B is revealed to have chosen b2,

16



player A knows at that point that their expected value is 60% · 2 (the payoff for a1) +40% · −3 (the
payoff for a2). The deviation from the expected value due to whether player A actually samples a1
or a2 on that round is now a matter of pure luck, i.e. just zero-mean variance that can be subtracted
out.

In Diplomacy, we can apply this idea as well. When playing a game as agent i, on each turn we
record the full distribution of our approximated NE σi from which we sample the action ai that
we submit that turn. Upon observing all other agents’ actions a−i, and letting Q be the learned
approximate Q-value function of our agent, we compute:

δ(ai) = Q(s, (ai, a−i))− Ea′i∼πi
Q(s, (a′i, a−i))

δ(ai) measures how lucky we are to have chosen the specific ai that we did on that turn relative to
the expected value over all actions a′i that we could have sampled from policy σi, given the observed
actions of the other players. On each turn, we subtract this quantity from the final game win/loss
reward of 1 or 0 that we ultimately observe. Since Eaiδ(ai) = 0, doing this introduces no bias in
expectation. So letting δt be the δ(ai) value computed for turn t, andR the total reward of the game,
our final variance-adjusted result is

R−
∑
t

δt

In the event that Q is a good estimate of the true value of the state given the players’ policies, then
the δt values should be correlated with the final game outcome, so subtracting them should reduce
the variance of the outcome, particularly in a 2-player setting such as FvA Diplomacy. In practice,
we observe roughly a factor of 2 reduction in variance in informal test matches. As part of our
internal practice, we also implemented and tested and committed to the use of this form of variance
reduction prior to assembling the final human results.

D Implementation details

We report optimizations for Double Oracle we use in practice, details of the pretraining procedure,
modifications for 7p, and the hyper parameters used.

D.1 Double Oracle optimizations

We apply several modifications and approximations to DO to make it run faster in practice:

• We find a best response (line 8 of the algorithm 1) for only one player at a time. When
Np is large, evaluating Np potential best responses is more expensive than computing a
NE among the Nc candidate actions (Np × Nc value function calls versus Nc × Nc).8
Recomputing the NE cheaply ensures each best response takes into account the newest
action added by the opponent. Note, that for 7p caching is not as efficient due to large joint
action space (N7

c instead of N2
c ), but computing BR still dominates the computations cost.

• When finding a best response, we truncate the opponent’s equilibrium policy, which spans
up toNp actions, to only its k highest-probability actions for some small k and renormalize.
This allows us to compute a best response with only Nc ∗ k value function calls rather than
Nc ∗Np calls, while only introducing minimal error.

• We cap the number of iterations of DO we execute.

D.2 Pretraining

We perform a short phase of pretraining before switching to deep Nash value iteration that improves
the speed and stability of training. This phase differs from the main training phase in the following
ways:

8When querying the value network is the dominating cost, the number of iterations needed to compute a NE
is largely irrelevant because the value network results can be cached. For this reason, we consider the cost to
be roughly Nc ×Nc rather than T ×Nc ×Nc.

17



• Rather than query the policy proposal network and/or apply DO to obtain actions, we select
Nc candidate actions for each player uniformly at random among all legal actions.

• Rather than training the value network to predict the 1-step value based on the computed
equilibrium over the Nc actions, we train it to directly predict the final game outcome.

By directly training on the final game outcome, this pre-training phase initializes the value network
to a good starting point for the main training more quickly than bootstrapped value iteration. This
phase also initializes the policy proposal network, which is trained to predict the output of regret
matching on the random sampled actions, to a good high-entropy starting point - e.g. to predict
a wide range of actions, mildly biased towards actions with high value. If instead a randomly
initialized (untrained) policy proposal network were used to select actions, it may select a highly
non-uniform initial distribution of candidate actions and require a lot of training for excluded actions
to be rediscovered via DO.

D.3 Extending to 7p

We found a small number of additional implementation details were needed to handle 7-player no-
press Diplomacy that were not needed for 2-player FvA.

Firstly, exactly computing the value loss in equation 6 is not feasible because the number of possible
joint actions a′ scales with the power of the number of players, which for 7 players is too large. So
we instead approximate the 1-step value via sampling.

Similarly, during DO, when computing the expected value of potential best responses, given a certain
number of actions per opponent, computing the value exactly scales with the power of the number
of opponents, which for 6 opponents is too large. So again, we approximate by sampling.

Finally, in line with [11] we found that using Monte Carlo rollouts to compute state values improved
the play compared to using a value function alone. Therefore, we use rollouts of depth 2 in all
experiments at inference time. We do not use rollouts during training due to the computational cost.

D.4 Hyper-parameters

D.4.1 Double Oracle

We use slightly different parameters at training and inference time to speed up the data generation
for training. See table 9.

Training Inference

Pool size (Np) 1,000 10,000
Max opponent action (k) 8 20
Min value difference (ε) 0.04 0.01
Max iterations (Niters) 6 16
Pool recomputed after each iteration No Yes

Table 9: Hyper-parameter values used for Double Oracle for DORA.

D.4.2 DORA training

Details for training of FvA DORA bot are provided in table 10. We use a few additional heuristics
to facilate training that are explained below.

The training is bottlenecked by the data generation pipeline, and so we use only a few GPUs for
training, but an order of magnitude more for data generation. To make sure the training does not
overfit when the generation speed is not enough, we throttle the training when the training to gen-
eration speeds ratio is above a threshold. This number could be interpreted as a number of epochs
over a fixed buffer.

Our final FvA DORA model is trained using 192 Nvidia V100 GPUs on an internal cluster, 4 used
for the training and the rest is used for data generation. Both stages take around a week to complete.

18



We made a number of changes for 7p training compared to FvA for computational efficiency rea-
sons. Each 7p game is 4-5 times longer and each equilibrium computation requires 3 times more
operations due to the increased number of players. Moreover, the cost of double oracle also in-
creases many fold as the probability of finding a deviation for at least one player during a loop over
players increases. Therefore, for 7p DORA we add an additional pre-training stage where we train as
normal, but without DO. For speed reasons, we use a smaller transformer model for both the value
and the policy proposal nets.

FvA 7p

Learning rate 10−4

Gradient clipping 0.5
Warmup updates 10k
Batch size 1024
Buffer size 1,280,000
Max train/generation ratio 6

Regret matching iterations 256
Number of candidate actions (Nc) 50
Max candidate actions per unit - 6
Number of sampled actions (Nb) 250
Nash explore (ε) 0.1 0.1
Nash explore, S1901M 0.8 0.3
Nash explore, F1901M 0.5 0.2

Table 10: Hyper-parameter values used to train DORA agents.

D.4.3 Evaluation details

We describe parameters used for agent evaluation in table 6.

To compare against DipNet [24] we use the original model checkpoint9 and we sample from the
policy with temperature 0.5. Similarly, to compare against SearchBot [11] agent we use the released
checkpoint10 and agent configuration11. To make the comparison more fair, we used the same search
parameters for DORA and HumanDNVI-NPU as for SearchBot (see table 11).

Number candidate actions (Nc) 50
Max candidate actions per unit 3.5
Number CFR iterations 256
Policy sampling temperature for rollouts 0.75
Policy sampling top-p 0.95
Rollout length, move phases 2

Table 11: Parameters used for all 7p agents with search in table 6 in the main text.

D.4.4 Distributed training and data generation

We use PyTorch [25] for distributed data parallel training and a custom framework for distributed
data generation. We run several Python processes in parallel across multiple machines:

• Training processes. All training processes run on one machine. Each is assigned a sep-
arate GPU and has a separate replay buffer from which it computes gradients, which are
then broadcast and synchronized and across processes. One training process is also respon-
sible for publishing new checkpoints for data generation workers to use and for collecting
training statistics.

9DipNet SL from https://github.com/diplomacy/research. MIT License
10blueprint from https://github.com/facebookresearch/diplomacy_searchbot/releases/tag/

1.0. MIT License
11https://github.com/facebookresearch/diplomacy_searchbot/blob/master/conf/common/

agents/searchbot_02_fastbot.prototxt

19

https://github.com/diplomacy/research
https://github.com/facebookresearch/diplomacy_searchbot/releases/tag/1.0
https://github.com/facebookresearch/diplomacy_searchbot/releases/tag/1.0
https://github.com/facebookresearch/diplomacy_searchbot/blob/master/conf/common/agents/searchbot_02_fastbot.prototxt
https://github.com/facebookresearch/diplomacy_searchbot/blob/master/conf/common/agents/searchbot_02_fastbot.prototxt


• Data collection and rollout processes. Each machine other than the training machine has
a data collection process and many rollout processes. The data collection process gathers
rollouts from rollout processes on the same machine via shared memory and sends them to
the replay buffers via RPC. Rollout processes run the data generation loop. Each iteration
of the loop consists of reading a new model checkpoint if available, stepping the game till
the end, and sending results to the collection process. We run up to 8 rollout processes per
GPU. Each process has its own copy of both the model and the environment.

• Evaluation processes run one-vs-six games of the current model checkpoint versus some
fixed agent and collect running winrates for monitoring the run.

• The metric collection process receives metrics from other processes via RPC, aggregates
and saves them.

Our design was optimized to work on 8-GPU machines with 10 CPUs per GPU, such as Nvidia
DGX-1 machines. Our main DORA run used 192 GPUs total, across 24 machines. In such a setting
our setup achieves over 90% average utilization for both GPU and CPU.

E Adapting Deep Nash Value Iteration to Learn Best Responses

As mentioned in Section 4.3, our best exploiter agents resulted from adapting our main deep Nash
value iteration to learn a best response instead of an equilibrium.

To do so, we begin with the policy and value models of the exploited agent and resume deep Nash
value iteration, except with a simple modification. On each turn of the game we first invoke the
exploited agent to precompute its policy. Then the exploiting agent, when performing Nash learning,
only performs RM for itself while the opponent samples only the precomputed policy. All other
aspects of the architecture are identical.

Whereas normal RM approximates an NE, one-sided RM instead approximates a best response.
With this one change, deep Nash value iteration, rather than training the networks to learn equi-
librium policy and values, trains them to learn best-response exploitation and expected state-values
assuming future best-response exploitation.

This second approach resembles the Sampled Best Response (SBR) exploiter from [3], in that both
methods use a policy model to sample candidate actions for the exploiter, and then approximate a
1-ply best response by directly maximizing against the exploited-agent’s known policy with respect
to a value model. However, unlike SBR, which uses policy and value models obtained via other
methods such as supervised learning that may not be optimized for exploitation, our approach di-
rectly trains the policy to sample better exploitative candidate actions, and trains the value to also
prefer states where exploitability on future turns will be high.

At test time, our exploiter agent takes the average of 3 samples of the exploited agent’s reported
average policy instead of only one to get a better estimate, since due to sampling noise or multiple
equilibria, regret matching will sometimes return different final average policies. The exploited
agent in test itself acts according to a 4th entirely independent sample, to ensure the exploiter can
only optimize against the average and not the exact seed.

F Human data

To conduct human experiments we informally reached out to top FvA Diplomacy players with a
proposal to help with our research by playing against our agent.

The message contained the following instructions:

Hi [Person],

I’m AUTHORNAME, one of the developers of BOTNAME. We’ve put a new version
of the bot online recently that we think might be superhuman, and we’re
hoping to do some testing against top humans to measure whether that’s the
case.

20



Would you be interested in playing 10 games against the bot? You’d be
able to play at your own pace. You’re also welcome to play against the bot
as many times as you’d like as practice before starting the "real" matches.

For the real matches, you could call them something like "[Person] vs
BOTNAME 1", or something along those lines. You can launch them just like
a normal game. We just ask that you not cancel any games and only put in a
draw if it’s clearly a stalemate.

These results (aggregated with other top players) would go into an academic
paper. We could either use your real name or your username, or just report
your FvA GhostRating, whichever you prefer.

Among the players that we contacted, 5 played matches against our bot. Those players were ranked
1st, 8th, 16th, 22nd, and 29th in FvA among all players on webdiplomacy.net according to the
Ghost-Ratings [2] ranking system. None of the individual players had a positive win rate against the
bot, though no single player played enough games against the bot to measure individual performance
with statistical significance.

We did not collect any information regarding the games besides player’s actions in the games played.
Thus, the data does not contain any personally identifiable information or offensive content.

G Action Exploration Example

We go into more detail regarding the example provided in Figure 1 that motivated our double oracle
approach. This is an example of a situation from a real game played by our agent (France, blue) vs
a human (Austria, red). The agent has an army in Tyr next to the SCs of the opponent. None of the
actions that the agent considers for red could dislodge the army and block its retreat further east.
Therefore, the estimated state value for blue in this position is high and one of the possible expected
outcome is shown in Figure 3.

However, human players were quick to realize that there are two actions that can dislodge the blue
army and force it to retreat to Pie (Figure 4, left). Moreover, as the agent blocked its own retreat
by moving Mar to Pie, the agent had to disband its army in Tyr (Figure 4, right). Once the optimal
action for red is added to the set of candidate actions, the probability of blue moving Mar to Pie and
the expected score for blue in this state go down.

There are more than 4 million valid actions12 or around 400,000 valid coordinated actions. While it
is still computationally feasible to run exact DO at inference time for this number of actions, adding
even one more unit makes DO search infeasible. Moreover, running DO at inference time only is
not sufficient, as during optimal play an agent should know that this state has low value and so the
actions leading to this state should be avoided. Since the number of actions one can realistically
evaluate during training is around 1,000, we have less than a 1% chance of finding a BR action at
training time. Our approximate local modification approach allows us to dramatically reduce the
search size and find good approximate BRs with relatively few actions.

Our final DORA agent finds red’s action from Figure 4 without using inference time DO, as the
action is learned by the policy proposal network.

12Product of possible orders per location: MUN (17), SEV (6), VEN (8), VIE (18), TRI (18), BUD (16).
Unit in SEV is not shown on the map.

21

webdiplomacy.net


Figure 3: The most probable actions for both players as predicted by the agent. The left figure shows
the actions and the right figure shows the state after the actions are executed. France’s army escapes
to MUN.

Figure 4: The most probable action for France (blue) as predicted by the agent vs the best action for
Austria (red) that the policy proposal network failed to find on its own. The left figure shows the
actions and the right figure shows the state after the actions are executed. France’s army is crushed
and disbanded.

H Additional Results for 7-player No-Press Diplomacy

In this section we include more preliminary results exploring how initialization and training affect
convergence to different equilibria for HumanDNVI-NPU.

Namely, we show in Table 12 how performance versus human-like agents changes as self-play
training progresses as well as the effect of freezing the action proposal network ("no policy update",
"NPU"). As a reminder, HumanDNVI-NPU uses a training procedure identical to DORA, except a
fixed blueprint from supervised learning on human games is used to propose actions throughout the
training and hence no DO is used. The policy proposal net is still trained, but is only used at test
time. HumanDNVI is one step closer to DORA: it does update the policy proposal network during
training on rollout workers, but does not use DO. In general, both early stopping and NPU help the
agent converge towards a strategy more effective against human-like models.

Additionally, we evaluated HumanDNVI-NPU-BP-Policy, an agent that uses the value function
from HumanDNVI-NPU, but the human blueprint policy proposal net during both training and test
time. At all times this model performs worse than HumanDNVI-NPU. This suggests that a trained
policy does increase the strength of the agent, even though using that policy within the RL loop
makes the training too-easily diverge away from human-compatible strategies or equilibria. More
research in the future may find better techniques to get the best of both worlds.

Finally, Table 13 provides additional data on the impact of DO for 7-player Diplomacy. We trained
an agent from scratch for 300k updates without DO and then trained for 60k updates more with DO.
This finetuning doubles the score versus SearchBot and also greatly increases it versus Dipnet.

22



1x Agent # training updates vs 6x DipNet [24] vs 6x SearchBot [11]
DipNet [24] - - 0.8%±0.4%
Transf - 23.4%±2.2% 2.1%±0.7%
SearchBot [11] - 49.4%±2.6% -
Transf+Search - 48.1%±2.6% 13.9%±1.7%

DORA 600k 22.8%±2.2% 11.0%±1.5%

HumanDNVI 100k 30.6%±2.4% 20.5%±2.0%
HumanDNVI 300k 25.3%±2.3% 18.6%±2.0%

HumanDNVI-NPU 50k 45.6%±2.6% 36.3%±2.4%
HumanDNVI-NPU 100k 41.4%±2.5% 34.3%±2.3%
HumanDNVI-NPU 300k 35.9%±2.6% 28.4%±2.3%

HumanDNVI-NPU-BP-Policy 50k - 25.7%±2.1%
HumanDNVI-NPU-BP-Policy 100k - 25.0%±2.1%
HumanDNVI-NPU-BP-Policy 300k - 22.9%±2.0%

Table 12: SoS scores of various agents playing against 6 copies of another agent. The ± shows one standard
error. Note that equal performance is 1/7 ≈ 14.3%. All our agents are based on TransformerEnc 5x192.

1x Agent # training updates vs 6x DipNet [24] vs 6x SearchBot [11]
ScratchDNVI 300k 13.6%±1.8% 3.5%±0.9%
+finetune with DO +60k 21.9%±2.2% 8.0%±1.4%

Table 13: Effect of using DO for training from scratch. Even training for a small fraction of time with DO
increases the strength of an agent by a significant margin.

23


