
A Pure-DP Learners

In this section we prove Theorem 2 and Theorem 3. First we show how to go from probabilistic
representation to pseudo-global stability (Theorem 26) using correlated sampling. Next we show
how to go from pseudo-global stability to a pure-DP learner using the histogram algorithm in the
local (Theorem 29) model and the central (Theorem 30) model.

A.1 Pseudo-Globally Stable Learner from Probabilistic Representation

Theorem 26. Let ↵,� 2 R>0 and C be any concept class with finite PRDim(C). Then, there exists

a learner A that is m-sample (↵,�)-accurate and (1 � �, 1 � �)-pseudo-globally stable, where

m = O�

�
PRDim↵/2,�/2(C)3/↵2

�
. Furthermore, the public randomness specifies H 2 supp(H)

such that the output of A belongs to H .

Before we prove Theorem 26, we note that this along with Lemma 10 gives the following corollary.
Corollary 27. Let ↵,� 2 R>0 and C be any concept class with finite PRDim(C). Then, there

exists a learner A that is m-sample (↵,�)-accurate and (1 � �, 1 � �)-pseudo-globally stable,

where m = Õ�

�
PRDim(C)3/↵2

�
. Furthermore, the public randomness specifies H 2 supp(H)

such that the output of A belongs to H .

Proof of Theorem 26. For brevity, let d := PRDim↵/2,�/2(C) and � = 2(d+log(1/�)+10)
↵ . Let CS be

a correlated sampling strategy for 2X and let R0 be the (public) randomness it uses, as in Theorem 8
and let H be an (↵/2,�/2)-probabilistic representation of C such that size(H) = d.

The public randomness used in our learner A is split into two parts: r0 ⇠ R
0 and H ⇠ H. Algo-

rithm 3 presents the pseudo-globally stable learner A.

Algorithm 3 Pseudo-Globally Stable Learner A.

Draw m := 106�2d log(1/�)
�4 samples from D; let S denote the multiset of these samples

Let P̂H,S denote the probability distribution on �2X where

P̂H,S(h) =

(
exp(��·errS(h))P

h02H exp(��·errS(h0)) h 2 H,

0 otherwise.

Output CS(P̂H,S ; r0)

We remark that the last property in the theorem statement holds simply because H is part of the
public randomness and A always outputs a hypothesis that belongs to H .

To prove the pseudo-global stability and accuracy of the learner, we introduce additional notation:
Let PH denote the probability distribution on �2X where

PH(h) =

(
exp(��·errD(h))P

h02H exp(��·errD(h0)) h 2 H,

0 otherwise.

In other words, PH is the distributional version of (the empirical) P̂H,S .

(Pseudo-Global Stability Analysis) To show (1 � �, 1 � �)-pseudo-global stability, we start by
bounding the total variation distance between PH and P̂H,S .

Lemma 28. For a fixed H 2 supp(H), we have

Pr
S⇠Dm

[dtv(PH , P̂H,S) �/10] � 1� �2/10. (3)

Proof of Lemma 28. By the Hoeffding inequality, for each h 2 H, we have PrS⇠Dm [| errD(h) �

errS(h)| 10
p
d log(1/�)/m] �2

10·2d . By a union bound, with probability 1 � �2/10 we have

14

| errD(h)� errS(h)| 10
p
d log(1/�)/m for all h 2 H . When this holds, we have

dtv(PH , P̂H,S) =
X

h2h

PH(h) ·max

(
0,

P̂H,S(h)

PH(h)
� 1

!)

X

h2h

PH(h) ·
⇣
exp

⇣
� · 20

p
d log(1/�)/m

⌘
� 1
⌘

 exp
⇣
� · 20

p
d log(1/�)/m

⌘
� 1

 40�
p

d log(1/�)/m

(From our choice of m) �2/10.

Let h(r0,H) = CS(PH ; r0). Recall from the guarantee of the correlated sampling algorithm that

Pr
r0⇠R0

[CS(P̂H,S ; r
0) 6= h(r0,H)] 2 · dtv(PH , P̂H,S).

Combining the above inequality with (3), for any fix H 2 supp(H), we have

Pr
r0⇠R0

Pr
S⇠Dm

[A(S) 6= h(r0,H)] Edtv [2 · dtv(PH , P̂H,S)] 2�2/5 < �2.

From this, we can conclude that

Pr
r0⇠R0

h
Pr

S⇠Dm
[A(S) = h(r0,H)] � 1� �

i
� 1� �,

for all H 2 supp(H).

(Accuracy Analysis) First, recall from the definition of (↵/2,�/2)-probabilistic representation of
C, with probability 1� �/2 over H ⇠ H, we have

9h⇤
2 H, errD(h

⇤) ↵/2. (4)
When this holds, we can analyze as in [HT10] for the accuracy of the exponential mechanism. More
formally, from the marginal correctness of the correlated sampling algorithm, we have

Pr
r0⇠R0

[errD(hr0,H) > ↵] = Pr
h⇠PH

[errD(h) > ↵]

=

P
h2H

errD(h)>↵
exp(�� · errD(h))

P
h02H exp(�� · errD(h0))

|H| · exp(�� · ↵)

exp(�� · errD(h⇤))

(From (4)) 2d · exp(�� · ↵/2)

(From our choice of �) �/2.

Combining the above inequality with the fact that (4) holds with probability at least 1� �/2,
Pr

r0⇠R0,H⇠H

[errD(hr0,H) > ↵] � 1� �,

which concludes our proof.

A.2 From Pseudo-Globally Stable Learner to Pure-DP Learner in the Local Model

In this section we prove Theorem 29, which allows us to convert any pseudo-globally stable learner
to a pure-DP learner in the local model. Combining this and Corollary 27 yields Theorem 2.
Theorem 29. Let ↵,� 2 (0, 0.1) and C a concept class. Suppose that there exists a learner

A that is m-sample (↵,�/3)-accurate and (0.9, 1 � �/3)-pseudo-globally stable. Furthermore,

suppose that each public randomness r of A specifies a hypothesis class Hr of size at most d such

that A outputs (on that public randomness) always belong to Hr. Then, for any " 2 (0, 1), there

exists an "-DP (↵,�)-accurate learner in the (public randomness) local model for C that requires

n = O
⇣

d+log(1/�)
"2

⌘
users where each user has m samples. Moreover, the running time of the

learner is poly(time(A), n, d).

15

Proof. Let n = K (d+ log(1/�)) /"2 where K is a sufficiently large constant. Let r denote the
public randomness shared between the users. Algorithm 4 presents our pure-DP learner.

Algorithm 4 Pure-DP Learner in the Local Model.
User i draws m samples Si ⇠ D

m

User i runs A(Si; r) to obtain hypothesis hi 2 Hr

Run the "-DP selection algorithm in the local model from Lemma 13, where U = Hr and user i’s
item is hi.
Return the output h⇤ from the previous step

It is obvious to see that the algorithm is "-DP in the local model. We will now analyze its accuracy.
First, from definition of pseudo-global stability and a union bound, with probability 1 � 2�/3 over
r ⇠ R there exists hr such that errD(hr) ↵, and PrS⇠Dm [A(S; r) = hr] � 0.9. Conditioned on
this, we can use the Hoeffding inequality to conclude that, with probability 1� �/6,

chr � 0.8. (5)

Conditioned on (5), we can use Lemma 13 to guarantee that ch⇤ � maxh22X ch � 0.1n with
probability at least 1 � �/6 (when K is sufficiently large); when this is the case, the algorithm
outputs h⇤ = hr. Hence, applying a union bound (over this and (5)), we can conclude that the
algorithm outputs a hypothesis with error at most ↵ with respect to D as desired.

A.3 From Pseudo-Globally Stable Learner to Pure-DP Learner in the Central Model

We next prove the following result, which is similar to Theorem 29 except that we now work in the
central model and achieve a slightly better bound, i.e., the dependency of the number of users on "
is 1/" instead of 1/"2. Plugging Theorem 29 into Corollary 27, we get Theorem 3.
Theorem 30. Let ↵,� 2 (0, 0.1) and C a concept class. Suppose that there exists a learner A that

is m-sample (↵,�/3)-accurate and (0.9, 1 � �/3)-pseudo-globally stable. Furthermore, suppose

that each public randomness r of A specifies a hypothesis class Hr of size at most d such that A
outputs (on that public randomness) always belong to Hr. Then, for any " 2 (0, 1), there exists an

"-DP (↵,�)-accurate learner in the central model for C that requires n = O
⇣

d+log(1/�)
"

⌘
users

where each user has m samples. Moreover, the running time of the learner is poly(time(A), n, d).

The proof of Theorem 30 is essentially the same as that of Theorem 29, except that we are using the
histogram algorithm in the central model (Lemma 12) instead of in the local model (Lemma 13).

B Efficient Reduction for SQ Algorithms

This section is devoted to the proof of Theorem 5. To understand the intuition behind the proof,
observe that our algorithms from the previous section are inefficient because they have to estimate
a certain probability distribution over the set of possible output hypotheses (on which a correlating
sampling is then applied); this set can be large, resulting in the inefficiency. To overcome this, we
observe that in the SQ model our job is now to simply produce a single number—the output of
the oracle—which is then returned back to A. Since it is a single number (and can have error as
large as ⌧), we can quite easily estimate its value and use correlated sampling to round it to some
nearby number. By doing this for every oracle call from A, we can obtain a pseudo-globally stable
algorithm, which can then be turned into user-level DP algorithms using Theorems 25, 29 and 30.

B.1 From SQ Algorithms to Pseudo-Globally Stable Learners

We recall the definition of statistical queries [Kea98].
Definition 31 (Statistical Query Oracle [Kea98]). For a given distribution D and accuracy pa-

rameter ⌧ > 0, a statistical query (SQ) STATD(⌧) is an oracle that, when given a function

� : supp(D)! [�1, 1], outputs some number o such that |o� Ez⇠D[�(z)]| ⌧ .

16

For simplicity, we only present the proof for the case where A is deterministic. The randomized case
can be handled similarly, by additionally using public randomness as A’s private randomness.
Lemma 32. Let C be any concept class, and suppose that there exists an algorithm A that can

↵-learn C using q STATD(⌧) queries. Then, there exists a learner A0
that is m-sample (↵,�)-

accurate (1� �, 1� �)-pseudo-globally stable, where m = Õ�

�
q3/⌧2

�
. Furthermore, the running

time of A0
is at most poly(time(A), 1/⌧, 1/�).

Plugging Lemma 32 into Theorems 25, 29 and 30 implies Theorem 5.

Proof of Lemma 32. Let I = d3/⌧e, ⌦ = {0, 1/I, . . . , (I � 1)/I, 1} and m0 = 106 ·
q2

�2⌧2 ·

log
⇣

q2

�4⌧2

⌘
. Let CS with randomness R0 be the correlated sampling strategy for ⌦ given in Theo-

rem 8. Let R = (R0)⌦q .

For r = (r01, . . . , r
0

q) ⇠ R, we simulate the oracle STATD(⌧) as follows:

Algorithm 5 Pseudo-Globally Stable Learner from SQ.
for the ith query �i to the SQ oracle do

Draw m0 samples Si ⇠ D
m0

ûi
1

m0s

P
z2Si

�i(z)

Let P̂i denote the probability distribution on ⌦ where

P̂i(`/I) =

8
<

:

ûi � bûic if ` = bûic+ 1,
1� (ûi � bûic) if ` = bûic,
0 otherwise.

Output CS(P̂i; r0i)

Let A0 denote the learner that runs A using the above oracle simulation. It worth keeping in mind
that, when A is adaptive, P̂i depends on all of S1, r01, . . . , Si�1, r0i�1, Si; however, we do note write
this explicitly for notational ease.

Now, consider the “distributional” runs of the algorithm A where the oracle is as defined above
except the “empirical” ûi is replaced by the “distributional” ui := Ez⇠D[�i(z)], and similarly P̂i is
replaced by Pi where

Pi(`/I) =

8
<

:

ui � buic if ` = buic+ 1,
1� (ui � buic) if ` = buic,
0 otherwise,

and the output of the “distributional” oracle is now CS(Pi; r0i). Let hr denote the output of the
learner A when using this “distributional” oracle. Notice that these outputs depend only on the
distribution D and the randomness r.

Let Ei denote the event that the output of oracle for the ith query is the same in the two cases. We
will show that

Pr
Si,r0i

[Ei | Ei�1, . . . ,E1] � 1� �2/q. (6)

Before we prove (6), let us first explain why it implies our proof. By a union bound, (6) implies that,
with probability 1� �2 (over S1, . . . , Sq, r), the “empirical” version of the oracle answers the same
q queries as the “distributional” version, meaning that A will return the same output in the former
as in the latter; more formally, we have

Pr
r⇠R,S1,...,Sm

[A0(S1, . . . , Sm; r) = hr] � 1� �2.

Employing Markov’s inequality, we have

Pr
r⇠R

Pr

S1,...,Sm

[A0(S1, . . . , Sm; r) = hr] � 1� �

�
� 1� �.

17

In other words, the algorithm is (1 � �, 1 � �)-pseudo-globally stable as desired. Furthermore,
observe that the answer of the distributional oracle is always within ⌫ of the true answer; as a result,
the accuracy guarantee of A also implies the accuracy of A0.

We now turn our attention to proving (6). Conditioned on Ei�1, . . . ,E1, A issues the same ith
query �i to both the empirical and the distributional versions of the oracle. From standard con-
centration inequality, with probability 1 � �2

3q , we have |ui � ûi|
�2

3qI ; the latter implies

dtv(Pi, P̂i)
�2

3q . Now, using the correlated sampling guarantee (Theorem 8) when this occurs,

we have Prr0i [CS(Pi; r0i) 6= CS(P̂i; r0i)]
2�2

3q . Applying a union bound then implies (6).

B.2 Implications

While Theorem 5 may be applied to any of the many known SQ algorithms, we highlight two
applications: decision lists (cf. [Riv87]6 and for definition) and linear separators over {0, 1}d. Both
classes are known to have efficient SQ algorithms [Kea98, DV08]. As a result, we obtain:
Corollary 33. There exist "-DP (↵,�)-accurate learners for decision lists and linear separators in

the (public randomness) non-interactive local model of DP with O
⇣

poly(d)+log(1/�)
"2

⌘
users, where

each user has poly
⇣

d
�↵

⌘
samples. Moreover, these learners run in time poly(d, 1/↵, 1/�).

This result is particularly interesting because our algorithm is non-interactive meaning that the users
all just send the messages to the analyzer in one round. On the other hand, Daniely and Feld-
man [DF19] recently showed that in the item-level setting any non-interactive local DP learner re-
quires exponential number of samples. This demonstrates the power of user-level DP learning in
overcoming the non-interactivity barrier.

C Lower Bounds

In this section we prove a lower bound (Lemma 4) on the number of users required in user-level
private learning. The proof is essentially identical to that of [BNS19a] for the item-level setting.

We will need the following well-known bound often referred to as “group privacy”:
Lemma 34 (Group Privacy [DR14]). Let A be any (", �)-DP algorithm and O be any subset of

outputs. Suppose that D,D0
are two datasets such that we can transform one to another by a

sequence of at most k addition/removal of users. Then, we have

Pr[A(D) 2 S] ek" · Pr[A(D0) 2 S] +
ek" � 1

e" � 1
· �.

Proof of Lemma 4. We will prove the contrapositive. Suppose that there exists an (", �)-DP
(↵, 1/2)-accurate learner A for the class C that requires only n 0.01 log(1/�)/" users and each
user has m examples. We can construct a probabilistic representation H for C as follows (where H

denotes the probability of the output H):

Algorithm 6 Constructing a Probabilistic Representation.

H ;
for T := 100dexp("n)e times do

Run A on the empty set (with no users) and add its output to H
Output H

From the construction, the size of H is at most log T = O("n) as desired.

6Note that what is commonly called decision lists (DL) today is called 1-DL by Rivest [Riv87], who also
studied the generalization k-DL where each term in the list can be a k-conjunction. The results listed here also
apply to k-DL but d will be replaced by d

k.

18

To see that, H is an (↵, 1/4)-probabilistic representation of C, consider any distribution D; let
G := {f | errD(f) ↵}. From the guarantee of the learner, there must be sample sets S1, . . . , Sm

such that Pr[A(S1, . . . , Sm) 2 G] � 1/2. Applying Lemma 34, we have

Pr[A(;) 2 G] �
1

en"
·

✓
1

2
�

en" � 1

e" � 1
· �

◆
�

10

T
.

Since we are running the learner T times, the probability that at least one of them belongs to H is at
least 0.99. Thus, H is an (↵, 0.01)-probabilistic representation of C.

D Extension to Shuffle DP

In this section, we extend Theorem 1 to the shuffle model of DP, as stated below.
Theorem 35. Let ↵,� 2 (0, 0.1), and C be any concept class with finite LDim(C) = d. Then,

for any ", � 2 (0, 1), there exists an (", �)-shuffle-DP (↵,�)-accurate learner for C that requires

O (log(1/(��))/") users where each user has Õ�

�
(d/↵)O(1)

�
samples.

Recall that in the shuffle DP model [BEM+17, EFM+19, CSU+19], each user can produce a set
of messages. The messages from all users are then randomly permuted together before being sent
to the analyzer. Our goal is only to ensure that the shuffled messages satisfy (", �)-DP; when this
holds, we say that the algorithm is (", �)-shuffle-DP. Similar to our result in the local model, here
we assume that the users have access to shared (but not necessarily secret) randomness.

The only ingredient in the proof of Theorem 35 that is specific to the central model is the DP
selection algorithm (Lemma 11). Hence, it suffices to prove a shuffle-DP selection algorithm with a
similar guarantee, stated below.
Lemma 36. For any ", � 2 (0, 1) and � 2 (0, 0.1), there is an (", �)-shuffle-DP

(O(log(1/(��))/"),�)-accurate algorithm for the selection problem.

We note that the above guarantee, unlike that of Lemma 11, does not have � = 0. However, this is
just another “bad” event that can be included in the union bound.

In fact, our algorithm also works with for the histogram problem, where the setting is the same
as selection except that we would like to output c̃u for every u 2 U and the error is defined as
maxu2U |c̃u � cu|. Again, we say that an algorithm histogram is (↵,�)-accurate if the error is at
most ↵ with probability at least 1� �. Here we get:
Lemma 37. For any ", � 2 (0, 1) and � 2 (0, 0.1), there is an (", �)-shuffle-DP

(O(log(n/(��))/"),�)-accurate algorithm for the histogram problem.

Selection, histogram, and related problems are well studied in the shuffle DP literature
(e.g. [CSU+19, GMPV20, BBGN20, GKMP20, GGK+20, BC20, GGK+21, EFM+20, CZ21,
GKM+21]). Currently, the best known algorithm for both problems yields error guarantees of either
O(log |U |/") [GMPV20, BBGN20] or O(log(1/�)/"2) [BC20] for constant � > 0. Our Lemma 36
improves the latter to O(log(1/�)/") for selection and O(log(n/�)/") for histogram, both of which
match the best known guarantees in the central model [KKMN09, BNS19b] when � < 1/poly(n).

D.1 Selection Algorithm from Negative Binomial Noise

The remainder of this section is devoted to the proof of Lemma 36 and Lemma 37.

D.1.1 Binary Summation

We start by considering an easier problem of binary summation where each user i receives an input
xi and the goal is output an estimate s̃ of

P
i2[n] xi. For this problem, we will prove the following:

Lemma 38. For any " 2 (0, 1), �,� 2 (0, 0.5), there is an (", �)-shuffle-DP for the binary summa-

tion problem such that

• (Underestimation) The estimate s̃ is always at most the true value
P

i2[n] xi.

• (Error Tail Bound) Pr
h
|
P

i2[n] xi � s̃| > O
⇣
log
⇣

1
��

⌘
/"
⌘i
 �.

19

To prove Lemma 38, we recall the algorithm of [GKMP21], which adds noise drawn from the
negative binomial distribution (denoted by NB(r, p)) to the input; the randomizer and the ana-
lyzer7 are presented in Algorithm 7 and Algorithm 8, respectively. Their privacy guarantee, proved
in [GKMP21], is as follows8:
Theorem 39 ([GKMP21, Theorem 13]). For any ", � 2 (0, 1), let p = e�0.2"

and r �
3 (1 + log (1/�)). Then, Algorithm 7 is (", �)-shuffle-DP.

Algorithm 7 Negative Binomial Randomizer (User i).

1: Samples Z ⇠ NB(r/n, p)
2: Send xi + Z messages, where each message is 1

Algorithm 8 Negative Binomial Analyzer.
1: return the total number of messages received

This almost immediately implies the following corollary.
Corollary 40. For any ", � 2 (0, 1), there is an (", �)-shuffle-DP for the binary summation problem

such that

• (Overestimation) The estimate s̃ is always at least the true value
P

i2[n] xi.

• (Error Tail Bound) Pr
h
|
P

i2[n] xi � s̃| > O
⇣
log
⇣

1
��

⌘
/"
⌘i
 �.

Proof. We simply use the Negative Binomial algorithm (Algorithms 7 and 8) with p = e�0.2" and
r = d1000(1 + log(1/(��))e. The privacy guarantee follows from Theorem 39. Next, we argue the
utility guarantees.

• Notice that user i sends at least xi messages. Thus, the total number of messages received
by the analyzer is at least

P
i2[n] xi.

• Since the summation of n i.i.d. random variables drawn from NB(r/n, p) is distributed as
NB(r, p), the total number of messages is

P
i2[n] xi + Y where Y ⇠ NB(r, p). Hence, to

prove the error tail bound, it suffices to show that PrY⇠NB(r,p)

h
Y > O

⇣
log
⇣

1
��

⌘
/"
⌘i

�. To see that this is true, we follow the approach in [Bro]. First, observe from the definition
of the negative binomial distribution that, for any T 2 N, we have

Pr
Y⇠NB(r,p)

[Y > T] = Pr
V⇠Bin(T,1�p)

[V < r],

where Bin(·, ·) denotes the binomial distribution. Now, we may select T = 2r/(1 � p) =

O
⇣
log
⇣

1
��

⌘
/"
⌘

. By applying the Chernoff bound, we have

Pr
V⇠Bin(T,1�p)

[V < r] exp(�0.001r) �,

which, as discussed above, implies the desired error tail bound.

Note that Corollary 40 is not yet the same as Lemma 38 because the first guarantee is that the
estimate is at least in the former instead of at most in the latter. However, it is simple to go from one
to another, as formalized below.

Proof of Lemma 38. Run the algorithm from Corollary 40 but on input 1� xi (instead of xi). Let s̃
denote the estimate of

P
i2[n](1� xi) from the algorithm. We then output n� s̃. The accuracy and

privacy guarantees follow in a straightforward manner from that of Corollary 40.
7We use a slightly different analyzer than the one in [GKMP21], where the mean of the noise was subtracted

from the sum. We do not apply this step because we would like a lower bound of the true sum (Corollary 40).
8Note that [GKMP21, Theorem 13] only states the privacy guarantee for r = 3 (1 + log (1/�)). However,

since X + Y where X ⇠ NB(r2, p), Y ⇠ NB(r1 � r
2
, p) is distributed as NB(r1, p) for r1 > r

2
> 0, the

algorithm for larger r is only more private since it can be thought of as post-processing of that of a smaller r.

20

D.1.2 From Binary Summation to Selection

Now that we have proved Lemma 38, let us note that it easily implies Lemma 36 by running the
binary summation protocol “bucket-by-bucket” as described below.

Proof of Lemma 36. The selection algorithm works by running the ("/2, �/2)-shuffle-DP binary
summation algorithm for each bucket in parallel9 where in bucket u 2 U , we let xu

i = 1[ui =
u]. Let c̃u denote the output estimate of

P
i2[n] x

i
u = cu of bucket u. We finally output u⇤ =

argmaxu2U c̃u.

The privacy guarantee of the algorithm follows from the fact that changing a single ui effects at
most two buckets; thus, the basic composition implies that the above algorithm is (", �)-shuffle-DP.

We now argue its accuracy guarantee. Let uopt = argmaxu2U cu. From the second guarantee of
Lemma 38, we have c̃uopt � cuopt �O

⇣
log
⇣

1
��

⌘
/"
⌘

with probability 1� �. When this holds, the
first property of Lemma 38 ensures that we output u⇤ such that

cu⇤ � c̃u⇤ � c̃uopt � cuopt �O

✓
log

✓
1

��

◆
/"

◆
.

This means that the algorithm is
⇣
O
⇣
log
⇣

1
��

⌘
/"
⌘
,�
⌘

-accurate as desired.

D.1.3 From Binary Summation to Histogram

The histogram protocol is similar to above except that we use the failure probability �/n and we
output zero instead of negative estimates. (This is similar to the protocols in the central model.)

Proof of Lemma 37. Similar to the proof of Lemma 37, the histogram algorithm runs the ("/2, �/2)-
shuffle-DP binary summation algorithm with failure probability �/n for each bucket in parallel
where in bucket u 2 U , we let xu

i = 1[ui = u]. Let c̃u denote the output estimate of
P

i2[n] x
i
u = cu

of bucket u. Finally, for any bucket such that c̃u < 0, we let c̃u = 0 instead.

The privacy guarantee holds due to the same reason as in the proof of Lemma 37.

We now argue its accuracy guarantee. Let us divide the buckets into two types: U>0 := {u 2 U |

cu > 0} and U=0 := {u 2 U | cu = 0}.

• For any u 2 U=0, due to the first property of Lemma 38, we always output zero and thus
the error here is zero.

• Now consider any u 2 U>0. From our choice of parameters and the second property of
Lemma 38, we have Pr

h
|cu � c̃u| > O

⇣
log
⇣

n
��

⌘
/"
⌘i
 �/n.

Note also that |U>0| n. As a result, we may apply a union bound over all u 2 U>0 and conclude
that the error is at most O

⇣
log
⇣

n
��

⌘
/"
⌘

with probability 1� �.

9Note that, since all messages are shuffled together, we have to append u to the beginning of the messages
to indicate that the message corresponds to bucket u; see e.g., [GKMP20, Appendix B] for a more detailed
description.

21

	Introduction
	Our Results
	Proof Overview

	Preliminaries
	Correlated Sampling
	Representation Dimension
	Tools from DP

	Global Stability and Pseudo-Global Stability
	Learners with Global Stability

	Approximate-DP Learner
	From List Global Stability to Pseudo-Global Stability
	From Pseudo-Global Stability to Approximate-DP Learner in the Central Model

	Conclusions and Future Directions
	Pure-DP Learners
	Pseudo-Globally Stable Learner from Probabilistic Representation
	From Pseudo-Globally Stable Learner to Pure-DP Learner in the Local Model
	From Pseudo-Globally Stable Learner to Pure-DP Learner in the Central Model

	Efficient Reduction for SQ Algorithms
	From SQ Algorithms to Pseudo-Globally Stable Learners
	Implications

	Lower Bounds
	Extension to Shuffle DP
	Selection Algorithm from Negative Binomial Noise
	Binary Summation
	From Binary Summation to Selection
	From Binary Summation to Histogram

